pypsa-eur/scripts/build_hydro_profile.py
Fabian Neumann 88d28de3a1
resolve Kosovo (XK) as separate country (#1249)
* resolve Kosovo (XK) as separate country

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fillna

* add missing key in data/existing_infrastructure/existing_heating_raw.csv

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-08-30 15:36:03 +02:00

225 lines
7.0 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build hydroelectric inflow time-series for each country.
Relevant Settings
-----------------
.. code:: yaml
countries:
renewable:
hydro:
cutout:
clip_min_inflow:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/eia_hydro_annual_generation.csv``: Hydroelectricity net generation per country and year (`EIA <https://www.eia.gov/beta/international/data/browser/#/?pa=000000000000000000000000000000g&c=1028i008006gg6168g80a4k000e0ag00gg0004g800ho00g8&ct=0&ug=8&tl_id=2-A&vs=INTL.33-12-ALB-BKWH.A&cy=2014&vo=0&v=H&start=2000&end=2016>`_)
.. image:: img/hydrogeneration.png
:scale: 33 %
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``"cutouts/" + config["renewable"]['hydro']['cutout']``: confer :ref:`cutout`
Outputs
-------
- ``resources/profile_hydro.nc``:
=================== ================ =========================================================
Field Dimensions Description
=================== ================ =========================================================
inflow countries, time Inflow to the state of charge (in MW),
e.g. due to river inflow in hydro reservoir.
=================== ================ =========================================================
.. image:: img/inflow-ts.png
:scale: 33 %
.. image:: img/inflow-box.png
:scale: 33 %
Description
-----------
.. seealso::
:mod:`build_renewable_profiles`
"""
import logging
import atlite
import country_converter as coco
import geopandas as gpd
import pandas as pd
from _helpers import configure_logging, get_snapshots, set_scenario_config
from numpy.polynomial import Polynomial
cc = coco.CountryConverter()
def get_eia_annual_hydro_generation(fn, countries, capacities=False):
# in billion kWh/a = TWh/a
df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[" ", "--"]).iloc[1:, 1:]
df.index = df.index.str.strip()
df.columns = df.columns.astype(int)
former_countries = {
"Former Czechoslovakia": dict(
countries=["Czechia", "Slovakia"], start=1980, end=1992
),
"Former Serbia and Montenegro": dict(
countries=["Serbia", "Montenegro", "Kosovo"], start=1992, end=2005
),
"Former Yugoslavia": dict(
countries=[
"Slovenia",
"Croatia",
"Bosnia and Herzegovina",
"Serbia",
"Kosovo",
"Montenegro",
"North Macedonia",
],
start=1980,
end=1991,
),
}
for k, v in former_countries.items():
period = [i for i in range(v["start"], v["end"] + 1)]
ratio = df.loc[v["countries"]].T.dropna().sum()
ratio /= ratio.sum()
for country in v["countries"]:
df.loc[country, period] = df.loc[k, period] * ratio[country]
baltic_states = ["Latvia", "Estonia", "Lithuania"]
df.loc[baltic_states] = (
df.loc[baltic_states].T.fillna(df.loc[baltic_states].mean(axis=1)).T
)
df.loc["Germany"] = df.filter(like="Germany", axis=0).sum()
df = df.loc[~df.index.str.contains("Former")]
df.drop(["Europe", "Germany, West", "Germany, East"], inplace=True)
df.index = cc.convert(df.index, to="iso2")
df.index.name = "countries"
# convert to MW of MWh/a
factor = 1e3 if capacities else 1e6
df = df.T[countries] * factor
df.ffill(axis=0, inplace=True)
return df
def correct_eia_stats_by_capacity(eia_stats, fn, countries, baseyear=2019):
cap = get_eia_annual_hydro_generation(fn, countries, capacities=True)
ratio = cap / cap.loc[baseyear]
eia_stats_corrected = eia_stats / ratio
to_keep = ["AL", "AT", "CH", "DE", "GB", "NL", "RS", "XK", "RO", "SK"]
to_correct = eia_stats_corrected.columns.difference(to_keep)
eia_stats.loc[:, to_correct] = eia_stats_corrected.loc[:, to_correct]
def approximate_missing_eia_stats(eia_stats, runoff_fn, countries):
runoff = pd.read_csv(runoff_fn, index_col=0).T[countries]
runoff.index = runoff.index.astype(int)
# fix outliers; exceptional floods in 1977-1979 in ES & PT
if "ES" in runoff:
runoff.loc[1978, "ES"] = runoff.loc[1979, "ES"]
if "PT" in runoff:
runoff.loc[1978, "PT"] = runoff.loc[1979, "PT"]
runoff_eia = runoff.loc[eia_stats.index]
eia_stats_approximated = {}
for c in countries:
X = runoff_eia[c]
Y = eia_stats[c]
to_predict = runoff.index.difference(eia_stats.index)
X_pred = runoff.loc[to_predict, c]
p = Polynomial.fit(X, Y, 1)
Y_pred = p(X_pred)
eia_stats_approximated[c] = pd.Series(Y_pred, index=to_predict)
eia_stats_approximated = pd.DataFrame(eia_stats_approximated)
return pd.concat([eia_stats, eia_stats_approximated]).sort_index()
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("build_hydro_profile")
configure_logging(snakemake)
set_scenario_config(snakemake)
params_hydro = snakemake.params.hydro
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
countries = snakemake.params.countries
country_shapes = (
gpd.read_file(snakemake.input.country_shapes)
.set_index("name")["geometry"]
.reindex(countries)
)
country_shapes.index.name = "countries"
fn = snakemake.input.eia_hydro_generation
eia_stats = get_eia_annual_hydro_generation(fn, countries)
config_hydro = snakemake.config["renewable"]["hydro"]
if config_hydro.get("eia_correct_by_capacity"):
fn = snakemake.input.eia_hydro_capacity
correct_eia_stats_by_capacity(eia_stats, fn, countries)
if config_hydro.get("eia_approximate_missing"):
fn = snakemake.input.era5_runoff
eia_stats = approximate_missing_eia_stats(eia_stats, fn, countries)
contained_years = pd.date_range(freq="YE", **snakemake.params.snapshots).year
norm_year = config_hydro.get("eia_norm_year")
missing_years = contained_years.difference(eia_stats.index)
if norm_year:
eia_stats.loc[contained_years] = eia_stats.loc[norm_year]
elif missing_years.any():
eia_stats.loc[missing_years] = eia_stats.median()
inflow = cutout.runoff(
shapes=country_shapes,
smooth=True,
lower_threshold_quantile=True,
normalize_using_yearly=eia_stats,
)
if "clip_min_inflow" in params_hydro:
inflow = inflow.where(inflow > params_hydro["clip_min_inflow"], 0)
inflow.to_netcdf(snakemake.output.profile)