# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build solar thermal collector profile time series. Uses ``atlite.Cutout.solar_thermal` to compute heat generation for clustered onshore regions from population layout and weather data cutout. The rule is executed in ``build_sector.smk``. .. seealso:: `Atlite.Cutout.solar_thermal `_ Relevant Settings ----------------- .. code:: yaml snapshots: drop_leap_day: solar_thermal: atlite: default_cutout: Inputs ------ - ``resources/.nc``: - ``resources/_.geojson``: - ``cutout``: Weather data cutout, as specified in config Outputs ------- - ``resources/solar_thermal__base_s_.nc``: """ import atlite import geopandas as gpd import numpy as np import xarray as xr from _helpers import get_snapshots, set_scenario_config from dask.distributed import Client, LocalCluster if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("build_solar_thermal_profiles", clusters=48) set_scenario_config(snakemake) nprocesses = int(snakemake.threads) cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) client = Client(cluster, asynchronous=True) config = snakemake.params.solar_thermal config.pop("cutout", None) time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day) cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time) clustered_regions = ( gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0) ) I = cutout.indicatormatrix(clustered_regions) pop_layout = xr.open_dataarray(snakemake.input.pop_layout) stacked_pop = pop_layout.stack(spatial=("y", "x")) M = I.T.dot(np.diag(I.dot(stacked_pop))) nonzero_sum = M.sum(axis=0, keepdims=True) nonzero_sum[nonzero_sum == 0.0] = 1.0 M_tilde = M / nonzero_sum solar_thermal = cutout.solar_thermal( **config, matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False ) solar_thermal.to_netcdf(snakemake.output.solar_thermal)