merge master
This commit is contained in:
commit
e97c4dd3c0
6
.gitignore
vendored
6
.gitignore
vendored
@ -2,9 +2,10 @@
|
||||
.ipynb_checkpoints
|
||||
__pycache__
|
||||
gurobi.log
|
||||
.vscode
|
||||
|
||||
/bak
|
||||
/resources
|
||||
/resources*
|
||||
/results
|
||||
/networks
|
||||
/benchmarks
|
||||
@ -26,6 +27,7 @@ gurobi.log
|
||||
/data/switzerland*
|
||||
/data/.nfs*
|
||||
/data/Industrial_Database.csv
|
||||
/data/retro/tabula-calculator-calcsetbuilding.csv
|
||||
|
||||
*.org
|
||||
|
||||
@ -45,4 +47,4 @@ config.yaml
|
||||
|
||||
doc/_build
|
||||
|
||||
*.xls
|
||||
*.xls
|
||||
|
12
README.md
12
README.md
@ -14,7 +14,7 @@ problems that distort the results. See the github repository
|
||||
[issues](https://github.com/PyPSA/pypsa-eur-sec/issues) for some of
|
||||
the problems (please feel free to help or make suggestions). There is
|
||||
neither documentation nor a paper yet, but we hope to have a preprint
|
||||
out by summer 2020. We cannot support this model if you choose to use
|
||||
out by autumn 2021. We cannot support this model if you choose to use
|
||||
it.
|
||||
|
||||
|
||||
@ -26,13 +26,21 @@ the energy system and includes all greenhouse gas emitters except
|
||||
waste management, agriculture, forestry and land use.
|
||||
|
||||
Please see the [documentation](https://pypsa-eur-sec.readthedocs.io/)
|
||||
for installation instructions and other useful information.
|
||||
for installation instructions and other useful information about the snakemake workflow.
|
||||
|
||||
This diagram gives an overview of the sectors and the links between
|
||||
them:
|
||||
|
||||
![sector diagram](graphics/multisector_figure.png)
|
||||
|
||||
Each of these sectors is built up on the transmission network nodes
|
||||
from [PyPSA-Eur](https://github.com/PyPSA/pypsa-eur):
|
||||
|
||||
![network diagram](https://github.com/PyPSA/pypsa-eur/blob/master/doc/img/base.png?raw=true)
|
||||
|
||||
For computational reasons the model is usually clustered down
|
||||
to 50-200 nodes.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 described
|
||||
in the paper [Synergies of sector coupling and transmission
|
||||
|
434
Snakefile
434
Snakefile
@ -1,42 +1,41 @@
|
||||
|
||||
configfile: "config.yaml"
|
||||
|
||||
|
||||
wildcard_constraints:
|
||||
lv="[a-z0-9\.]+",
|
||||
network="[a-zA-Z0-9]*",
|
||||
simpl="[a-zA-Z0-9]*",
|
||||
clusters="[0-9]+m?",
|
||||
sectors="[+a-zA-Z0-9]+",
|
||||
opts="[-+a-zA-Z0-9]*",
|
||||
sector_opts="[-+a-zA-Z0-9]*"
|
||||
sector_opts="[-+a-zA-Z0-9\.\s]*"
|
||||
|
||||
|
||||
SDIR = config['summary_dir'] + '/' + config['run']
|
||||
RDIR = config['results_dir'] + config['run']
|
||||
CDIR = config['costs_dir']
|
||||
|
||||
|
||||
subworkflow pypsaeur:
|
||||
workdir: "../pypsa-eur"
|
||||
snakefile: "../pypsa-eur/Snakefile"
|
||||
configfile: "../pypsa-eur/config.yaml"
|
||||
|
||||
rule all:
|
||||
input:
|
||||
config['summary_dir'] + '/' + config['run'] + '/graphs/costs.pdf'
|
||||
|
||||
rule all:
|
||||
input: SDIR + '/graphs/costs.pdf'
|
||||
|
||||
|
||||
rule solve_all_networks:
|
||||
input:
|
||||
expand(config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
expand(RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario'])
|
||||
|
||||
rule test_script:
|
||||
input:
|
||||
expand("resources/heat_demand_urban_elec_s_{clusters}.nc",
|
||||
**config['scenario'])
|
||||
|
||||
rule prepare_sector_networks:
|
||||
input:
|
||||
expand(config['results_dir'] + config['run'] + "/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
**config['scenario'])
|
||||
expand(RDIR + "/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario'])
|
||||
|
||||
|
||||
rule build_population_layouts:
|
||||
@ -48,6 +47,8 @@ rule build_population_layouts:
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_population_layouts"
|
||||
threads: 8
|
||||
script: "scripts/build_population_layouts.py"
|
||||
|
||||
|
||||
@ -56,10 +57,11 @@ rule build_clustered_population_layouts:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
regions_onshore=pypsaeur('resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson')
|
||||
regions_onshore=pypsaeur('resources/regions_onshore_elec_s{simpl}_{clusters}.geojson')
|
||||
output:
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv"
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_clustered_population_layouts/s{simpl}_{clusters}"
|
||||
script: "scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
@ -68,10 +70,11 @@ rule build_simplified_population_layouts:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
regions_onshore=pypsaeur('resources/regions_onshore_{network}_s{simpl}.geojson')
|
||||
regions_onshore=pypsaeur('resources/regions_onshore_elec_s{simpl}.geojson')
|
||||
output:
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}.csv"
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}.csv"
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_clustered_population_layouts/s{simpl}"
|
||||
script: "scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
@ -80,47 +83,51 @@ rule build_heat_demands:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson")
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
heat_demand_urban="resources/heat_demand_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/heat_demand_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/heat_demand_total_{network}_s{simpl}_{clusters}.nc"
|
||||
heat_demand_urban="resources/heat_demand_urban_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/heat_demand_rural_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/heat_demand_total_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_heat_demands/s{simpl}_{clusters}"
|
||||
script: "scripts/build_heat_demand.py"
|
||||
|
||||
|
||||
rule build_temperature_profiles:
|
||||
input:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson")
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
temp_soil_total="resources/temp_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_{network}_s{simpl}_{clusters}.nc"
|
||||
temp_soil_total="resources/temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_temperature_profiles/s{simpl}_{clusters}"
|
||||
script: "scripts/build_temperature_profiles.py"
|
||||
|
||||
|
||||
rule build_cop_profiles:
|
||||
input:
|
||||
temp_soil_total="resources/temp_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_{network}_s{simpl}_{clusters}.nc"
|
||||
temp_soil_total="resources/temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
output:
|
||||
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/cop_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/cop_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/cop_air_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/cop_air_urban_{network}_s{simpl}_{clusters}.nc"
|
||||
cop_soil_total="resources/cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/cop_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/cop_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/cop_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/cop_air_urban_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_cop_profiles/s{simpl}_{clusters}"
|
||||
script: "scripts/build_cop_profiles.py"
|
||||
|
||||
|
||||
@ -129,27 +136,38 @@ rule build_solar_thermal_profiles:
|
||||
pop_layout_total="resources/pop_layout_total.nc",
|
||||
pop_layout_urban="resources/pop_layout_urban.nc",
|
||||
pop_layout_rural="resources/pop_layout_rural.nc",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_{network}_s{simpl}_{clusters}.geojson")
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc"
|
||||
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc"
|
||||
resources: mem_mb=20000
|
||||
benchmark: "benchmarks/build_solar_thermal_profiles/s{simpl}_{clusters}"
|
||||
script: "scripts/build_solar_thermal_profiles.py"
|
||||
|
||||
|
||||
def input_eurostat(w):
|
||||
# 2016 includes BA, 2017 does not
|
||||
report_year = config["energy"]["eurostat_report_year"]
|
||||
return f"data/eurostat-energy_balances-june_{report_year}_edition"
|
||||
|
||||
rule build_energy_totals:
|
||||
input:
|
||||
nuts3_shapes=pypsaeur('resources/nuts3_shapes.geojson')
|
||||
nuts3_shapes=pypsaeur('resources/nuts3_shapes.geojson'),
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
swiss="data/switzerland-sfoe/switzerland-new_format.csv",
|
||||
idees="data/jrc-idees-2015",
|
||||
eurostat=input_eurostat
|
||||
output:
|
||||
energy_name='resources/energy_totals.csv',
|
||||
co2_name='resources/co2_totals.csv',
|
||||
transport_name='resources/transport_data.csv'
|
||||
threads: 1
|
||||
co2_name='resources/co2_totals.csv',
|
||||
transport_name='resources/transport_data.csv'
|
||||
threads: 16
|
||||
resources: mem_mb=10000
|
||||
benchmark: "benchmarks/build_energy_totals"
|
||||
script: 'scripts/build_energy_totals.py'
|
||||
|
||||
|
||||
rule build_biomass_potentials:
|
||||
input:
|
||||
jrc_potentials="data/biomass/JRC Biomass Potentials.xlsx"
|
||||
@ -158,8 +176,10 @@ rule build_biomass_potentials:
|
||||
biomass_potentials='resources/biomass_potentials.csv'
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_biomass_potentials"
|
||||
script: 'scripts/build_biomass_potentials.py'
|
||||
|
||||
|
||||
rule build_ammonia_production:
|
||||
input:
|
||||
usgs="data/myb1-2017-nitro.xls"
|
||||
@ -167,26 +187,32 @@ rule build_ammonia_production:
|
||||
ammonia_production="resources/ammonia_production.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_ammonia_production"
|
||||
script: 'scripts/build_ammonia_production.py'
|
||||
|
||||
|
||||
rule build_industry_sector_ratios:
|
||||
input:
|
||||
ammonia_production="resources/ammonia_production.csv"
|
||||
ammonia_production="resources/ammonia_production.csv",
|
||||
idees="data/jrc-idees-2015"
|
||||
output:
|
||||
industry_sector_ratios="resources/industry_sector_ratios.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industry_sector_ratios"
|
||||
script: 'scripts/build_industry_sector_ratios.py'
|
||||
|
||||
|
||||
rule build_industrial_production_per_country:
|
||||
input:
|
||||
ammonia_production="resources/ammonia_production.csv"
|
||||
ammonia_production="resources/ammonia_production.csv",
|
||||
jrc="data/jrc-idees-2015",
|
||||
eurostat="data/eurostat-energy_balances-may_2018_edition",
|
||||
output:
|
||||
industrial_production_per_country="resources/industrial_production_per_country.csv"
|
||||
threads: 1
|
||||
threads: 8
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_country"
|
||||
script: 'scripts/build_industrial_production_per_country.py'
|
||||
|
||||
|
||||
@ -197,220 +223,231 @@ rule build_industrial_production_per_country_tomorrow:
|
||||
industrial_production_per_country_tomorrow="resources/industrial_production_per_country_tomorrow.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_country_tomorrow"
|
||||
script: 'scripts/build_industrial_production_per_country_tomorrow.py'
|
||||
|
||||
|
||||
|
||||
|
||||
rule build_industrial_distribution_key:
|
||||
input:
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
|
||||
europe_shape=pypsaeur('resources/europe_shape.geojson'),
|
||||
regions_onshore=pypsaeur('resources/regions_onshore_elec_s{simpl}_{clusters}.geojson'),
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
hotmaps_industrial_database="data/Industrial_Database.csv",
|
||||
network=pypsaeur('networks/{network}_s{simpl}_{clusters}.nc')
|
||||
output:
|
||||
industrial_distribution_key="resources/industrial_distribution_key_{network}_s{simpl}_{clusters}.csv"
|
||||
industrial_distribution_key="resources/industrial_distribution_key_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_distribution_key/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_distribution_key.py'
|
||||
|
||||
|
||||
|
||||
rule build_industrial_production_per_node:
|
||||
input:
|
||||
industrial_distribution_key="resources/industrial_distribution_key_{network}_s{simpl}_{clusters}.csv",
|
||||
industrial_distribution_key="resources/industrial_distribution_key_elec_s{simpl}_{clusters}.csv",
|
||||
industrial_production_per_country_tomorrow="resources/industrial_production_per_country_tomorrow.csv"
|
||||
output:
|
||||
industrial_production_per_node="resources/industrial_production_{network}_s{simpl}_{clusters}.csv"
|
||||
industrial_production_per_node="resources/industrial_production_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_production_per_node/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_production_per_node.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_node:
|
||||
input:
|
||||
industry_sector_ratios="resources/industry_sector_ratios.csv",
|
||||
industrial_production_per_node="resources/industrial_production_{network}_s{simpl}_{clusters}.csv",
|
||||
industrial_energy_demand_per_node_today="resources/industrial_energy_demand_today_{network}_s{simpl}_{clusters}.csv"
|
||||
industrial_production_per_node="resources/industrial_production_elec_s{simpl}_{clusters}.csv",
|
||||
industrial_energy_demand_per_node_today="resources/industrial_energy_demand_today_elec_s{simpl}_{clusters}.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_node="resources/industrial_energy_demand_{network}_s{simpl}_{clusters}.csv"
|
||||
industrial_energy_demand_per_node="resources/industrial_energy_demand_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_node/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_energy_demand_per_node.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_country_today:
|
||||
input:
|
||||
jrc="data/jrc-idees-2015",
|
||||
ammonia_production="resources/ammonia_production.csv",
|
||||
industrial_production_per_country="resources/industrial_production_per_country.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_country_today="resources/industrial_energy_demand_per_country_today.csv"
|
||||
threads: 1
|
||||
threads: 8
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_country_today"
|
||||
script: 'scripts/build_industrial_energy_demand_per_country_today.py'
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_node_today:
|
||||
input:
|
||||
industrial_distribution_key="resources/industrial_distribution_key_{network}_s{simpl}_{clusters}.csv",
|
||||
industrial_distribution_key="resources/industrial_distribution_key_elec_s{simpl}_{clusters}.csv",
|
||||
industrial_energy_demand_per_country_today="resources/industrial_energy_demand_per_country_today.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_node_today="resources/industrial_energy_demand_today_{network}_s{simpl}_{clusters}.csv"
|
||||
industrial_energy_demand_per_node_today="resources/industrial_energy_demand_today_elec_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_industrial_energy_demand_per_node_today/s{simpl}_{clusters}"
|
||||
script: 'scripts/build_industrial_energy_demand_per_node_today.py'
|
||||
|
||||
|
||||
|
||||
rule build_industrial_energy_demand_per_country:
|
||||
input:
|
||||
industry_sector_ratios="resources/industry_sector_ratios.csv",
|
||||
industrial_production_per_country="resources/industrial_production_per_country_tomorrow.csv"
|
||||
output:
|
||||
industrial_energy_demand_per_country="resources/industrial_energy_demand_per_country.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
script: 'scripts/build_industrial_energy_demand_per_country.py'
|
||||
|
||||
|
||||
rule build_industrial_demand:
|
||||
input:
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
|
||||
industrial_demand_per_country="resources/industrial_energy_demand_per_country.csv"
|
||||
output:
|
||||
industrial_demand="resources/industrial_demand_{network}_s{simpl}_{clusters}.csv"
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
script: 'scripts/build_industrial_demand.py'
|
||||
if config["sector"]["retrofitting"]["retro_endogen"]:
|
||||
rule build_retro_cost:
|
||||
input:
|
||||
building_stock="data/retro/data_building_stock.csv",
|
||||
data_tabula="data/retro/tabula-calculator-calcsetbuilding.csv",
|
||||
air_temperature = "resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
u_values_PL="data/retro/u_values_poland.csv",
|
||||
tax_w="data/retro/electricity_taxes_eu.csv",
|
||||
