88d28de3a1
* resolve Kosovo (XK) as separate country * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fillna * add missing key in data/existing_infrastructure/existing_heating_raw.csv --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
225 lines
7.0 KiB
Python
225 lines
7.0 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
"""
|
|
Build hydroelectric inflow time-series for each country.
|
|
|
|
Relevant Settings
|
|
-----------------
|
|
|
|
.. code:: yaml
|
|
|
|
countries:
|
|
|
|
renewable:
|
|
hydro:
|
|
cutout:
|
|
clip_min_inflow:
|
|
|
|
.. seealso::
|
|
Documentation of the configuration file ``config/config.yaml`` at
|
|
:ref:`toplevel_cf`, :ref:`renewable_cf`
|
|
|
|
Inputs
|
|
------
|
|
|
|
- ``data/bundle/eia_hydro_annual_generation.csv``: Hydroelectricity net generation per country and year (`EIA <https://www.eia.gov/beta/international/data/browser/#/?pa=000000000000000000000000000000g&c=1028i008006gg6168g80a4k000e0ag00gg0004g800ho00g8&ct=0&ug=8&tl_id=2-A&vs=INTL.33-12-ALB-BKWH.A&cy=2014&vo=0&v=H&start=2000&end=2016>`_)
|
|
|
|
.. image:: img/hydrogeneration.png
|
|
:scale: 33 %
|
|
|
|
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
|
|
- ``"cutouts/" + config["renewable"]['hydro']['cutout']``: confer :ref:`cutout`
|
|
|
|
Outputs
|
|
-------
|
|
|
|
- ``resources/profile_hydro.nc``:
|
|
|
|
=================== ================ =========================================================
|
|
Field Dimensions Description
|
|
=================== ================ =========================================================
|
|
inflow countries, time Inflow to the state of charge (in MW),
|
|
e.g. due to river inflow in hydro reservoir.
|
|
=================== ================ =========================================================
|
|
|
|
.. image:: img/inflow-ts.png
|
|
:scale: 33 %
|
|
|
|
.. image:: img/inflow-box.png
|
|
:scale: 33 %
|
|
|
|
Description
|
|
-----------
|
|
|
|
.. seealso::
|
|
:mod:`build_renewable_profiles`
|
|
"""
|
|
|
|
import logging
|
|
|
|
import atlite
|
|
import country_converter as coco
|
|
import geopandas as gpd
|
|
import pandas as pd
|
|
from _helpers import configure_logging, get_snapshots, set_scenario_config
|
|
from numpy.polynomial import Polynomial
|
|
|
|
cc = coco.CountryConverter()
|
|
|
|
|
|
def get_eia_annual_hydro_generation(fn, countries, capacities=False):
|
|
# in billion kWh/a = TWh/a
|
|
df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[" ", "--"]).iloc[1:, 1:]
|
|
df.index = df.index.str.strip()
|
|
df.columns = df.columns.astype(int)
|
|
|
|
former_countries = {
|
|
"Former Czechoslovakia": dict(
|
|
countries=["Czechia", "Slovakia"], start=1980, end=1992
|
|
),
|
|
"Former Serbia and Montenegro": dict(
|
|
countries=["Serbia", "Montenegro", "Kosovo"], start=1992, end=2005
|
|
),
|
|
"Former Yugoslavia": dict(
|
|
countries=[
|
|
"Slovenia",
|
|
"Croatia",
|
|
"Bosnia and Herzegovina",
|
|
"Serbia",
|
|
"Kosovo",
|
|
"Montenegro",
|
|
"North Macedonia",
|
|
],
|
|
start=1980,
|
|
end=1991,
|
|
),
|
|
}
|
|
|
|
for k, v in former_countries.items():
|
|
period = [i for i in range(v["start"], v["end"] + 1)]
|
|
ratio = df.loc[v["countries"]].T.dropna().sum()
|
|
ratio /= ratio.sum()
|
|
for country in v["countries"]:
|
|
df.loc[country, period] = df.loc[k, period] * ratio[country]
|
|
|
|
baltic_states = ["Latvia", "Estonia", "Lithuania"]
|
|
df.loc[baltic_states] = (
|
|
df.loc[baltic_states].T.fillna(df.loc[baltic_states].mean(axis=1)).T
|
|
)
|
|
|
|
df.loc["Germany"] = df.filter(like="Germany", axis=0).sum()
|
|
df = df.loc[~df.index.str.contains("Former")]
