add rule for build_biomass_transport_costs

This commit is contained in:
Fabian Neumann 2021-07-02 11:07:35 +02:00
parent e97c4dd3c0
commit fd1121af4a
3 changed files with 85 additions and 65 deletions

View File

@ -180,6 +180,18 @@ rule build_biomass_potentials:
script: 'scripts/build_biomass_potentials.py'
rule build_biomass_transport_costs:
input: "data/biomass/biomass potentials in europe_web rev.pdf"
output:
supply_chain1="resources/biomass_transport_costs_supply_chain1.csv",
supply_chain2="resources/biomass_transport_costs_supply_chain2.csv",
transport_costs="resources/biomass_transport_costs.csv",
threads: 1
resources: mem_mb=1000
benchmark: "benchmarks/build_biomass_transport_costs"
script: 'scripts/build_biomass_transport_costs.py'
rule build_ammonia_production:
input:
usgs="data/myb1-2017-nitro.xls"
@ -321,10 +333,10 @@ rule prepare_sector_network:
energy_totals_name='resources/energy_totals.csv',
co2_totals_name='resources/co2_totals.csv',
transport_name='resources/transport_data.csv',
traffic_data_KFZ = "data/emobility/KFZ__count",
traffic_data_Pkw = "data/emobility/Pkw__count",
traffic_data_KFZ="data/emobility/KFZ__count",
traffic_data_Pkw="data/emobility/Pkw__count",
biomass_potentials='resources/biomass_potentials.csv',
biomass_transport='data/biomass/biomass_transport_costs.csv',
biomass_transport="resources/biomass_transport_costs.csv",
heat_profile="data/heat_load_profile_BDEW.csv",
costs=CDIR + "costs_{planning_horizons}.csv",
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),

View File

@ -0,0 +1,70 @@
"""
Reads biomass transport costs for different countries of the JRC report
"The JRC-EU-TIMES model.
Bioenergy potentials
for EU and neighbouring countries."
(2015)
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
assuming as an approximation energy content of wood pellets
@author: bw0928
"""
import pandas as pd
import tabula as tbl
ENERGY_CONTENT = 4.8 # unit MWh/tonne (assuming wood pellets)
def build_biomass_transport_costs():
df_list = tbl.read_pdf(
snakemake.input[0],
pages="145-147",
multiple_tables=True,
)
countries = df_list[0][0].iloc[6:].rename(index=lambda x: x + 1)
# supply chain 1
df = df_list[1].copy().rename(index=countries.to_dict())
df.rename(
columns=df.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df = df.iloc[6:]
df.loc[6] = df.loc[6].str.replace("", "EUR")
# supply chain 2
df2 = df_list[2].copy().rename(index=countries.to_dict())
df2.rename(
columns=df2.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df2 = df2.iloc[6:]
df2.loc[6] = df2.loc[6].str.replace("", "EUR")
df.to_csv(snakemake.output.supply_chain1)
df2.to_csv(snakemake.output.supply_chain1)
transport_costs = pd.concat([df["per km/ton"], df2["per km/ton"]], axis=1).drop(6)
transport_costs = transport_costs.astype(float, errors="ignore").mean(axis=1)
# convert unit to EUR/MWh
transport_costs /= ENERGY_CONTENT
transport_costs = pd.DataFrame(transport_costs, columns=["cost [EUR/(km MWh)]"])
# rename
transport_costs.rename({"UK": "GB", "XK": "KO", "EL": "GR"}, inplace=True)
# add missing Norway
transport_costs.loc["NO"] = transport_costs.loc["SE"]
transport_costs.to_csv(snakemake.output.transport_costs)
if __name__ == "__main__":
prepare_biomass_transport_costs()

View File

@ -1,62 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 12 19:11:20 2020
reads biomass transport costs for different countries of the JRC report
"The JRC-EU-TIMES model.
Bioenergy potentials
for EU and neighbouring countries."
(2015)
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
assuming as an approximation energy content of wood pellets
@author: bw0928
"""
import pandas as pd
from tabula import read_pdf
import numpy as np
# read pdf file
df_list = read_pdf("biomass potentials in europe_web rev.pdf",
pages="145-147",
multiple_tables=True)
energy_content = 4.8 # unit MWh/tonne (assuming wood pellets)
# %%
columns = ["Komponente", "Größe", "Einheit", 2020, 2025, 2030, 2035, 2040,
2045, 2050]
countries = df_list[0][0].iloc[6:].rename(index=lambda x: x+1)
# supply chain 1
df = df_list[1].copy().rename(index=countries.to_dict())
df.rename(columns= df.iloc[:6].apply(lambda col: col.str.cat(sep=" "),
axis=0).to_dict(), inplace=True)
df = df.iloc[6:]
df.loc[6]=df.loc[6].str.replace("", "EUR")
# supply chain 2
df2 = df_list[2].copy().rename(index=countries.to_dict())
df2.rename(columns= df2.iloc[:6].apply(lambda col: col.str.cat(sep=" "),
axis=0).to_dict(), inplace=True)
df2 = df2.iloc[6:]
df2.loc[6]=df2.loc[6].str.replace("", "EUR")
#%%
df.to_csv("biomass_transport_costs_supply_chain1.csv")
df2.to_csv("biomass_transport_costs_supply_chain2.csv")
transport_costs = pd.concat([df['per km/ton'], df2['per km/ton']],axis=1).drop(6)
transport_costs = transport_costs.astype(float, errors="ignore").mean(axis=1)
# convert unit to EUR/MWh
transport_costs /= energy_content
transport_costs = pd.DataFrame(transport_costs, columns=["cost [EUR/(km MWh)]"])
# rename
transport_costs.rename({"UK": "GB", "XK": "KO", "EL": "GR"}, inplace=True)
# add missing Norway
transport_costs.loc["NO"] = transport_costs.loc["SE"]
transport_costs.to_csv("biomass_transport_final.csv")