construction_index="data/retro/comparative_level_investment.csv",
|
||||
floor_area_missing="data/retro/floor_area_missing.csv",
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
cost_germany="data/retro/retro_cost_germany.csv",
|
||||
window_assumptions="data/retro/window_assumptions.csv",
|
||||
output:
|
||||
retro_cost="resources/retro_cost_elec_s{simpl}_{clusters}.csv",
|
||||
floor_area="resources/floor_area_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_retro_cost/s{simpl}_{clusters}"
|
||||
script: "scripts/build_retro_cost.py"
|
||||
build_retro_cost_output = rules.build_retro_cost.output
|
||||
else:
|
||||
build_retro_cost_output = {}
|
||||
|
||||
|
||||
rule prepare_sector_network:
|
||||
input:
|
||||
network=pypsaeur('networks/{network}_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc'),
|
||||
overrides="data/override_component_attrs",
|
||||
network=pypsaeur('networks/elec_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc'),
|
||||
energy_totals_name='resources/energy_totals.csv',
|
||||
co2_totals_name='resources/co2_totals.csv',
|
||||
transport_name='resources/transport_data.csv',
|
||||
traffic_data_KFZ = "data/emobility/KFZ__count",
|
||||
traffic_data_Pkw = "data/emobility/Pkw__count",
|
||||
biomass_potentials='resources/biomass_potentials.csv',
|
||||
biomass_transport='data/biomass/biomass_transport_costs.csv',
|
||||
timezone_mappings='data/timezone_mappings.csv',
|
||||
biomass_transport='data/biomass/biomass_transport_costs.csv',
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
|
||||
h2_cavern = "data/hydrogen_salt_cavern_potentials.csv",
|
||||
co2_budget="data/co2_budget.csv",
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
|
||||
profile_offwind_dc=pypsaeur("resources/profile_offwind-dc.nc"),
|
||||
clustermaps=pypsaeur('resources/clustermaps_{network}_s{simpl}_{clusters}.h5'),
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
|
||||
simplified_pop_layout="resources/pop_layout_{network}_s{simpl}.csv",
|
||||
industrial_demand="resources/industrial_energy_demand_{network}_s{simpl}_{clusters}.csv",
|
||||
heat_demand_urban="resources/heat_demand_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/heat_demand_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/heat_demand_total_{network}_s{simpl}_{clusters}.nc",
|
||||
traffic_data = "data/emobility/",
|
||||
temp_soil_total="resources/temp_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/cop_soil_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/cop_soil_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/cop_air_rural_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/cop_air_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc"
|
||||
output: config['results_dir'] + config['run'] + '/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc'
|
||||
h2_cavern="data/hydrogen_salt_cavern_potentials.csv",
|
||||
busmap_s=pypsaeur("resources/busmap_elec_s{simpl}.csv"),
|
||||
busmap=pypsaeur("resources/busmap_elec_s{simpl}_{clusters}.csv"),
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
simplified_pop_layout="resources/pop_layout_elec_s{simpl}.csv",
|
||||
industrial_demand="resources/industrial_energy_demand_elec_s{simpl}_{clusters}.csv",
|
||||
heat_demand_urban="resources/heat_demand_urban_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural="resources/heat_demand_rural_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total="resources/heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_total="resources/temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural="resources/temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban="resources/temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_rural="resources/temp_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_air_urban="resources/temp_air_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_total="resources/cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_rural="resources/cop_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_soil_urban="resources/cop_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_rural="resources/cop_air_rural_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_urban="resources/cop_air_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc",
|
||||
**build_retro_cost_output
|
||||
output: RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
benchmark: config['results_dir'] + config['run'] + "/benchmarks/prepare_network/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}"
|
||||
benchmark: RDIR + "/benchmarks/prepare_network/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/prepare_sector_network.py"
|
||||
|
||||
|
||||
|
||||
rule plot_network:
|
||||
input:
|
||||
network=config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc"
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
output:
|
||||
map=config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{co2_budget_name}_{planning_horizons}.pdf",
|
||||
today=config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}-today.pdf"
|
||||
map=RDIR + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
today=RDIR + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}-today.pdf"
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + "/benchmarks/plot_network/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/plot_network.py"
|
||||
|
||||
|
||||
rule copy_config:
|
||||
output:
|
||||
config=config['summary_dir'] + '/' + config['run'] + '/configs/config.yaml'
|
||||
output: SDIR + '/configs/config.yaml'
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
script:
|
||||
'scripts/copy_config.py'
|
||||
benchmark: SDIR + "/benchmarks/copy_config"
|
||||
script: "scripts/copy_config.py"
|
||||
|
||||
|
||||
rule make_summary:
|
||||
input:
|
||||
networks=expand(config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
**config['scenario']),
|
||||
costs=config['costs_dir'] + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
plots=expand(config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{co2_budget_name}_{planning_horizons}.pdf",
|
||||
**config['scenario'])
|
||||
#heat_demand_name='data/heating/daily_heat_demand.h5'
|
||||
overrides="data/override_component_attrs",
|
||||
networks=expand(
|
||||
RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
**config['scenario']
|
||||
),
|
||||
costs=CDIR + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
plots=expand(
|
||||
RDIR + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config['scenario']
|
||||
)
|
||||
output:
|
||||
nodal_costs=config['summary_dir'] + '/' + config['run'] + '/csvs/nodal_costs.csv',
|
||||
nodal_capacities=config['summary_dir'] + '/' + config['run'] + '/csvs/nodal_capacities.csv',
|
||||
nodal_cfs=config['summary_dir'] + '/' + config['run'] + '/csvs/nodal_cfs.csv',
|
||||
cfs=config['summary_dir'] + '/' + config['run'] + '/csvs/cfs.csv',
|
||||
costs=config['summary_dir'] + '/' + config['run'] + '/csvs/costs.csv',
|
||||
capacities=config['summary_dir'] + '/' + config['run'] + '/csvs/capacities.csv',
|
||||
curtailment=config['summary_dir'] + '/' + config['run'] + '/csvs/curtailment.csv',
|
||||
energy=config['summary_dir'] + '/' + config['run'] + '/csvs/energy.csv',
|
||||
supply=config['summary_dir'] + '/' + config['run'] + '/csvs/supply.csv',
|
||||
supply_energy=config['summary_dir'] + '/' + config['run'] + '/csvs/supply_energy.csv',
|
||||
prices=config['summary_dir'] + '/' + config['run'] + '/csvs/prices.csv',
|
||||
weighted_prices=config['summary_dir'] + '/' + config['run'] + '/csvs/weighted_prices.csv',
|
||||
market_values=config['summary_dir'] + '/' + config['run'] + '/csvs/market_values.csv',
|
||||
price_statistics=config['summary_dir'] + '/' + config['run'] + '/csvs/price_statistics.csv',
|
||||
metrics=config['summary_dir'] + '/' + config['run'] + '/csvs/metrics.csv'
|
||||
nodal_costs=SDIR + '/csvs/nodal_costs.csv',
|
||||
nodal_capacities=SDIR + '/csvs/nodal_capacities.csv',
|
||||
nodal_cfs=SDIR + '/csvs/nodal_cfs.csv',
|
||||
cfs=SDIR + '/csvs/cfs.csv',
|
||||
costs=SDIR + '/csvs/costs.csv',
|
||||
capacities=SDIR + '/csvs/capacities.csv',
|
||||
curtailment=SDIR + '/csvs/curtailment.csv',
|
||||
energy=SDIR + '/csvs/energy.csv',
|
||||
supply=SDIR + '/csvs/supply.csv',
|
||||
supply_energy=SDIR + '/csvs/supply_energy.csv',
|
||||
prices=SDIR + '/csvs/prices.csv',
|
||||
weighted_prices=SDIR + '/csvs/weighted_prices.csv',
|
||||
market_values=SDIR + '/csvs/market_values.csv',
|
||||
price_statistics=SDIR + '/csvs/price_statistics.csv',
|
||||
metrics=SDIR + '/csvs/metrics.csv'
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
script:
|
||||
'scripts/make_summary.py'
|
||||
benchmark: SDIR + "/benchmarks/make_summary"
|
||||
script: "scripts/make_summary.py"
|
||||
|
||||
|
||||
rule plot_summary:
|
||||
input:
|
||||
costs=config['summary_dir'] + '/' + config['run'] + '/csvs/costs.csv',
|
||||
energy=config['summary_dir'] + '/' + config['run'] + '/csvs/energy.csv',
|
||||
balances=config['summary_dir'] + '/' + config['run'] + '/csvs/supply_energy.csv'
|
||||
costs=SDIR + '/csvs/costs.csv',
|
||||
energy=SDIR + '/csvs/energy.csv',
|
||||
balances=SDIR + '/csvs/supply_energy.csv'
|
||||
output:
|
||||
costs=config['summary_dir'] + '/' + config['run'] + '/graphs/costs.pdf',
|
||||
energy=config['summary_dir'] + '/' + config['run'] + '/graphs/energy.pdf',
|
||||
balances=config['summary_dir'] + '/' + config['run'] + '/graphs/balances-energy.pdf'
|
||||
costs=SDIR + '/graphs/costs.pdf',
|
||||
energy=SDIR + '/graphs/energy.pdf',
|
||||
balances=SDIR + '/graphs/balances-energy.pdf'
|
||||
threads: 2
|
||||
resources: mem_mb=10000
|
||||
script:
|
||||
'scripts/plot_summary.py'
|
||||
benchmark: SDIR + "/benchmarks/plot_summary"
|
||||
script: "scripts/plot_summary.py"
|
||||
|
||||
|
||||
if config["foresight"] == "overnight":
|
||||
|
||||
rule solve_network:
|
||||
input:
|
||||
network=config['results_dir'] + config['run'] + "/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
|
||||
config=config['summary_dir'] + '/' + config['run'] + '/configs/config.yaml'
|
||||
output: config['results_dir'] + config['run'] + "/postnetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc"
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + "/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
config=SDIR + '/configs/config.yaml'
|
||||
output: RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
shadow: "shallow"
|
||||
log:
|
||||
solver=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_solver.log",
|
||||
python=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_python.log",
|
||||
memory=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_memory.log"
|
||||
benchmark: config['results_dir'] + config['run'] + "/benchmarks/solve_network/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}"
|
||||
solver=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_solver.log",
|
||||
python=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_python.log",
|
||||
memory=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_memory.log"
|
||||
threads: 4
|
||||
resources: mem_mb=config['solving']['mem']
|
||||
# group: "solve" # with group, threads is ignored https://bitbucket.org/snakemake/snakemake/issues/971/group-job-description-does-not-contain
|
||||
benchmark: RDIR + "/benchmarks/solve_network/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/solve_network.py"
|
||||
|
||||
|
||||
@ -418,52 +455,67 @@ if config["foresight"] == "myopic":
|
||||
|
||||
rule add_existing_baseyear:
|
||||
input:
|
||||
network=config['results_dir'] + config['run'] + '/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc',
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc',
|
||||
powerplants=pypsaeur('resources/powerplants.csv'),
|
||||
clustermaps=pypsaeur('resources/clustermaps_{network}_s{simpl}_{clusters}.h5'),
|
||||
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
|
||||
costs=config['costs_dir'] + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc"
|
||||
output: config['results_dir'] + config['run'] + '/prenetworks-brownfield/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc'
|
||||
busmap_s=pypsaeur("resources/busmap_elec_s{simpl}.csv"),
|
||||
busmap=pypsaeur("resources/busmap_elec_s{simpl}_{clusters}.csv"),
|
||||
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
costs=CDIR + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
cop_soil_total="resources/cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
existing_heating='data/existing_infrastructure/existing_heating_raw.csv',
|
||||
country_codes='data/Country_codes.csv',
|
||||
existing_solar='data/existing_infrastructure/solar_capacity_IRENA.csv',
|
||||
existing_onwind='data/existing_infrastructure/onwind_capacity_IRENA.csv',
|
||||
existing_offwind='data/existing_infrastructure/offwind_capacity_IRENA.csv',
|
||||
output: RDIR + '/prenetworks-brownfield/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
wildcard_constraints:
|
||||
planning_horizons=config['scenario']['planning_horizons'][0] #only applies to baseyear
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
benchmark: RDIR + '/benchmarks/add_existing_baseyear/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}'
|
||||
script: "scripts/add_existing_baseyear.py"
|
||||
|
||||
def process_input(wildcards):
|
||||
i = config["scenario"]["planning_horizons"].index(int(wildcards.planning_horizons))
|
||||
return config['results_dir'] + config['run'] + "/postnetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_" + str(config["scenario"]["planning_horizons"][i-1]) + ".nc"
|
||||
|
||||
def solved_previous_horizon(wildcards):
|
||||
planning_horizons = config["scenario"]["planning_horizons"]
|
||||
i = planning_horizons.index(int(wildcards.planning_horizons))
|
||||
planning_horizon_p = str(planning_horizons[i-1])
|
||||
return RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_" + planning_horizon_p + ".nc"
|
||||
|
||||
|
||||
rule add_brownfield:
|
||||
input:
|
||||
network=config['results_dir'] + config['run'] + '/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc',
|
||||
network_p=process_input, #solved network at previous time step
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
|
||||
cop_soil_total="resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_{network}_s{simpl}_{clusters}.nc"
|
||||
|
||||
output: config['results_dir'] + config['run'] + "/prenetworks-brownfield/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc"
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc',
|
||||
network_p=solved_previous_horizon, #solved network at previous time step
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
cop_soil_total="resources/cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total="resources/cop_air_total_elec_s{simpl}_{clusters}.nc"
|
||||
output: RDIR + "/prenetworks-brownfield/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
threads: 4
|
||||
resources: mem_mb=2000
|
||||
resources: mem_mb=10000
|
||||
benchmark: RDIR + '/benchmarks/add_brownfield/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}'
|
||||
script: "scripts/add_brownfield.py"
|
||||
|
||||
|
||||
ruleorder: add_existing_baseyear > add_brownfield
|
||||
|
||||
|
||||
rule solve_network_myopic:
|
||||
input:
|
||||
network=config['results_dir'] + config['run'] + "/prenetworks-brownfield/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
|
||||
config=config['summary_dir'] + '/' + config['run'] + '/configs/config.yaml'
|
||||
output: config['results_dir'] + config['run'] + "/postnetworks/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc"
|
||||
overrides="data/override_component_attrs",
|
||||
network=RDIR + "/prenetworks-brownfield/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
costs=CDIR + "costs_{planning_horizons}.csv",
|
||||
config=SDIR + '/configs/config.yaml'
|
||||
output: RDIR + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc"
|
||||
shadow: "shallow"
|
||||
log:
|
||||
solver=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_solver.log",
|
||||
python=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_python.log",
|
||||
memory=config['results_dir'] + config['run'] + "/logs/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}_memory.log"