|
|
df.drop(["Europe", "Germany, West", "Germany, East"], inplace=True)
|
|
|
|
df.index = cc.convert(df.index, to="iso2")
|
|
df.index.name = "countries"
|
|
|
|
# convert to MW of MWh/a
|
|
factor = 1e3 if capacities else 1e6
|
|
df = df.T[countries] * factor
|
|
|
|
df.ffill(axis=0, inplace=True)
|
|
|
|
return df
|
|
|
|
|
|
def correct_eia_stats_by_capacity(eia_stats, fn, countries, baseyear=2019):
|
|
cap = get_eia_annual_hydro_generation(fn, countries, capacities=True)
|
|
ratio = cap / cap.loc[baseyear]
|
|
eia_stats_corrected = eia_stats / ratio
|
|
to_keep = ["AL", "AT", "CH", "DE", "GB", "NL", "RS", "XK", "RO", "SK"]
|
|
to_correct = eia_stats_corrected.columns.difference(to_keep)
|
|
eia_stats.loc[:, to_correct] = eia_stats_corrected.loc[:, to_correct]
|
|
|
|
|
|
def approximate_missing_eia_stats(eia_stats, runoff_fn, countries):
|
|
runoff = pd.read_csv(runoff_fn, index_col=0).T[countries]
|
|
runoff.index = runoff.index.astype(int)
|
|
|
|
# fix outliers; exceptional floods in 1977-1979 in ES & PT
|
|
if "ES" in runoff:
|
|
runoff.loc[1978, "ES"] = runoff.loc[1979, "ES"]
|
|
if "PT" in runoff:
|
|
runoff.loc[1978, "PT"] = runoff.loc[1979, "PT"]
|
|
|
|
runoff_eia = runoff.loc[eia_stats.index]
|
|
|
|
eia_stats_approximated = {}
|
|
|
|
for c in countries:
|
|
X = runoff_eia[c]
|
|
Y = eia_stats[c]
|
|
|
|
to_predict = runoff.index.difference(eia_stats.index)
|
|
X_pred = runoff.loc[to_predict, c]
|
|
|
|
p = Polynomial.fit(X, Y, 1)
|
|
Y_pred = p(X_pred)
|
|
|
|
eia_stats_approximated[c] = pd.Series(Y_pred, index=to_predict)
|
|
|
|
eia_stats_approximated = pd.DataFrame(eia_stats_approximated)
|
|
return pd.concat([eia_stats, eia_stats_approximated]).sort_index()
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if __name__ == "__main__":
|
|
if "snakemake" not in globals():
|
|
from _helpers import mock_snakemake
|
|
|
|
snakemake = mock_snakemake("build_hydro_profile")
|
|
configure_logging(snakemake)
|
|
set_scenario_config(snakemake)
|
|
|
|
params_hydro = snakemake.params.hydro
|
|
|
|
time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
|
|
|
|
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
|
|
|
countries = snakemake.params.countries
|
|
country_shapes = (
|
|
gpd.read_file(snakemake.input.country_shapes)
|
|
.set_index("name")["geometry"]
|
|
.reindex(countries)
|
|
)
|
|
country_shapes.index.name = "countries"
|
|
|
|
fn = snakemake.input.eia_hydro_generation
|
|
eia_stats = get_eia_annual_hydro_generation(fn, countries)
|
|
|
|
config_hydro = snakemake.config["renewable"]["hydro"]
|
|
|
|
if config_hydro.get("eia_correct_by_capacity"):
|
|
fn = snakemake.input.eia_hydro_capacity
|
|
correct_eia_stats_by_capacity(eia_stats, fn, countries)
|
|
|
|
if config_hydro.get("eia_approximate_missing"):
|
|
fn = snakemake.input.era5_runoff
|
|
eia_stats = approximate_missing_eia_stats(eia_stats, fn, countries)
|
|
|
|
contained_years = pd.date_range(freq="YE", **snakemake.params.snapshots).year
|
|
norm_year = config_hydro.get("eia_norm_year")
|
|
missing_years = contained_years.difference(eia_stats.index)
|
|
if norm_year:
|
|
eia_stats.loc[contained_years] = eia_stats.loc[norm_year]
|
|
elif missing_years.any():
|
|
eia_stats.loc[missing_years] = eia_stats.median()
|
|
|
|
inflow = cutout.runoff(
|
|
shapes=country_shapes,
|
|
smooth=True,
|
|
lower_threshold_quantile=True,
|
|
normalize_using_yearly=eia_stats,
|
|
)
|
|
|
|
if "clip_min_inflow" in params_hydro:
|
|
inflow = inflow.where(inflow > params_hydro["clip_min_inflow"], 0)
|
|
|
|
inflow.to_netcdf(snakemake.output.profile)
|