013b705ee4
* Cluster first: build renewable profiles and add all assets after clustering * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * correction: pass landfall_lengths through functions * assign landfall_lenghts correctly * remove parameter add_land_use_constraint * fix network_dict * calculate distance to shoreline, remove underwater_fraction * adjust simplification parameter to exclude Crete from offshore wind connections * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove unused geth2015 hydro capacities * removing remaining traces of {simpl} wildcard * add release notes and update workflow graphics * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: lisazeyen <lisa.zeyen@web.de>
87 lines
2.4 KiB
Python
87 lines
2.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Build solar thermal collector profile time series.
|
|
|
|
Uses ``atlite.Cutout.solar_thermal` to compute heat generation for clustered onshore regions from population layout and weather data cutout.
|
|
The rule is executed in ``build_sector.smk``.
|
|
|
|
.. seealso::
|
|
`Atlite.Cutout.solar_thermal <https://atlite.readthedocs.io/en/master/ref_api.html#module-atlite.convert>`_
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
snapshots:
|
|
drop_leap_day:
|
|
solar_thermal:
|
|
atlite:
|
|
default_cutout:
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``resources/<run_name/pop_layout_<scope>.nc``:
|
|
- ``resources/<run_name/regions_onshore_base_s<simpl>_<clusters>.geojson``:
|
|
- ``cutout``: Weather data cutout, as specified in config
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``resources/solar_thermal_<scope>_base_s<simpl>_<clusters>.nc``:
|
|
"""
|
|
|
|
import atlite
|
|
import geopandas as gpd
|
|
import numpy as np
|
|
import xarray as xr
|
|
from _helpers import get_snapshots, set_scenario_config
|
|
from dask.distributed import Client, LocalCluster
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake("build_solar_thermal_profiles", clusters=48)
|
|
set_scenario_config(snakemake)
|
|
|
|
nprocesses = int(snakemake.threads)
|
|
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
|
client = Client(cluster, asynchronous=True)
|
|
|
|
config = snakemake.params.solar_thermal
|
|
config.pop("cutout", None)
|
|
|
|
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
|
|
|
|
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
|
|
|
clustered_regions = (
|
|
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
|
|
)
|
|
|
|
I = cutout.indicatormatrix(clustered_regions)
|
|
|
|
pop_layout = xr.open_dataarray(snakemake.input.pop_layout)
|
|
|
|
stacked_pop = pop_layout.stack(spatial=("y", "x"))
|
|
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
|
|
|
nonzero_sum = M.sum(axis=0, keepdims=True)
|
|
nonzero_sum[nonzero_sum == 0.0] = 1.0
|
|
M_tilde = M / nonzero_sum
|
|
|
|
solar_thermal = cutout.solar_thermal(
|
|
**config,
|
|
matrix=M_tilde.T,
|
|
index=clustered_regions.index,
|
|
dask_kwargs=dict(scheduler=client),
|
|
show_progress=False
|
|
)
|
|
|
|
solar_thermal.to_netcdf(snakemake.output.solar_thermal)
|