|
||||
benchmark: config['results_dir'] + config['run'] + "/benchmarks/solve_network/{network}_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}"
|
||||
solver=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_solver.log",
|
||||
python=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_python.log",
|
||||
memory=RDIR + "/logs/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}_memory.log"
|
||||
threads: 4
|
||||
resources: mem_mb=config['solving']['mem']
|
||||
benchmark: RDIR + "/benchmarks/solve_network/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
script: "scripts/solve_network.py"
|
||||
|
@ -1,42 +1,66 @@
|
||||
version: 0.3.0
|
||||
version: 0.5.0
|
||||
|
||||
logging_level: INFO
|
||||
|
||||
results_dir: 'results/'
|
||||
results_dir: results/
|
||||
summary_dir: results
|
||||
costs_dir: '../technology-data/outputs/'
|
||||
run: 'your-run-name' # use this to keep track of runs with different settings
|
||||
foresight: 'overnight' #options are overnight, myopic, perfect (perfect is not yet implemented)
|
||||
|
||||
costs_dir: ../technology-data/outputs/
|
||||
run: your-run-name # use this to keep track of runs with different settings
|
||||
foresight: overnight # options are overnight, myopic, perfect (perfect is not yet implemented)
|
||||
# if you use myopic or perfect foresight, set the investment years in "planning_horizons" below
|
||||
|
||||
scenario:
|
||||
sectors: [E] # ignore this legacy setting
|
||||
simpl: [''] # only relevant for PyPSA-Eur
|
||||
lv: [1.0,1.5] # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
|
||||
clusters: [45,50] # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
||||
opts: [''] # only relevant for PyPSA-Eur
|
||||
sector_opts: [Co2L0-3H-T-H-B-I-solar3-dist1] # this is where the main scenario settings are
|
||||
simpl: # only relevant for PyPSA-Eur
|
||||
- ''
|
||||
lv: # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
|
||||
- 1.0
|
||||
- 1.5
|
||||
clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
||||
- 45
|
||||
- 50
|
||||
opts: # only relevant for PyPSA-Eur
|
||||
- ''
|
||||
sector_opts: # this is where the main scenario settings are
|
||||
- Co2L0-3H-T-H-B-I-solar+p3-dist1
|
||||
# to really understand the options here, look in scripts/prepare_sector_network.py
|
||||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# single letters are sectors: T for land transport, H for building heating,
|
||||
# B for biomass supply, I for industry, shipping and aviation
|
||||
# solarx or onwindx changes the available installable potential by factor x
|
||||
# solar+c0.5 reduces the capital cost of solar to 50\% of reference value
|
||||
# solar+p3 multiplies the available installable potential by factor 3
|
||||
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
||||
planning_horizons : [2030] #investment years for myopic and perfect; or costs year for overnight
|
||||
co2_budget_name: ['go'] #gives shape of CO2 budgets over planning horizon
|
||||
# for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative
|
||||
# emissions throughout the transition path in the timeframe determined by the
|
||||
# planning_horizons), be:beta decay; ex:exponential decay
|
||||
# cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential
|
||||
# decay with initial growth rate 0
|
||||
planning_horizons: # investment years for myopic and perfect; or costs year for overnight
|
||||
- 2030
|
||||
# for example, set to [2020, 2030, 2040, 2050] for myopic foresight
|
||||
|
||||
# CO2 budget as a fraction of 1990 emissions
|
||||
# this is over-ridden if CO2Lx is set in sector_opts
|
||||
# this is also over-ridden if cb is set in sector_opts
|
||||
co2_budget:
|
||||
2020: 0.7011648746
|
||||
2025: 0.5241935484
|
||||
2030: 0.2970430108
|
||||
2035: 0.1500896057
|
||||
2040: 0.0712365591
|
||||
2045: 0.0322580645
|
||||
2050: 0
|
||||
|
||||
# snapshots are originally set in PyPSA-Eur/config.yaml but used again by PyPSA-Eur-Sec
|
||||
snapshots:
|
||||
# arguments to pd.date_range
|
||||
start: "2013-01-01"
|
||||
end: "2014-01-01"
|
||||
closed: 'left' # end is not inclusive
|
||||
closed: left # end is not inclusive
|
||||
|
||||
atlite:
|
||||
cutout_dir: '../pypsa-eur/cutouts'
|
||||
cutout_name: "europe-2013-era5"
|
||||
cutout: ../pypsa-eur/cutouts/europe-2013-era5.nc
|
||||
|
||||
# this information is NOT used but needed as an argument for
|
||||
# pypsa-eur/scripts/add_electricity.py/load_costs in make_summary.py
|
||||
@ -45,69 +69,180 @@ electricity:
|
||||
battery: 6
|
||||
H2: 168
|
||||
|
||||
# regulate what components with which carriers are kept from PyPSA-Eur;
|
||||
# some technologies are removed because they are implemented differently
|
||||
# or have different year-dependent costs in PyPSA-Eur-Sec
|
||||
pypsa_eur:
|
||||
Bus:
|
||||
- AC
|
||||
Link:
|
||||
- DC
|
||||
Generator:
|
||||
- onwind
|
||||
- offwind-ac
|
||||
- offwind-dc
|
||||
- solar
|
||||
- ror
|
||||
StorageUnit:
|
||||
- PHS
|
||||
- hydro
|
||||
Store: []
|
||||
|
||||
|
||||
energy:
|
||||
energy_totals_year: 2011
|
||||
base_emissions_year: 1990
|
||||
eurostat_report_year: 2016
|
||||
emissions: CO2 # "CO2" or "All greenhouse gases - (CO2 equivalent)"
|
||||
|
||||
biomass:
|
||||
year: 2030
|
||||
scenario: "Med"
|
||||
scenario: Med
|
||||
classes:
|
||||
solid biomass: ['Primary agricultural residues', 'Forestry energy residue', 'Secondary forestry residues', 'Secondary Forestry residues – sawdust', 'Forestry residues from landscape care biomass', 'Municipal waste']
|
||||
not included: ['Bioethanol sugar beet biomass', 'Rapeseeds for biodiesel', 'sunflower and soya for Biodiesel', 'Starchy crops biomass', 'Grassy crops biomass', 'Willow biomass', 'Poplar biomass potential', 'Roundwood fuelwood', 'Roundwood Chips & Pellets']
|
||||
biogas: ['Manure biomass potential', 'Sludge biomass']
|
||||
solid biomass:
|
||||
- Primary agricultural residues
|
||||
- Forestry energy residue
|
||||
- Secondary forestry residues
|
||||
- Secondary Forestry residues sawdust
|
||||
- Forestry residues from landscape care biomass
|
||||
- Municipal waste
|
||||
not included:
|
||||
- Bioethanol sugar beet biomass
|
||||
- Rapeseeds for biodiesel
|
||||
- sunflower and soya for Biodiesel
|
||||
- Starchy crops biomass
|
||||
- Grassy crops biomass
|
||||
- Willow biomass
|
||||
- Poplar biomass potential
|
||||
- Roundwood fuelwood
|
||||
- Roundwood Chips & Pellets
|
||||
biogas:
|
||||
- Manure biomass potential
|
||||
- Sludge biomass
|
||||
|
||||
|
||||
solar_thermal:
|
||||
clearsky_model: simple # should be "simple" or "enhanced"?
|
||||
orientation:
|
||||
slope: 45.
|
||||
azimuth: 180.
|
||||
|
||||
# only relevant for foresight = myopic or perfect
|
||||
existing_capacities:
|
||||
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]
|
||||
threshold_capacity: 10
|
||||
conventional_carriers: ['lignite', 'coal', 'oil', 'uranium']
|
||||
conventional_carriers:
|
||||
- lignite
|
||||
- coal
|
||||
- oil
|
||||
- uranium
|
||||
|
||||
|
||||
sector:
|
||||
'central' : True
|
||||
'central_fraction' : 0.6
|
||||
'dsm_restriction_value' : 0.75 #Set to 0 for no restriction on BEV DSM
|
||||
'dsm_restriction_time' : 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||
'transport_heating_deadband_upper' : 20.
|
||||
'transport_heating_deadband_lower' : 15.
|
||||
'ICE_lower_degree_factor' : 0.375 #in per cent increase in fuel consumption per degree above deadband
|
||||
'ICE_upper_degree_factor' : 1.6
|
||||
'EV_lower_degree_factor' : 0.98
|
||||
'EV_upper_degree_factor' : 0.63
|
||||
'district_heating_loss' : 0.15
|
||||
'bev' : True #turns on EV battery
|
||||
'bev_availability' : 0.5 #How many cars do smart charging
|
||||
'v2g' : True #allows feed-in to grid from EV battery
|
||||
'transport_fuel_cell_share' : 0. #0 means all EVs, 1 means all FCs
|
||||
'shipping_average_efficiency' : 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||
'time_dep_hp_cop' : True
|
||||
'space_heating_fraction' : 1.0 #fraction of space heating active
|
||||
'retrofitting' : False
|
||||
'retroI-fraction' : 0.25
|
||||
'retroII-fraction' : 0.55
|
||||
'retrofitting-cost_factor' : 1.0
|
||||
'tes' : True
|
||||
'tes_tau' : 3.
|
||||
'boilers' : True
|
||||
'oil_boilers': False
|
||||
'chp' : True
|
||||
'solar_thermal' : True
|
||||
'solar_cf_correction': 0.788457 # = >>> 1/1.2683
|
||||
'marginal_cost_storage' : 0. #1e-4
|
||||
'methanation' : True
|
||||
'helmeth' : True
|
||||
'dac' : True
|
||||
'co2_vent' : True
|
||||
'SMR' : True
|
||||
'ccs_fraction' : 0.9
|
||||
'hydrogen_underground_storage' : True
|
||||
'use_fischer_tropsch_waste_heat' : True
|
||||
'use_fuel_cell_waste_heat' : True
|
||||
'electricity_distribution_grid' : False
|
||||
'electricity_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||||
'electricity_grid_connection' : True # only applies to onshore wind and utility PV
|
||||
'gas_distribution_grid' : True
|
||||
'gas_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||||
'biomass_transport': False # biomass potential per country + transport between countries
|
||||
central: true
|
||||
central_fraction: 0.6
|
||||
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
|
||||
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||
transport_heating_deadband_upper: 20.
|
||||
transport_heating_deadband_lower: 15.
|
||||
ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband
|
||||
ICE_upper_degree_factor: 1.6
|
||||
EV_lower_degree_factor: 0.98
|
||||
EV_upper_degree_factor: 0.63
|
||||
district_heating_loss: 0.15
|
||||
bev_dsm: true #turns on EV battery
|
||||
bev_availability: 0.5 #How many cars do smart charging
|
||||
bev_energy: 0.05 #average battery size in MWh
|
||||
bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency
|
||||
bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
|
||||
bev_charge_rate: 0.011 #3-phase charger with 11 kW
|
||||
bev_avail_max: 0.95
|
||||
bev_avail_mean: 0.8
|
||||
v2g: true #allows feed-in to grid from EV battery
|
||||
#what is not EV or FCEV is oil-fuelled ICE
|
||||
land_transport_fuel_cell_share: # 1 means all FCEVs
|
||||
2020: 0
|
||||
2030: 0.05
|
||||
2040: 0.1
|
||||
2050: 0.15
|
||||
land_transport_electric_share: # 1 means all EVs
|
||||
2020: 0
|
||||
2030: 0.25
|
||||
2040: 0.6
|
||||
2050: 0.85
|
||||
transport_fuel_cell_efficiency: 0.5
|
||||
transport_internal_combustion_efficiency: 0.3
|
||||
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||
time_dep_hp_cop: true #time dependent heat pump coefficient of performance
|
||||
heat_pump_sink_T: 55. # Celsius, based on DTU / large area radiators; used in build_cop_profiles.py
|
||||
# conservatively high to cover hot water and space heating in poorly-insulated buildings
|
||||
reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH)
|
||||
# this can represent e.g. building renovation, building demolition, or if
|
||||
# the factor is negative: increasing floor area, increased thermal comfort, population growth
|
||||
reduce_space_heat_exogenously_factor: # per unit reduction in space heat demand
|
||||
# the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221
|
||||
2020: 0.10 # this results in a space heat demand reduction of 10%
|
||||
2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
|
||||
2030: 0.09
|
||||
2035: 0.11
|
||||
2040: 0.16
|
||||
2045: 0.21
|
||||
2050: 0.29
|
||||
retrofitting : # co-optimises building renovation to reduce space heat demand
|
||||
retro_endogen: false # co-optimise space heat savings
|
||||
cost_factor: 1.0 # weight costs for building renovation
|
||||
interest_rate: 0.04 # for investment in building components
|
||||
annualise_cost: true # annualise the investment costs
|
||||
tax_weighting: false # weight costs depending on taxes in countries
|
||||
construction_index: true # weight costs depending on labour/material costs per country
|
||||
tes: true
|
||||
tes_tau: # 180 day time constant for centralised, 3 day for decentralised
|
||||
decentral: 3
|
||||
central: 180
|
||||
boilers: true
|
||||
oil_boilers: false
|
||||
chp: true
|
||||
micro_chp: false
|
||||
solar_thermal: true
|
||||
solar_cf_correction: 0.788457 # = >>> 1/1.2683
|
||||
marginal_cost_storage: 0. #1e-4
|
||||
methanation: true
|
||||
helmeth: true
|
||||
dac: true
|
||||
co2_vent: true
|
||||
SMR: true
|
||||
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
|
||||
co2_sequestration_cost: 20 #EUR/tCO2 for transport and sequestration of CO2
|
||||
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
|
||||
hydrogen_underground_storage: true
|
||||
use_fischer_tropsch_waste_heat: true
|
||||
use_fuel_cell_waste_heat: true
|
||||
electricity_distribution_grid: false
|
||||
electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
||||
gas_distribution_grid: true
|
||||
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
biomass_transport: false # biomass potential per country + transport between countries
|
||||
conventional_generation: # generator : carrier
|
||||
OCGT: gas
|
||||
|
||||
|
||||
industry:
|
||||
St_primary_fraction: 0.3 # fraction of steel produced via primary route (DRI + EAF) versus secondary route (EAF); today fraction is 0.6
|
||||
H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||||
elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||||
Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||||
MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||||
MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||||
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||||
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||||
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||||
HVC_primary_fraction: 1.0 #fraction of current non-ammonia basic chemicals produced via primary route
|
||||
hotmaps_locate_missing: false
|
||||
reference_year: 2015
|
||||
|
||||
costs:
|
||||
year: 2030
|
||||
lifetime: 25 #default lifetime
|
||||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
discountrate: 0.07
|
||||
@ -116,8 +251,8 @@ costs:
|
||||
|
||||
# Marginal and capital costs can be overwritten
|
||||
# capital_cost:
|
||||
# Wind: Bla
|
||||
marginal_cost: #
|
||||
# onwind: 500
|
||||
marginal_cost:
|
||||
solar: 0.01
|
||||
onwind: 0.015
|
||||
offwind: 0.015
|
||||
@ -139,17 +274,17 @@ solving:
|
||||
clip_p_max_pu: 1.e-2
|
||||
load_shedding: false
|
||||
noisy_costs: true
|
||||
|
||||
min_iterations: 1
|
||||
max_iterations: 1
|
||||
# nhours: 1
|
||||
skip_iterations: true
|
||||
track_iterations: false
|
||||
min_iterations: 4
|
||||
max_iterations: 6
|
||||
|
||||
solver:
|
||||
name: gurobi
|
||||
threads: 4
|
||||
method: 2 # barrier
|
||||
crossover: 0
|
||||
BarConvTol: 1.e-5
|
||||
BarConvTol: 1.e-6
|
||||
Seed: 123
|
||||
AggFill: 0
|
||||
PreDual: 0
|
||||
@ -164,180 +299,176 @@ solving:
|
||||
#feasopt_tolerance: 1.e-6
|
||||
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
|
||||
|
||||
industry:
|
||||
'St_primary_fraction' : 0.3 # fraction of steel produced via primary route (DRI + EAF) versus secondary route (EAF); today fraction is 0.6
|
||||
'H2_DRI' : 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||||
'elec_DRI' : 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||||
'Al_primary_fraction' : 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
'MWh_CH4_per_tNH3_SMR' : 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||||
'MWh_elec_per_tNH3_SMR' : 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||||
'MWh_H2_per_tNH3_electrolysis' : 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||||
'MWh_elec_per_tNH3_electrolysis' : 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||||
'NH3_process_emissions' : 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||||
'petrochemical_process_emissions' : 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||||
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3 # 1.e+3 #3.e+3
|
||||
|
||||
costs_max: 1200
|
||||
boundaries: [-11, 30, 34, 71]
|
||||
color_geomap:
|
||||
ocean: white
|
||||
land: whitesmoke
|
||||
costs_max: 1000
|
||||
costs_threshold: 1
|
||||
|
||||
|
||||
energy_max: 20000.
|
||||
energy_min: -15000.
|
||||
energy_threshold: 50.
|
||||
|
||||
|
||||
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
||||
renewable_storage_techs: ["PHS","hydro"]
|
||||
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
||||
storage_techs: ["hydro+PHS", "battery", "H2"]
|
||||
# store_techs: ["Li ion", "water tanks"]
|
||||
load_carriers: ["AC load"] #, "heat load", "Li ion load"]
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
heat_links: ["heat pump", "resistive heater", "CHP heat", "CHP electric",
|
||||
"gas boiler", "central heat pump", "central resistive heater", "central CHP heat",
|
||||
"central CHP electric", "central gas boiler"]
|
||||
heat_generators: ["gas boiler", "central gas boiler", "solar thermal collector", "central solar thermal collector"]
|
||||
energy_max: 20000
|
||||
energy_min: -20000
|
||||
energy_threshold: 50
|
||||
vre_techs:
|
||||
- onwind
|
||||
- offwind-ac
|
||||
- offwind-dc
|
||||
- solar
|
||||
- ror
|
||||
renewable_storage_techs:
|
||||
- PHS
|
||||
- hydro
|
||||
conv_techs:
|
||||
- OCGT
|
||||
- CCGT
|
||||
- Nuclear
|
||||
- Coal
|
||||
storage_techs:
|
||||
- hydro+PHS
|
||||
- battery
|
||||
- H2
|
||||
load_carriers:
|
||||
- AC load
|
||||
AC_carriers:
|
||||
- AC line
|
||||
- AC transformer
|
||||
link_carriers:
|
||||
- DC line
|
||||
- Converter AC-DC
|
||||
heat_links:
|
||||
- heat pump
|
||||
- resistive heater
|
||||
- CHP heat
|
||||
- CHP electric
|
||||
- gas boiler
|
||||
- central heat pump
|
||||
- central resistive heater
|
||||
- central CHP heat
|
||||
- central CHP electric
|
||||
- central gas boiler
|
||||
heat_generators:
|
||||
- gas boiler
|
||||
- central gas boiler
|
||||
- solar thermal collector
|
||||
- central solar thermal collector
|
||||
tech_colors:
|
||||
"onwind" : "b"
|
||||
"onshore wind" : "b"
|
||||
'offwind' : "c"
|
||||
'offshore wind' : "c"
|
||||
'offwind-ac' : "c"
|
||||
'offshore wind (AC)' : "c"
|
||||
'offwind-dc' : "#009999"
|
||||
'offshore wind (DC)' : "#009999"
|
||||
'wave' : "#004444"
|
||||
"hydro" : "#3B5323"
|
||||
"hydro reservoir" : "#3B5323"
|
||||
"ror" : "#78AB46"
|
||||
"run of river" : "#78AB46"
|
||||
'hydroelectricity' : '#006400'
|
||||
'solar' : "y"
|
||||
'solar PV' : "y"
|
||||
'solar thermal' : 'coral'
|
||||
'solar rooftop' : '#e6b800'
|
||||
"OCGT" : "wheat"
|
||||
"OCGT marginal" : "sandybrown"
|
||||
"OCGT-heat" : "orange"
|
||||
"gas boiler" : "orange"
|
||||
"gas boilers" : "orange"
|
||||
"gas boiler marginal" : "orange"
|
||||
"gas-to-power/heat" : "orange"
|
||||
"gas" : "brown"
|
||||
"natural gas" : "brown"
|
||||
"SMR" : "#4F4F2F"
|
||||
"oil" : "#B5A642"
|
||||
"oil boiler" : "#B5A677"
|
||||
"lines" : "k"
|
||||
"transmission lines" : "k"
|
||||
"H2" : "m"
|
||||
"hydrogen storage" : "m"
|
||||
"battery" : "slategray"
|
||||
"battery storage" : "slategray"
|
||||
"home battery" : "#614700"
|
||||
"home battery storage" : "#614700"
|
||||
"Nuclear" : "r"
|
||||
"Nuclear marginal" : "r"
|
||||
"nuclear" : "r"
|
||||
"uranium" : "r"
|
||||
"Coal" : "k"
|
||||
"coal" : "k"
|
||||
"Coal marginal" : "k"
|
||||
"Lignite" : "grey"
|
||||
"lignite" : "grey"
|
||||
"Lignite marginal" : "grey"
|
||||
"CCGT" : "orange"
|
||||
"CCGT marginal" : "orange"
|
||||
"heat pumps" : "#76EE00"
|
||||
"heat pump" : "#76EE00"
|
||||
"air heat pump" : "#76EE00"
|
||||
"ground heat pump" : "#40AA00"
|
||||
"power-to-heat" : "#40AA00"
|
||||
"resistive heater" : "pink"
|
||||
"Sabatier" : "#FF1493"
|
||||
"methanation" : "#FF1493"
|
||||
"power-to-gas" : "#FF1493"
|
||||
"power-to-liquid" : "#FFAAE9"
|
||||
"helmeth" : "#7D0552"
|
||||
"helmeth" : "#7D0552"
|
||||
"DAC" : "#E74C3C"
|
||||
"co2 stored" : "#123456"
|
||||
"CO2 sequestration" : "#123456"
|
||||
"CCS" : "k"
|
||||
"co2" : "#123456"
|
||||
"co2 vent" : "#654321"
|
||||
"solid biomass for industry co2 from atmosphere" : "#654321"
|
||||
"solid biomass for industry co2 to stored": "#654321"
|
||||
"gas for industry co2 to atmosphere": "#654321"
|
||||
"gas for industry co2 to stored": "#654321"
|
||||
"Fischer-Tropsch" : "#44DD33"
|
||||
"kerosene for aviation": "#44BB11"
|
||||
"naphtha for industry" : "#44FF55"
|
||||
"water tanks" : "#BBBBBB"
|
||||
"hot water storage" : "#BBBBBB"
|
||||
"hot water charging" : "#BBBBBB"
|
||||
"hot water discharging" : "#999999"
|
||||
"CHP" : "r"
|
||||
"CHP heat" : "r"
|
||||
"CHP electric" : "r"
|
||||
"PHS" : "g"
|
||||
"Ambient" : "k"
|
||||
"Electric load" : "b"
|
||||
"Heat load" : "r"
|
||||
"Transport load" : "grey"
|
||||
"heat" : "darkred"
|
||||
"rural heat" : "#880000"
|
||||
"central heat" : "#b22222"
|
||||
"decentral heat" : "#800000"
|
||||
"low-temperature heat for industry" : "#991111"
|
||||
"process heat" : "#FF3333"
|
||||
"heat demand" : "darkred"
|
||||
"electric demand" : "k"
|
||||
"Li ion" : "grey"
|
||||
"district heating" : "#CC4E5C"
|
||||
"retrofitting" : "purple"
|
||||
"building retrofitting" : "purple"
|
||||
"BEV charger" : "grey"
|
||||
"V2G" : "grey"
|
||||
"transport" : "grey"
|
||||
"electricity" : "k"
|
||||
"gas for industry" : "#333333"
|
||||
"solid biomass for industry" : "#555555"
|
||||
"industry new electricity" : "#222222"
|
||||
"process emissions to stored" : "#444444"
|
||||
"process emissions to atmosphere" : "#888888"
|
||||
"process emissions" : "#222222"
|
||||
"transport fuel cell" : "#AAAAAA"
|
||||
"biogas" : "#800000"
|
||||
"solid biomass" : "#DAA520"
|
||||
"today" : "#D2691E"
|
||||
"shipping" : "#6495ED"
|
||||
"electricity distribution grid" : "#333333"
|
||||
'industry electricity': "black"
|
||||
"solid biomass transport": "green"
|
||||
nice_names:
|
||||
# OCGT: "Gas"
|
||||
# OCGT marginal: "Gas (marginal)"
|
||||
offwind: "offshore wind"
|
||||
onwind: "onshore wind"
|
||||
battery: "Battery storage"
|
||||
lines: "Transmission lines"
|
||||
AC line: "AC lines"
|
||||
AC-AC: "DC lines"
|
||||
ror: "Run of river"
|
||||
nice_names_n:
|
||||
offwind: "offshore\nwind"
|
||||
onwind: "onshore\nwind"
|
||||
# OCGT: "Gas"
|
||||
H2: "Hydrogen\nstorage"
|
||||
# OCGT marginal: "Gas (marginal)"
|
||||
lines: "transmission\nlines"
|
||||
ror: "run of river"
|
||||
onwind: "#235ebc"
|
||||
onshore wind: "#235ebc"
|
||||
offwind: "#6895dd"
|
||||
offshore wind: "#6895dd"
|
||||
offwind-ac: "#6895dd"
|
||||
offshore wind (AC): "#6895dd"
|
||||
offwind-dc: "#74c6f2"
|
||||
offshore wind (DC): "#74c6f2"
|
||||
wave: '#004444'
|
||||
hydro: '#3B5323'
|
||||
hydro reservoir: '#3B5323'
|
||||
ror: '#78AB46'
|
||||
run of river: '#78AB46'
|
||||
hydroelectricity: '#006400'
|
||||
solar: "#f9d002"
|
||||
solar PV: "#f9d002"
|
||||
solar thermal: coral
|
||||
solar rooftop: '#ffef60'
|
||||
OCGT: wheat
|
||||
OCGT marginal: sandybrown
|
||||
OCGT-heat: '#ee8340'
|
||||
gas boiler: '#ee8340'
|
||||
gas boilers: '#ee8340'
|
||||
gas boiler marginal: '#ee8340'
|
||||
gas-to-power/heat: '#ee8340'
|
||||
gas: brown
|
||||
natural gas: brown
|
||||
SMR: '#4F4F2F'
|
||||
oil: '#B5A642'
|
||||
oil boiler: '#B5A677'
|
||||
lines: k
|
||||
transmission lines: k
|
||||
H2: m
|
||||
hydrogen storage: m
|
||||
battery: slategray
|
||||
battery storage: slategray
|
||||
home battery: '#614700'
|
||||
home battery storage: '#614700'
|
||||
Nuclear: r
|
||||
Nuclear marginal: r
|
||||
nuclear: r
|
||||
uranium: r
|
||||
Coal: k
|
||||
coal: k
|
||||
Coal marginal: k
|
||||
Lignite: grey
|
||||
lignite: grey
|
||||
Lignite marginal: grey
|
||||
CCGT: '#ee8340'
|
||||
CCGT marginal: '#ee8340'
|
||||
heat pumps: '#76EE00'
|
||||
heat pump: '#76EE00'
|
||||
air heat pump: '#76EE00'
|
||||
ground heat pump: '#40AA00'
|
||||
power-to-heat: '#40AA00'
|
||||
resistive heater: pink
|
||||
Sabatier: '#FF1493'
|
||||
methanation: '#FF1493'
|
||||
power-to-gas: '#FF1493'
|
||||
power-to-liquid: '#FFAAE9'
|
||||
helmeth: '#7D0552'
|
||||
DAC: '#E74C3C'
|
||||
co2 stored: '#123456'
|
||||
CO2 sequestration: '#123456'
|
||||
CC: k
|
||||
co2: '#123456'
|
||||
co2 vent: '#654321'
|
||||
solid biomass for industry co2 from atmosphere: '#654321'
|
||||
solid biomass for industry co2 to stored: '#654321'
|
||||
gas for industry co2 to atmosphere: '#654321'
|
||||
gas for industry co2 to stored: '#654321'
|
||||
Fischer-Tropsch: '#44DD33'
|
||||
kerosene for aviation: '#44BB11'
|
||||
naphtha for industry: '#44FF55'
|
||||
land transport oil: '#44DD33'
|
||||
water tanks: '#BBBBBB'
|
||||
hot water storage: '#BBBBBB'
|
||||
hot water charging: '#BBBBBB'
|
||||
hot water discharging: '#999999'
|
||||
CHP: r
|
||||
CHP heat: r
|
||||
CHP electric: r
|
||||
PHS: g
|
||||
Ambient: k
|
||||
Electric load: b
|
||||
Heat load: r
|
||||
heat: darkred
|
||||
rural heat: '#880000'
|
||||
central heat: '#b22222'
|
||||
decentral heat: '#800000'
|
||||
low-temperature heat for industry: '#991111'
|
||||
process heat: '#FF3333'
|
||||
heat demand: darkred
|
||||
electric demand: k
|
||||
Li ion: grey
|
||||
district heating: '#CC4E5C'
|
||||
retrofitting: purple
|
||||
building retrofitting: purple
|
||||
BEV charger: grey
|
||||
V2G: grey
|
||||
land transport EV: grey
|
||||
electricity: k
|
||||
gas for industry: '#333333'
|
||||
solid biomass for industry: '#555555'
|
||||
industry electricity: '#222222'
|
||||
industry new electricity: '#222222'
|
||||
process emissions to stored: '#444444'
|
||||
process emissions to atmosphere: '#888888'
|
||||
process emissions: '#222222'
|
||||
oil emissions: '#666666'
|
||||
land transport oil emissions: '#666666'
|
||||
land transport fuel cell: '#AAAAAA'
|
||||
biogas: '#800000'
|
||||
solid biomass: '#DAA520'
|
||||
today: '#D2691E'
|
||||
shipping: '#6495ED'
|
||||
electricity distribution grid: '#333333'
|
||||
solid biomass transport: green
|
||||
|
@ -1,343 +0,0 @@
|
||||
version: 0.3.0
|
||||
|
||||
logging_level: INFO
|
||||
|
||||
results_dir: 'results/'
|
||||
summary_dir: results
|
||||
costs_dir: '../technology-data/outputs/'
|
||||
run: 'your-run-name' # use this to keep track of runs with different settings
|
||||
foresight: 'myopic' #options are overnight, myopic, perfect (perfect is not yet implemented)
|
||||
|
||||
|
||||
scenario:
|
||||
sectors: [E] # ignore this legacy setting
|
||||
simpl: [''] # only relevant for PyPSA-Eur
|
||||
lv: [1.0,1.5] # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
|
||||
clusters: [45,50] # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
|
||||
opts: [''] # only relevant for PyPSA-Eur
|
||||
sector_opts: [Co2L0-3H-H-B-solar3-dist1] # this is where the main scenario settings are
|
||||
# to really understand the options here, look in scripts/prepare_sector_network.py
|
||||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# single letters are sectors: T for land transport, H for building heating,
|
||||
# B for biomass supply, I for industry, shipping and aviation
|
||||
# solarx or onwindx changes the available installable potential by factor x
|
||||
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
|
||||
planning_horizons : [2020, 2030, 2040, 2050] #investment years for myopic and perfect; or costs year for overnight
|
||||
co2_budget_name: ['go'] #gives shape of CO2 budgets over planning horizon
|
||||
|
||||
# snapshots are originally set in PyPSA-Eur/config.yaml but used again by PyPSA-Eur-Sec
|
||||
snapshots:
|
||||
# arguments to pd.date_range
|
||||
start: "2013-01-01"
|
||||
end: "2014-01-01"
|
||||
closed: 'left' # end is not inclusive
|
||||
|
||||
atlite:
|
||||
cutout_dir: '../pypsa-eur/cutouts'
|
||||
cutout_name: "europe-2013-era5"
|
||||
|
||||
# this information is NOT used but needed as an argument for
|
||||
# pypsa-eur/scripts/add_electricity.py/load_costs in make_summary.py
|
||||
electricity:
|
||||
max_hours:
|
||||
battery: 6
|
||||
H2: 168
|
||||
|
||||
biomass:
|
||||
year: 2030
|
||||
scenario: "Med"
|
||||
classes:
|
||||
solid biomass: ['Primary agricultural residues', 'Forestry energy residue', 'Secondary forestry residues', 'Secondary Forestry residues – sawdust', 'Forestry residues from landscape care biomass', 'Municipal waste']
|
||||
not included: ['Bioethanol sugar beet biomass', 'Rapeseeds for biodiesel', 'sunflower and soya for Biodiesel', 'Starchy crops biomass', 'Grassy crops biomass', 'Willow biomass', 'Poplar biomass potential', 'Roundwood fuelwood', 'Roundwood Chips & Pellets']
|
||||
biogas: ['Manure biomass potential', 'Sludge biomass']
|
||||
|
||||
# only relevant for foresight = myopic or perfect
|
||||
existing_capacities:
|
||||
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]
|
||||
threshold_capacity: 10
|
||||
conventional_carriers: ['lignite', 'coal', 'oil', 'uranium']
|
||||
|
||||
sector:
|
||||
'central' : True
|
||||
'central_fraction' : 0.6
|
||||
'dsm_restriction_value' : 0.75 #Set to 0 for no restriction on BEV DSM
|
||||
'dsm_restriction_time' : 7 #Time at which SOC of BEV has to be dsm_restriction_value
|
||||
'transport_heating_deadband_upper' : 20.
|
||||
'transport_heating_deadband_lower' : 15.
|
||||
'ICE_lower_degree_factor' : 0.375 #in per cent increase in fuel consumption per degree above deadband
|
||||
'ICE_upper_degree_factor' : 1.6
|
||||
'EV_lower_degree_factor' : 0.98
|
||||
'EV_upper_degree_factor' : 0.63
|
||||
'district_heating_loss' : 0.15
|
||||
'bev' : True #turns on EV battery
|
||||
'bev_availability' : 0.5 #How many cars do smart charging
|
||||
'v2g' : True #allows feed-in to grid from EV battery
|
||||
'transport_fuel_cell_share' : 0. #0 means all EVs, 1 means all FCs
|
||||
'shipping_average_efficiency' : 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||
'time_dep_hp_cop' : True
|
||||
'space_heating_fraction' : 1.0 #fraction of space heating active
|
||||
'retrofitting' : False
|
||||
'retroI-fraction' : 0.25
|
||||
'retroII-fraction' : 0.55
|
||||
'retrofitting-cost_factor' : 1.0
|
||||
'tes' : True
|
||||
'tes_tau' : 3.
|
||||
'boilers' : True
|
||||
'oil_boilers': False
|
||||
'chp' : True
|
||||
'solar_thermal' : True
|
||||
'solar_cf_correction': 0.788457 # = >>> 1/1.2683
|
||||
'marginal_cost_storage' : 0. #1e-4
|
||||
'methanation' : True
|
||||
'helmeth' : True
|
||||
'dac' : True
|
||||
'co2_vent' : True
|
||||
'SMR' : True
|
||||
'ccs_fraction' : 0.9
|
||||
'hydrogen_underground_storage' : True
|
||||
'use_fischer_tropsch_waste_heat' : True
|
||||
'use_fuel_cell_waste_heat' : True
|
||||
'electricity_distribution_grid' : False
|
||||
'electricity_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||||
'electricity_grid_connection' : True # only applies to onshore wind and utility PV
|
||||
'gas_distribution_grid' : True
|
||||
'gas_distribution_grid_cost_factor' : 1.0 #multiplies cost in data/costs.csv
|
||||
'biomass_transport': False # biomass potential per country + transport between countries
|
||||
|
||||
costs:
|
||||
year: 2030
|
||||
lifetime: 25 #default lifetime
|
||||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
discountrate: 0.07
|
||||
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
|
||||
USD2013_to_EUR2013: 0.7532
|
||||
|
||||
# Marginal and capital costs can be overwritten
|
||||
# capital_cost:
|
||||
# Wind: Bla
|
||||
marginal_cost: #
|
||||
solar: 0.01
|
||||
onwind: 0.015
|
||||
offwind: 0.015
|
||||
hydro: 0.
|
||||
H2: 0.
|
||||
battery: 0.
|
||||
|
||||
emission_prices: # only used with the option Ep (emission prices)
|
||||
co2: 0.
|
||||
|
||||
lines:
|
||||
length_factor: 1.25 #to estimate offwind connection costs
|
||||
|
||||
|
||||
solving:
|
||||
#tmpdir: "path/to/tmp"
|
||||
options:
|
||||
formulation: kirchhoff
|
||||
clip_p_max_pu: 1.e-2
|
||||
load_shedding: false
|
||||
noisy_costs: true
|
||||
|
||||
min_iterations: 1
|
||||
max_iterations: 1
|
||||
# nhours: 1
|
||||
|
||||
solver:
|
||||
name: gurobi
|
||||
threads: 4
|
||||
method: 2 # barrier
|
||||
crossover: 0
|
||||
BarConvTol: 1.e-5
|
||||
Seed: 123
|
||||
AggFill: 0
|
||||
PreDual: 0
|
||||
GURO_PAR_BARDENSETHRESH: 200
|
||||
#FeasibilityTol: 1.e-6
|
||||
|
||||
#name: cplex
|
||||
#threads: 4
|
||||
#lpmethod: 4 # barrier
|
||||
#solutiontype: 2 # non basic solution, ie no crossover
|
||||
#barrier_convergetol: 1.e-5
|
||||
#feasopt_tolerance: 1.e-6
|
||||
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
|
||||
|
||||
industry:
|
||||
'St_primary_fraction' : 0.3 # fraction of steel produced via primary route (DRI + EAF) versus secondary route (EAF); today fraction is 0.6
|
||||
'H2_DRI' : 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
|
||||
'elec_DRI' : 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
|
||||
'Al_primary_fraction' : 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
|
||||
'MWh_CH4_per_tNH3_SMR' : 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
|
||||
'MWh_elec_per_tNH3_SMR' : 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
|
||||
'MWh_H2_per_tNH3_electrolysis' : 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
|
||||
'MWh_elec_per_tNH3_electrolysis' : 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
|
||||
'NH3_process_emissions' : 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
|
||||
'petrochemical_process_emissions' : 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
|
||||
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3 # 1.e+3 #3.e+3
|
||||
|
||||
costs_max: 1200
|
||||
costs_threshold: 1
|
||||
|
||||
|
||||
energy_max: 20000.
|
||||
energy_min: -15000.
|
||||
energy_threshold: 50.
|
||||
|
||||
|
||||
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
||||
renewable_storage_techs: ["PHS","hydro"]
|
||||
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
||||
storage_techs: ["hydro+PHS", "battery", "H2"]
|
||||
# store_techs: ["Li ion", "water tanks"]
|
||||
load_carriers: ["AC load"] #, "heat load", "Li ion load"]
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
heat_links: ["heat pump", "resistive heater", "CHP heat", "CHP electric",
|
||||
"gas boiler", "central heat pump", "central resistive heater", "central CHP heat",
|
||||
"central CHP electric", "central gas boiler"]
|
||||
heat_generators: ["gas boiler", "central gas boiler", "solar thermal collector", "central solar thermal collector"]
|
||||
tech_colors:
|
||||
"onwind" : "b"
|
||||
"onshore wind" : "b"
|
||||
'offwind' : "c"
|
||||
'offshore wind' : "c"
|
||||
'offwind-ac' : "c"
|
||||
'offshore wind (AC)' : "c"
|
||||
'offwind-dc' : "#009999"
|
||||
'offshore wind (DC)' : "#009999"
|
||||
'wave' : "#004444"
|
||||
"hydro" : "#3B5323"
|
||||
"hydro reservoir" : "#3B5323"
|
||||
"ror" : "#78AB46"
|
||||
"run of river" : "#78AB46"
|
||||
'hydroelectricity' : '#006400'
|
||||
'solar' : "y"
|
||||
'solar PV' : "y"
|
||||
'solar thermal' : 'coral'
|
||||
'solar rooftop' : '#e6b800'
|
||||
"OCGT" : "wheat"
|
||||
"OCGT marginal" : "sandybrown"
|
||||
"OCGT-heat" : "orange"
|
||||
"gas boiler" : "orange"
|
||||
"gas boilers" : "orange"
|
||||
"gas boiler marginal" : "orange"
|
||||
"gas-to-power/heat" : "orange"
|
||||
"gas" : "brown"
|
||||
"natural gas" : "brown"
|
||||
"SMR" : "#4F4F2F"
|
||||
"oil" : "#B5A642"
|
||||
"oil boiler" : "#B5A677"
|
||||
"lines" : "k"
|
||||
"transmission lines" : "k"
|
||||
"H2" : "m"
|
||||
"hydrogen storage" : "m"
|
||||
"battery" : "slategray"
|
||||
"battery storage" : "slategray"
|
||||
"home battery" : "#614700"
|
||||
"home battery storage" : "#614700"
|
||||
"Nuclear" : "r"
|
||||
"Nuclear marginal" : "r"
|
||||
"nuclear" : "r"
|
||||
"uranium" : "r"
|
||||
"Coal" : "k"
|
||||
"coal" : "k"
|
||||
"Coal marginal" : "k"
|
||||
"Lignite" : "grey"
|
||||
"lignite" : "grey"
|
||||
"Lignite marginal" : "grey"
|
||||
"CCGT" : "orange"
|
||||
"CCGT marginal" : "orange"
|
||||
"heat pumps" : "#76EE00"
|
||||
"heat pump" : "#76EE00"
|
||||
"air heat pump" : "#76EE00"
|
||||
"ground heat pump" : "#40AA00"
|
||||
"power-to-heat" : "#40AA00"
|
||||
"resistive heater" : "pink"
|
||||
"Sabatier" : "#FF1493"
|
||||
"methanation" : "#FF1493"
|
||||
"power-to-gas" : "#FF1493"
|
||||
"power-to-liquid" : "#FFAAE9"
|
||||
"helmeth" : "#7D0552"
|
||||
"helmeth" : "#7D0552"
|
||||
"DAC" : "#E74C3C"
|
||||
"co2 stored" : "#123456"
|
||||
"CO2 sequestration" : "#123456"
|
||||
"CCS" : "k"
|
||||
"co2" : "#123456"
|
||||
"co2 vent" : "#654321"
|
||||
"solid biomass for industry co2 from atmosphere" : "#654321"
|
||||
"solid biomass for industry co2 to stored": "#654321"
|
||||
"gas for industry co2 to atmosphere": "#654321"
|
||||
"gas for industry co2 to stored": "#654321"
|
||||
"Fischer-Tropsch" : "#44DD33"
|
||||
"kerosene for aviation": "#44BB11"
|
||||
"naphtha for industry" : "#44FF55"
|
||||
"water tanks" : "#BBBBBB"
|
||||
"hot water storage" : "#BBBBBB"
|
||||
"hot water charging" : "#BBBBBB"
|
||||
"hot water discharging" : "#999999"
|
||||
"CHP" : "r"
|
||||
"CHP heat" : "r"
|
||||
"CHP electric" : "r"
|
||||
"PHS" : "g"
|
||||
"Ambient" : "k"
|
||||
"Electric load" : "b"
|
||||
"Heat load" : "r"
|
||||
"Transport load" : "grey"
|
||||
"heat" : "darkred"
|
||||
"rural heat" : "#880000"
|
||||
"central heat" : "#b22222"
|
||||
"decentral heat" : "#800000"
|
||||
"low-temperature heat for industry" : "#991111"
|
||||
"process heat" : "#FF3333"
|
||||
"heat demand" : "darkred"
|
||||
"electric demand" : "k"
|
||||
"Li ion" : "grey"
|
||||
"district heating" : "#CC4E5C"
|
||||
"retrofitting" : "purple"
|
||||
"building retrofitting" : "purple"
|
||||
"BEV charger" : "grey"
|
||||
"V2G" : "grey"
|
||||
"transport" : "grey"
|
||||
"electricity" : "k"
|
||||
"gas for industry" : "#333333"
|
||||
"solid biomass for industry" : "#555555"
|
||||
"industry new electricity" : "#222222"
|
||||
"process emissions to stored" : "#444444"
|
||||
"process emissions to atmosphere" : "#888888"
|
||||
"process emissions" : "#222222"
|
||||
"transport fuel cell" : "#AAAAAA"
|
||||
"biogas" : "#800000"
|
||||
"solid biomass" : "#DAA520"
|
||||
"today" : "#D2691E"
|
||||
"shipping" : "#6495ED"
|
||||
"electricity distribution grid" : "#333333"
|
||||
'industry electricity': "black"
|
||||
"solid biomass transport": "green"
|
||||
nice_names:
|
||||
# OCGT: "Gas"
|
||||
# OCGT marginal: "Gas (marginal)"
|
||||
offwind: "offshore wind"
|
||||
onwind: "onshore wind"
|
||||
battery: "Battery storage"
|
||||
lines: "Transmission lines"
|
||||
AC line: "AC lines"
|
||||
AC-AC: "DC lines"
|
||||
ror: "Run of river"
|
||||
nice_names_n:
|
||||
offwind: "offshore\nwind"
|
||||
onwind: "onshore\nwind"
|
||||
# OCGT: "Gas"
|
||||
H2: "Hydrogen\nstorage"
|
||||
# OCGT marginal: "Gas (marginal)"
|
||||
lines: "transmission\nlines"
|
||||
ror: "run of river"
|
@ -1,8 +0,0 @@
|
||||
,go,wait
|
||||
2020,0.7011648746,0.7011648746
|
||||
2025,0.5241935484,0.6285842294
|
||||
2030,0.2970430108,0.3503584229
|
||||
2035,0.1500896057,0.0725806452
|
||||
2040,0.0712365591,0
|
||||
2045,0.0322580645,0
|
||||
2050,0,0
|
|
3
data/override_component_attrs/buses.csv
Normal file
3
data/override_component_attrs/buses.csv
Normal file
@ -0,0 +1,3 @@
|
||||
attribute,type,unit,default,description,status
|
||||
location,string,n/a,n/a,Reference to original electricity bus,Input (optional)
|
||||
unit,string,n/a,MWh,Unit of the bus (descriptive only), Input (optional)
|
|
3
data/override_component_attrs/generators.csv
Normal file
3
data/override_component_attrs/generators.csv
Normal file
@ -0,0 +1,3 @@
|
||||
attribute,type,unit,default,description,status
|
||||
build_year,integer,year,n/a,build year,Input (optional)
|
||||
lifetime,float,years,n/a,lifetime,Input (optional)
|
|
13
data/override_component_attrs/links.csv
Normal file
13
data/override_component_attrs/links.csv
Normal file
@ -0,0 +1,13 @@
|
||||
attribute,type,unit,default,description,status
|
||||
bus2,string,n/a,n/a,2nd bus,Input (optional)
|
||||
bus3,string,n/a,n/a,3rd bus,Input (optional)
|
||||
bus4,string,n/a,n/a,4th bus,Input (optional)
|
||||
efficiency2,static or series,per unit,1.,2nd bus efficiency,Input (optional)
|
||||
efficiency3,static or series,per unit,1.,3rd bus efficiency,Input (optional)
|
||||
efficiency4,static or series,per unit,1.,4th bus efficiency,Input (optional)
|
||||
p2,series,MW,0.,2nd bus output,Output
|
||||
p3,series,MW,0.,3rd bus output,Output
|
||||
p4,series,MW,0.,4th bus output,Output
|
||||
build_year,integer,year,n/a,build year,Input (optional)
|
||||
lifetime,float,years,n/a,lifetime,Input (optional)
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
|
2
data/override_component_attrs/loads.csv
Normal file
2
data/override_component_attrs/loads.csv
Normal file
@ -0,0 +1,2 @@
|
||||
attribute,type,unit,default,description,status
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
|
4
data/override_component_attrs/stores.csv
Normal file
4
data/override_component_attrs/stores.csv
Normal file
@ -0,0 +1,4 @@
|
||||
attribute,type,unit,default,description,status
|
||||
build_year,integer,year,n/a,build year,Input (optional)
|
||||
lifetime,float,years,n/a,lifetime,Input (optional)
|
||||
carrier,string,n/a,n/a,carrier,Input (optional)
|
|
49
data/retro/comparative_level_investment.csv
Normal file
49
data/retro/comparative_level_investment.csv
Normal file
@ -0,0 +1,49 @@
|
||||
NA_ITEM,Price level indices (EU28=100),,,,,,,,,
|
||||
PPP_CAT,Actual individual consumption,,,,,,,,,
|
||||
,,,,,,,,,,
|
||||
GEO/TIME,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
|
||||
European Union - 28 countries,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0
|
||||
Belgium,113.6,111.9,112.4,111.5,111.0,108.9,106.3,110.3,112.3,112.5
|
||||
Bulgaria,47.1,45.7,45.5,45.0,44.2,42.6,42.2,43.2,45.1,46.3
|
||||
Czech Republic,64.5,66.6,68.9,66.9,63.3,58.3,58.4,60.5,62.4,65.0
|
||||
Denmark,141.7,140.0,139.9,140.0,139.3,138.5,135.0,140.0,138.9,138.1
|
||||
Germany,104.6,103.1,102.2,101.1,102.5,101.5,100.4,102.6,103.7,104.1
|
||||
Estonia,67.5,66.0,67.2,67.6,69.9,69.9,68.9,71.0,73.9,76.3
|
||||
Ireland,129.9,122.7,122.5,120.5,123.2,124.9,122.2,126.5,129.1,129.2
|
||||
Greece,93.6,95.4,94.9,91.9,87.8,83.8,81.0,82.3,83.0,81.8
|
||||
Spain,97.5,98.7,98.5,95.8,95.1,92.7,90.0,92.7,93.7,93.7
|
||||
France,111.2,109.9,109.6,108.7,107.0,106.0,104.0,105.8,107.1,107.4
|
||||
Croatia,70.2,70.1,68.1,65.5,64.5,62.5,60.7,61.3,63.0,64.0
|
||||
Italy,103.6,100.4,101.5,101.1,102.3,102.6,100.3,101.1,101.6,101.4
|
||||
Cyprus,92.0,94.6,95.8,96.0,95.2,92.0,88.5,89.8,91.2,90.6
|
||||
Latvia,68.1,62.3,65.5,65.9,66.0,66.0,64.2,66.9,68.3,69.5
|
||||
Lithuania,60.3,57.8,58.3,58.0,57.8,56.9,55.9,58.3,60.0,61.4
|
||||
Luxembourg,130.0,136.5,136.0,135.8,135.1,135.7,132.1,137.0,139.9,141.6
|
||||
Hungary,58.2,57.4,56.4,54.9,54.4,53.4,53.3,56.2,59.4,59.0
|
||||
Malta,75.8,76.6,78.0,78.0,80.8,80.5,79.8,81.4,81.9,83.4
|
||||
Netherlands,108.5,112.3,112.7,111.3,111.9,111.9,109.6,113.8,114.6,114.8
|
||||
Austria,109.9,109.2,110.1,108.9,109.1,109.1,107.2,110.2,112.8,113.7
|
||||
Poland,53.1,55.2,53.7,52.1,52.4,52.5,51.1,50.9,53.5,54.3
|
||||
Portugal,85.2,85.0,85.3,82.7,81.1,80.4,78.7,81.6,83.5,84.6
|
||||
Romania,49.1,46.9,47.7,45.6,47.8,47.6,47.2,46.8,48.0,48.6
|
||||
Slovenia,85.3,84.3,83.7,81.8,82.1,81.5,79.8,82.3,82.7,83.8
|
||||
Slovakia,66.6,62.5,63.4,63.4,63.4,63.3,62.3,63.6,65.4,66.1
|
||||
Finland,121.0,120.3,121.6,121.8,124.0,122.9,119.6,122.8,123.3,123.4
|
||||
Sweden,109.5,124.6,131.7,134.3,140.5,133.6,128.8,135.3,134.5,126.9
|
||||
United Kingdom,107.5,111.4,111.3,118.6,117.0,123.6,134.7,123.5,117.6,117.7
|
||||
Iceland,94.9,107.6,109.6,111.6,116.0,123.4,132.5,154.5,172.3,163.7
|
||||
Norway,142.4,158.8,165.3,172.5,166.9,157.2,152.2,155.0,157.3,155.4
|
||||
Switzerland,131.6,146.4,161.7,160.6,155.1,153.0,167.0,169.8,167.1,159.1
|
||||
Candidate and potential candidate countries except Turkey and Kosovo (under United Nations Security Council Resolution 1244/99),48.0,45.6,47.1,44.8,46.4,45.2,43.4,44.4,46.0,47.5
|
||||
Montenegro,52.3,49.5,49.3,50.1,50.5,49.3,48.0,48.7,50.5,51.1
|
||||
North Macedonia,41.4,41.3,42.7,42.1,42.5,41.9,40.9,41.7,43.2,43.3
|
||||
Albania,46.2,42.8,42.1,40.6,41.9,41.5,39.8,43.0,43.5,46.6
|
||||
Serbia,48.3,45.0,48.0,44.5,47.3,45.5,43.1,43.8,46.1,47.9
|
||||
Turkey,55.4,61.2,54.7,58.5,57.7,51.6,50.5,50.2,45.4,37.0
|
||||
Bosnia and Herzegovina,51.6,50.7,50.6,49.2,49.1,48.4,47.0,47.5,48.2,48.9
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),:,:,:,:,:,:,:,:,:,:
|
||||
United States,92.4,98,93.3,101.2,100.3,99,115.9,121.1,120.8,115.2
|
||||
Japan,115.1,126.1,127.8,133.8,101.7,94.8,96.5,113,109.4,103.9
|
||||
,,,,,,,,,,
|
||||
"Source: Eurostat Purchasing power parities (PPPs), price level indices and real expenditures for ESA 2010 aggregates (2019)",,,,,,,,,,
|
||||
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment,,,,,,,,,,
|
|
63129
data/retro/data_building_stock.csv
Normal file
63129
data/retro/data_building_stock.csv
Normal file
File diff suppressed because it is too large
Load Diff
164
data/retro/electricity_taxes_eu.csv
Normal file
164
data/retro/electricity_taxes_eu.csv
Normal file
@ -0,0 +1,164 @@
|
||||
Electricity prices for household consumers - bi-annual data (from 2007 onwards) [nrg_pc_204],,,,
|
||||
,,,,
|
||||
Last update,30.10.19,,,
|
||||
Extracted on,14.11.19,,,
|
||||
Source of data,Eurostat,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2018S1,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,% cost without taxes
|
||||
European Union - 28 countries,0.1285,0.1756,0.2052,0.626218323586745
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1331,0.1855,0.2188,0.608318098720293
|
||||
Belgium,0.1903,0.2279,0.2733,0.696304427369191
|
||||
Bulgaria,0.0816,0.0816,0.0979,0.833503575076609
|
||||
Czech Republic,0.1286,0.1298,0.1573,0.817546090273363
|
||||
Denmark,0.1011,0.2501,0.3126,0.32341650671785
|
||||
Germany,0.1379,0.2510,0.2987,0.461667224640107
|
||||
Estonia,0.0989,0.1123,0.1348,0.733679525222552
|
||||
Ireland,0.1846,0.2087,0.2369,0.779231743351625
|
||||
Greece,0.1132,0.1482,0.1672,0.677033492822967
|
||||
Spain,0.1873,0.1969,0.2383,0.785984053713806
|
||||
France,0.1134,0.1492,0.1748,0.648741418764302
|
||||
Croatia,0.1020,0.1160,0.1311,0.778032036613272
|
||||
Italy,0.1285,0.1873,0.2067,0.621673923560716
|
||||
Cyprus,0.1445,0.1606,0.1893,0.763338615953513
|
||||
Latvia,0.1035,0.1266,0.1531,0.676028739386022
|
||||
Lithuania,0.0771,0.0906,0.1097,0.702825888787603
|
||||
Luxembourg,0.1283,0.1547,0.1671,0.767803710353082
|
||||
Hungary,0.0885,0.0885,0.1123,0.78806767586821
|
||||
Malta,0.1209,0.1224,0.1285,0.940856031128405
|
||||
Netherlands,0.1187,0.1410,0.1706,0.6957796014068
|
||||
Austria,0.1232,0.1638,0.1966,0.626653102746694
|
||||
Poland,0.0906,0.1146,0.1410,0.642553191489362
|
||||
Portugal,0.1007,0.1826,0.2246,0.448352626892253
|
||||
Romania,0.0990,0.1120,0.1333,0.742685671417854
|
||||
Slovenia,0.1108,0.1322,0.1613,0.686918784872908
|
||||
Slovakia,0.0942,0.1305,0.1566,0.601532567049808
|
||||
Finland,0.1074,0.1300,0.1612,0.666253101736973
|
||||
Sweden,0.1202,0.1513,0.1891,0.635642517186674
|
||||
United Kingdom,0.1347,0.1797,0.1887,0.713831478537361
|
||||
Iceland,0.1222,0.1246,0.1545,0.790938511326861
|
||||
Liechtenstein,:,:,:,#VALUE!
|
||||
Norway,0.1254,0.1434,0.1751,0.716162193032553
|
||||
Montenegro,0.0828,0.0844,0.1024,0.80859375
|
||||
North Macedonia,0.0662,0.0662,0.0781,0.847631241997439
|
||||
Albania,:,:,:,#VALUE!
|
||||
Serbia,0.0539,0.0587,0.0705,0.764539007092199
|
||||
Turkey,0.0727,0.0766,0.0904,0.804203539823009
|
||||
Bosnia and Herzegovina,0.0722,0.0738,0.0864,0.835648148148148
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0569,0.0586,0.0633,0.898894154818325
|
||||
Moldova,0.1020,0.1020,0.1020,1
|
||||
Ukraine,0.0342,0.0342,0.0410,0.834146341463415
|
||||
,,,0.157271052631579,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2018S2,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,
|
||||
European Union - 28 countries,0.1329,0.1810,0.2113,
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1376,0.1902,0.2242,
|
||||
Belgium,0.1998,0.2429,0.2937,
|
||||
Bulgaria,0.0838,0.0838,0.1005,
|
||||
Czechia,0.1299,0.1311,0.1586,
|
||||
Denmark,0.1116,0.2499,0.3123,
|
||||
Germany (until 1990 former territory of the FRG),0.1378,0.2521,0.3000,
|
||||
Estonia,0.1048,0.1182,0.1418,
|
||||
Ireland,0.2006,0.2237,0.2539,
|
||||
Greece,0.1125,0.1458,0.1646,
|
||||
Spain,0.1947,0.2047,0.2477,
|
||||
France,0.1168,0.1537,0.1799,
|
||||
Croatia,0.1028,0.1169,0.1321,
|
||||
Italy,0.1416,0.1964,0.2161,
|
||||
Cyprus,0.1745,0.1850,0.2183,
|
||||
Latvia,0.1041,0.1249,0.1511,
|
||||
Lithuania,0.0771,0.0906,0.1097,
|
||||
Luxembourg,0.1302,0.1566,0.1691,
|
||||
Hungary,0.0880,0.0880,0.1118,
|
||||
Malta,0.1229,0.1244,0.1306,
|
||||
Netherlands,0.1212,0.1420,0.1707,
|
||||
Austria,0.1265,0.1676,0.2012,
|
||||
Poland,0.0889,0.1135,0.1396,
|
||||
Portugal,0.1028,0.1864,0.2293,
|
||||
Romania,0.0964,0.1107,0.1317,
|
||||
Slovenia,0.1125,0.1342,0.1638,
|
||||
Slovakia,0.0849,0.1218,0.1462,
|
||||
Finland,0.1144,0.1369,0.1698,
|
||||
Sweden,0.1287,0.1592,0.1990,
|
||||
United Kingdom,0.1401,0.1927,0.2024,
|
||||
Iceland,0.1152,0.1175,0.1457,
|
||||
Liechtenstein,:,:,:,
|
||||
Norway,0.1382,0.1562,0.1907,
|
||||
Montenegro,0.0829,0.0848,0.1030,
|
||||
North Macedonia,0.0667,0.0667,0.0787,
|
||||
Albania,0.0759,0.0759,0.0910,
|
||||
Serbia,0.0542,0.0591,0.0709,
|
||||
Turkey,0.0688,0.0726,0.0857,
|
||||
Bosnia and Herzegovina,0.0729,0.0744,0.0871,
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0579,0.0591,0.0638,
|
||||
Moldova,0.0960,0.0960,0.1029,
|
||||
Ukraine,0.0342,0.0342,0.0410,
|
||||
,,,,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
||||
,,,,
|
||||
PRODUCT,Electrical energy,,,
|
||||
CONSOM,Band DC : 2 500 kWh < Consumption < 5 000 kWh,,,
|
||||
UNIT,Kilowatt-hour,,,
|
||||
TIME,2019S1,,,
|
||||
,,,,
|
||||
CURRENCY,Euro,Euro,Euro,
|
||||
GEO/TAX,Excluding taxes and levies,Excluding VAT and other recoverable taxes and levies,All taxes and levies included,
|
||||
European Union - 28 countries,0.1351,0.1841,0.2147,
|
||||
"Euro area (EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19)",0.1396,0.1928,0.2270,
|
||||
Belgium,0.1965,0.2355,0.2839,
|
||||
Bulgaria,0.0831,0.0831,0.0997,
|
||||
Czechia,0.1433,0.1444,0.1748,
|
||||
Denmark,0.1084,0.2387,0.2984,
|
||||
Germany (until 1990 former territory of the FRG),0.1473,0.2595,0.3088,
|
||||
Estonia,0.0982,0.1131,0.1357,
|
||||
Ireland,0.2027,0.2134,0.2423,
|
||||
Greece,0.1139,0.1482,0.1650,
|
||||
Spain,0.1889,0.1986,0.2403,
|
||||
France,0.1138,0.1508,0.1765,
|
||||
Croatia,0.1028,0.1169,0.1321,
|
||||
Italy,0.1432,0.2090,0.2301,
|
||||
Cyprus,0.1762,0.1867,0.2203,
|
||||
Latvia,0.1136,0.1347,0.1629,
|
||||
Lithuania,0.0947,0.1037,0.1255,
|
||||
Luxembourg,0.1326,0.1666,0.1798,
|
||||
Hungary,0.0882,0.0882,0.1120,
|
||||
Malta,0.1228,0.1243,0.1305,
|
||||
Netherlands,0.1357,0.1708,0.2052,
|
||||
Austria,0.1316,0.1695,0.2034,
|
||||
Poland,0.0884,0.1092,0.1343,
|
||||
Portugal,0.1103,0.1751,0.2154,
|
||||
Romania,0.0983,0.1141,0.1358,
|
||||
Slovenia,0.1125,0.1339,0.1634,
|
||||
Slovakia,0.0962,0.1314,0.1577,
|
||||
Finland,0.1173,0.1398,0.1734,
|
||||
Sweden,0.1297,0.1612,0.2015,
|
||||
United Kingdom,0.1450,0.2021,0.2122,
|
||||
Iceland,0.1112,0.1134,0.1406,
|
||||
Liechtenstein,:,:,:,
|
||||
Norway,0.1360,0.1529,0.1867,
|
||||
Montenegro,0.0834,0.0850,0.1032,
|
||||
North Macedonia,:,:,:,
|
||||
Albania,:,:,:,
|
||||
Serbia,0.0541,0.0589,0.0706,
|
||||
Turkey,0.0684,0.0718,0.0847,
|
||||
Bosnia and Herzegovina,0.0729,0.0746,0.0873,
|
||||
Kosovo (under United Nations Security Council Resolution 1244/99),0.0537,0.0556,0.0600,
|
||||
Moldova,0.0936,0.0936,0.0936,
|
||||
Ukraine,0.0369,0.0369,0.0442,
|
||||
,,,,
|
||||
Special value:,,,,
|
||||
:,not available,,,
|
|
17
data/retro/floor_area_missing.csv
Normal file
17
data/retro/floor_area_missing.csv
Normal file
@ -0,0 +1,17 @@
|
||||
country,sector,estimated,value,source,,comments,population [in Million],
|
||||
AL,residential,0,64,p.13 1.6 million m² = 2.5% of total floor area,https://www.buildup.eu/sites/default/files/content/sled_albania_residential_building_eng.pdf,,,
|
||||
AL,services,0,,,,,,
|
||||
BA,residential,0,125.89,Tabula,https://episcope.eu/building-typology/country/ba/,strong differences ? other source claims more than 300 Million m²,,https://www.buildup.eu/sites/default/files/content/sled_serbia_building_eng.pdf
|
||||
BA,services,0,,,,,,
|
||||
RS,residential,0,72.3,Odyssee(2011),https://odyssee.enerdata.net/database/,,,
|
||||
RS,services,0,,,,,,
|
||||
MK,residential,0,,"Worldbank p.7 Skopje 75% residential, 25% commercial",http://documents.albankaldawli.org/curated/ar/838951574180734318/pdf/Project-Information-Document-North-Macedonia-Public-Sector-Energy-Efficiency-Project-P149990.pdf,15 % live in illegal constructed buildings ? not part of the statistics,2.1,
|
||||
MK,services,0,,,,,,
|
||||
ME,residential,0,19.625,p.13 0.314 million m² = 1.6% of total floor area,buildup.eu/sites/default/files/content/sled_montenegro_building_eng.pdf,Only 50 % of the floor area is heated p.12,,buildup.eu/sites/default/files/content/sled_montenegro_building_eng.pdf
|
||||
ME,services,0,,,,,,
|
||||
CH,residential,0,99.45,Odyssee(2015),,,,
|
||||
CH,services,1,78.1392857142857,p.8 44%floor area is services,https://bta.climate-kic.org/wp-content/uploads/2018/04/171123-CK-BTA-DEF-BMB_SWITZERLAND_.pdf,,,
|
||||
NO,residential,0,121.55,Odyssee(2015),,,,
|
||||
NO,services,0,115.21,Odyssee(2015),,,,
|
||||
PL,residential,0,1028.41,EU Building Database,,,,
|
||||
PL,services,0,498.84,EU Building Database,,,,
|
|
7
data/retro/retro_cost_germany.csv
Normal file
7
data/retro/retro_cost_germany.csv
Normal file
@ -0,0 +1,7 @@
|
||||
component,cost_fix,cost_var,life_time,comment,additional source
|
||||
wall,70.34,2.36,40,Agora Energiewende p.110,
|
||||
floor,39.39,1.3,40,Agora Energiewende p.110,
|
||||
roof,75.61,1.3,40,Agora Energiewende p.110,https://www.baulinks.de/webplugin/2018/1524.php4
|
||||
window,nan,nan,35,,
|
||||
source: p.37 https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-10-29_texte_132-2019_energieaufwand-gebaeudekonzepte.pdf,,,https://www.agora-energiewende.de/en/publications/building-sector-efficiency-a-crucial-component-of-the-energy-transition/,,
|
||||
,,,p.115,,
|
|
9
data/retro/u_values_poland.csv
Normal file
9
data/retro/u_values_poland.csv
Normal file
@ -0,0 +1,9 @@
|
||||
component,Before 1945,1945 - 1969,1970 - 1979,1980 - 1989,1990 - 1999,2000 - 2010,Post 2010,sector
|
||||
Walls,1.7,1.4,0.9,0.9,0.6,0.4,1.7,residential
|
||||
Windows,4.6,3.6,2.6,2.6,2.1,2.1,2.1,residential
|
||||
Roof,0.8,0.7,0.6,0.6,0.6,0.4,0.33,residential
|
||||
Floor,1.9,1.4,1.2,1.1,0.9,0.6,0.45,residential
|
||||
Walls,1.3,1.3,1.3,0.8,0.6,0.6,0.6,services
|
||||
Windows,4.7,3.7,2.6,2.6,2.3,2.1,2.1,services
|
||||
Roof,1,0.9,0.7,0.5,0.3,0.3,0.3,services
|
||||
Floor,1.6,1.2,1.2,1.1,1,0.7,0.7,services
|
|
8
data/retro/window_assumptions.csv
Normal file
8
data/retro/window_assumptions.csv
Normal file
@ -0,0 +1,8 @@
|
||||
strength,u_value,cost,u_limit,comment
|
||||
[m],[W/m^2K],EUR/m^2,[W/m^2K],
|
||||
0.076,1.34,180.08,3.5,Double-glazing
|
||||
0.197,0.8,225,1.3,Triple-glazing
|
||||
,,,,
|
||||
"source: https://www.agora-energiewende.de/en/publications/building-sector-efficiency-a-crucial-component-of-the-energy-transition/
|
||||
p.115
|
||||
",,,,
|
|
@ -70,9 +70,9 @@ author = u'2019-2020 Tom Brown (KIT), Marta Victoria (Aarhus University), Lisa Z
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = u'0.3'
|
||||
version = u'0.5'
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = u'0.3.0'
|
||||
release = u'0.5.0'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
|
@ -2,7 +2,7 @@ description,file/folder,licence,source
|
||||
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
|
||||
urban/rural fraction,urban_percent.csv,unknown,unknown
|
||||
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
|
||||
EEA emission statistics,eea/,unknown,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-14
|
||||
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
|
||||
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
|
||||
BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916
|
||||
@ -17,3 +17,10 @@ IRENA existing VRE capacities,existing_infrastructure/{solar|onwind|offwind}_cap
|
||||
USGS ammonia production,myb1-2017-nitro.xls,unknown,https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information
|
||||
hydrogen salt cavern potentials,hydrogen_salt_cavern_potentials.csv,CC BY 4.0,https://doi.org/10.1016/j.ijhydene.2019.12.161
|
||||
hotmaps industrial site database,Industrial_Database.csv,CC BY 4.0,https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database
|
||||
Hotmaps building stock data,data_building_stock.csv,CC BY 4.0,https://gitlab.com/hotmaps/building-stock
|
||||
U-values Poland,u_values_poland.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
|
||||
Floor area missing in hotmaps building stock data,floor_area_missing.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
|
||||
Comparative level investment,comparative_level_investment.csv,Eurostat,https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment
|
||||
Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
|
||||
Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
|
||||
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unkown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/
|
||||
|
|
@ -4,8 +4,8 @@ PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of the European Energy S
|
||||
.. image:: https://img.shields.io/github/v/release/pypsa/pypsa-eur-sec?include_prereleases
|
||||
:alt: GitHub release (latest by date including pre-releases)
|
||||
|
||||
.. image:: https://readthedocs.org/projects/pypsa-eur/badge/?version=latest
|
||||
:target: https://pypsa-eur.readthedocs.io/en/latest/?badge=latest
|
||||
.. image:: https://readthedocs.org/projects/pypsa-eur-sec/badge/?version=latest
|
||||
:target: https://pypsa-eur-sec.readthedocs.io/en/latest/?badge=latest
|
||||
:alt: Documentation Status
|
||||
|
||||
.. image:: https://img.shields.io/github/license/pypsa/pypsa-eur-sec
|
||||
@ -66,42 +66,6 @@ PyPSA-Eur-Sec is designed to be imported into the open toolbox `PyPSA <https://w
|
||||
This project is maintained by the `Energy System Modelling group <https://www.iai.kit.edu/english/2338.php>`_ at the `Institute for Automation and Applied Informatics <https://www.iai.kit.edu/english/index.php>`_ at the `Karlsruhe Institute of Technology <http://www.kit.edu/english/index.php>`_. The group is funded by the `Helmholtz Association <https://www.helmholtz.de/en/>`_ until 2024. Previous versions were developed by the `Renewable Energy Group <https://fias.uni-frankfurt.de/physics/schramm/renewable-energy-system-and-network-analysis/>`_ at `FIAS <https://fias.uni-frankfurt.de/>`_ to carry out simulations for the `CoNDyNet project <http://condynet.de/>`_, financed by the `German Federal Ministry for Education and Research (BMBF) <https://www.bmbf.de/en/index.html>`_ as part of the `Stromnetze Research Initiative <http://forschung-stromnetze.info/projekte/grundlagen-und-konzepte-fuer-effiziente-dezentrale-stromnetze/>`_.
|
||||
|
||||
|
||||
Spatial resolution of sectors
|
||||
=============================
|
||||
|
||||
Not all of the sectors are at the full nodal resolution, and some are
|
||||
distributed to nodes using heuristics that need to be corrected. Some
|
||||
networks are copper-plated to reduce computational times.
|
||||
|
||||
For example:
|
||||
|
||||
Electricity network: nodal.
|
||||
|
||||
Electricity demand: nodal, distributed in each country based on
|
||||
population and GDP.
|
||||
|
||||
Building heating demand: nodal, distributed in each country based on
|
||||
population.
|
||||
|
||||
Industry demand: nodal, distributed in each country based on
|
||||
population (will be corrected to real locations of industry, see
|
||||
github issue).
|
||||
|
||||
Hydrogen network: nodal.
|
||||
|
||||
Methane network: copper-plated for Europe, since future demand is so
|
||||
low and no bottlenecks are expected.
|
||||
|
||||
Solid biomass: copper-plated until transport costs can be
|
||||
incorporated.
|
||||
|
||||
CO2: copper-plated (but a transport and storage cost is added for
|
||||
sequestered CO2).
|
||||
|
||||
Liquid hydrocarbons: copper-plated since transport costs are low.
|
||||
|
||||
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
@ -116,6 +80,20 @@ Documentation
|
||||
|
||||
installation
|
||||
|
||||
**Implementation details**
|
||||
|
||||
* :doc:`spatial_resolution`
|
||||
* :doc:`supply_demand`
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
:caption: Implementation details
|
||||
|
||||
spatial_resolution
|
||||
supply_demand
|
||||
|
||||
|
||||
**Foresight options**
|
||||
|
||||
* :doc:`overnight`
|
||||
|
@ -16,7 +16,7 @@ its dependencies. Clone the repository:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects % git clone git@github.com:PyPSA/pypsa-eur.git
|
||||
projects % git clone https://github.com/PyPSA/pypsa-eur.git
|
||||
|
||||
then download and unpack all the PyPSA-Eur data files by running the following snakemake rule:
|
||||
|
||||
@ -32,7 +32,7 @@ Next install the technology assumptions database `technology-data <https://githu
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects % git clone git@github.com:PyPSA/technology-data.git
|
||||
projects % git clone https://github.com/PyPSA/technology-data.git
|
||||
|
||||
|
||||
Clone PyPSA-Eur-Sec repository
|
||||
@ -42,7 +42,7 @@ Create a parallel directory for `PyPSA-Eur-Sec <https://github.com/PyPSA/pypsa-e
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects % git clone git@github.com:PyPSA/pypsa-eur-sec.git
|
||||
projects % git clone https://github.com/PyPSA/pypsa-eur-sec.git
|
||||
|
||||
Environment/package requirements
|
||||
================================
|
||||
@ -54,6 +54,13 @@ The requirements are the same as `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>
|
||||
xarray version >= 0.15.1, you will need the latest master branch of
|
||||
atlite version 0.0.2.
|
||||
|
||||
You can create an enviroment using the environment.yaml file in pypsa-eur/envs:
|
||||
|
||||
.../pypsa-eur % conda env create -f envs/environment.yaml
|
||||
|
||||
.../pypsa-eur % conda activate pypsa-eur
|
||||
|
||||
See details in `PyPSA-Eur Installation <https://pypsa-eur.readthedocs.io/en/latest/installation.html>`_
|
||||
|
||||
Data requirements
|
||||
=================
|
||||
@ -66,8 +73,8 @@ To download and extract the data bundle on the command line:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
projects/pypsa-eur-sec/data % wget "https://nworbmot.org/pypsa-eur-sec-data-bundle-201012.tar.gz"
|
||||
projects/pypsa-eur-sec/data % tar xvzf pypsa-eur-sec-data-bundle-201012.tar.gz
|
||||
projects/pypsa-eur-sec/data % wget "https://nworbmot.org/pypsa-eur-sec-data-bundle-210418.tar.gz"
|
||||
projects/pypsa-eur-sec/data % tar xvzf pypsa-eur-sec-data-bundle-210418.tar.gz
|
||||
|
||||
|
||||
The data licences and sources are given in the following table.
|
||||
|
@ -6,7 +6,7 @@ Myopic transition path
|
||||
|
||||
The myopic code can be used to investigate progressive changes in a network, for instance, those taking place throughout a transition path. The capacities installed in a certain time step are maintained in the network until their operational lifetime expires.
|
||||
|
||||
The myopic approach was initially developed and used in the paper `Early decarbonisation of the European Energy system pays off (2020) <https://arxiv.org/abs/2004.11009>`__ but the current implementation complies with the pypsa-eur-sec standard working flow and is compatible with using the higher resolution electricity transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`__ rather than a one-node-per-country model.
|
||||
The myopic approach was initially developed and used in the paper `Early decarbonisation of the European Energy system pays off (2020) <https://www.nature.com/articles/s41467-020-20015-4>`__ but the current implementation complies with the pypsa-eur-sec standard working flow and is compatible with using the higher resolution electricity transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`__ rather than a one-node-per-country model.
|
||||
|
||||
The current code applies the myopic approach to generators, storage technologies and links in the power sector and the space and water heating sector.
|
||||
|
||||
@ -17,12 +17,14 @@ See also other `outstanding issues <https://github.com/PyPSA/pypsa-eur-sec/issue
|
||||
Configuration
|
||||
=================
|
||||
|
||||
PyPSA-Eur-Sec has several configuration options which are collected in a config.yaml file located in the root directory. For myopic optimization, users should copy the provided myopic configuration ``config.myopic.yaml`` and make their own modifications and assumptions in the user-specific configuration file (``config.yaml``).
|
||||
PyPSA-Eur-Sec has several configuration options which are collected in a config.yaml file located in the root directory. For myopic optimization, users should copy the provided default configuration ``config.default.yaml`` and make their own modifications and assumptions in the user-specific configuration file (``config.yaml``).
|
||||
|
||||
The following options included in the config.yaml file are relevant for the myopic code.
|
||||
|
||||
To activate the myopic option select ``foresight: 'myopic'`` in ``config.yaml``.
|
||||
|
||||
To set the investment years which are sequentially simulated for the myopic investment planning, select for example ``planning_horizons : [2020, 2030, 2040, 2050]`` in ``config.yaml``.
|
||||
|
||||
|
||||
|
||||
**existing capacities**
|
||||
@ -59,12 +61,15 @@ Wildcards
|
||||
The {planning_horizons} wildcard indicates the timesteps in which the network is optimized, e.g. planning_horizons: [2020, 2030, 2040, 2050]
|
||||
|
||||
|
||||
Options
|
||||
=============
|
||||
The total carbon budget for the entire transition path can be indicated in the ``scenario.sector_opts`` in ``config.yaml``.
|
||||
The carbon budget can be split among the ``planning_horizons`` following an exponential or beta decay.
|
||||
E.g. ``'cb40ex0'`` splits the a carbon budget equal to 40 GtCO_2 following an exponential decay whose initial linear growth rate $r$ is zero
|
||||
|
||||
**{co2_budget_name} wildcard**
|
||||
$e(t) = e_0 (1+ (r+m)t) e^(-mt)$
|
||||
|
||||
The {co2_budget_name} wildcard indicates the name of the co2 budget.
|
||||
|
||||
A csv file is used as input including the planning_horizons as index, the name of co2_budget as column name, and the maximum co2 emissions (relative to 1990) as values.
|
||||
See details in Supplementary Note 1 of the paper `Early decarbonisation of the European Energy system pays off (2020) <https://www.nature.com/articles/s41467-020-20015-4>`__
|
||||
|
||||
Rules overview
|
||||
=================
|
||||
@ -72,17 +77,17 @@ Rules overview
|
||||
General myopic code structure
|
||||
===============================
|
||||
|
||||
The myopic code solves the network for the time steps included in planning_horizons in a recursive loop, so that:
|
||||
The myopic code solves the network for the time steps included in ``planning_horizons`` in a recursive loop, so that:
|
||||
|
||||
1.The existing capacities (those installed before the base year are added as fixed capacities with p_nom=value, p_nom_extendable=False). E.g. for baseyear=2020, capacities installed before 2020 are added. In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
|
||||
|
||||
The base year is the first element in planning_horizons. Step 1 is implemented with the rule add_baseyear for the base year and with the rule add_brownfield for the remaining planning_horizons.
|
||||
The base year is the first element in ``planning_horizons``. Step 1 is implemented with the rule add_baseyear for the base year and with the rule add_brownfield for the remaining planning_horizons.
|
||||
|
||||
2.The 2020 network is optimized. The solved network is saved in ‘results/run_name/networks/postnetworks’
|
||||
2.The 2020 network is optimized. The solved network is saved in ``results/run_name/networks/postnetworks``
|
||||
|
||||
3.For the next planning horizon, e.g. 2030, the capacities from a previous time step are added if they are still in operation (i.e., if they fulfil planning horizon <= commissioned year + lifetime). In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
|
||||
|
||||
Steps 2 and 3 are solved recursively for all the planning_horizons included in the configuration file.
|
||||
Steps 2 and 3 are solved recursively for all the planning_horizons included in ``config.yaml``.
|
||||
|
||||
|
||||
rule add_existing baseyear
|
||||
@ -108,8 +113,8 @@ Then, the resulting network is saved in ``results/run_name/networks/prenetworks-
|
||||
rule add_brownfield
|
||||
===================
|
||||
|
||||
The rule add_brownfield loads the network in ‘results/run_name/networks/prenetworks’ and performs the following operation:
|
||||
The rule add_brownfield loads the network in ``results/run_name/networks/prenetworks`` and performs the following operation:
|
||||
|
||||
1.Read the capacities optimized in the previous time step and add them to the network if they are still in operation (i.e., if they fulfil planning horizon < commissioned year + lifetime)
|
||||
1.Read the capacities optimized in the previous time step and add them to the network if they are still in operation (i.e., if they fulfill planning horizon < commissioned year + lifetime)
|
||||
|
||||
Then, the resulting network is saved in ``results/run_name/networks/prenetworks_brownfield``.
|
||||
|
@ -7,3 +7,5 @@ Overnight (greenfield) scenarios
|
||||
The default is to calculate a rebuilding of the energy system to meet demand, a so-called overnight or greenfield approach.
|
||||
|
||||
For this, use ``foresight : 'overnight'`` in ``config.yaml``, like the example in ``config.default.yaml``.
|
||||
|
||||
In this case, the ``planning_horizons : [2030]`` scenario parameter can be set to use the year from which cost and other technology assumptions are set (forecasts for 2030 in this case).
|
||||
|
@ -2,6 +2,110 @@
|
||||
Release Notes
|
||||
##########################################
|
||||
|
||||
Future release
|
||||
==============
|
||||
|
||||
.. note::
|
||||
This unreleased version currently requires the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
||||
|
||||
* Extended use of ``multiprocessing`` for much better performance
|
||||
(from up to 20 minutes to less than one minute).
|
||||
* Compatibility with ``atlite>=0.2``. Older versions of ``atlite`` will no longer work.
|
||||
* Handle most input files (or base directories) via ``snakemake.input``.
|
||||
* Use of ``mock_snakemake`` from PyPSA-Eur.
|
||||
* Update ``solve_network`` rule to match implementation in PyPSA-Eur by using ``n.ilopf()`` and remove outdated code using ``pyomo``.
|
||||
Allows the new setting to skip iterated impedance updates with ``solving: options: skip_iterations: true``.
|
||||
* The component attributes that are to be overridden are now stored in the folder
|
||||
``data/override_component_attrs`` analogous to ``pypsa/component_attrs``.
|
||||
This reduces verbosity and also allows circumventing the ``n.madd()`` hack
|
||||
for individual components with non-default attributes.
|
||||
This data is also tracked in the Snakefile.
|
||||
|
||||
A function ``helper.override_component_attrs`` was added that loads this data
|
||||
and can pass the overridden component attributes into ``pypsa.Network()``:
|
||||
|
||||
>>> from helper import override_component_attrs
|
||||
>>> overrides = override_component_attrs(snakemake.input.overrides)
|
||||
>>> n = pypsa.Network("mynetwork.nc", override_component_attrs=overrides)
|
||||
|
||||
* Add various parameters to ``config.default.yaml`` which were previously hardcoded inside the scripts
|
||||
(e.g. energy reference years, BEV settings, solar thermal collector models, geomap colours).
|
||||
* Removed stale industry demand rules ``build_industrial_energy_demand_per_country``
|
||||
and ``build_industrial_demand``. These are superseded with more regionally resolved rules.
|
||||
* Use simpler and shorter ``gdf.sjoin()`` function to allocate industrial sites
|
||||
from the Hotmaps database to onshore regions.
|
||||
|
||||
This change also fixes a bug:
|
||||
The previous version allocated sites to the closest bus,
|
||||
but at country borders (where Voronoi cells are distorted by the borders),
|
||||
this had resulted in e.g. a Spanish site close to the French border
|
||||
being wrongly allocated to the French bus if the bus center was closer.
|
||||
* Bugfix: Corrected calculation of "gas for industry" carbon capture efficiency.
|
||||
* Retrofitting rule is now only triggered if endogeneously optimised.
|
||||
* Show progress in build rules with ``tqdm`` progress bars.
|
||||
* Reduced verbosity of ``Snakefile`` through directory prefixes.
|
||||
* Improve legibility of ``config.default.yaml`` and remove unused options.
|
||||
* Add optional function to use ``geopy`` to locate entries of the Hotmaps database of industrial sites
|
||||
with missing location based on city and country, which reduces missing entries by half. It can be
|
||||
activated by setting ``industry: hotmaps_locate_missing: true``, takes a few minutes longer,
|
||||
and should only be used if spatial resolution is coarser than city level.
|
||||
* Use the country-specific time zone mappings from ``pytz`` rather than a manual mapping.
|
||||
* A function ``add_carrier_buses()`` was added to the ``prepare_network`` rule to reduce code duplication.
|
||||
* In the ``prepare_network`` rule the cost and potential adjustment was moved into an
|
||||
own function ``maybe_adjust_costs_and_potentials()``.
|
||||
* Use ``matplotlibrc`` to set the default plotting style and backend``.
|
||||
* Added benchmark files for each rule.
|
||||
* Implements changes to ``n.snapshot_weightings`` in upcoming PyPSA version (cf. `PyPSA/#227 <https://github.com/PyPSA/PyPSA/pull/227>`_).
|
||||
* New dependencies: ``tqdm``, ``atlite>=0.2.4``, ``pytz`` and ``geopy`` (optional).
|
||||
These are included in the environment specifications of PyPSA-Eur.
|
||||
* Consistent use of ``__main__`` block and further unspecific code cleaning.
|
||||
* Distinguish costs for home battery storage and inverter from utility-scale battery costs.
|
||||
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.5.0 (21st May 2021)
|
||||
===================================
|
||||
|
||||
This release includes improvements to the cost database for building retrofits, carbon budget management and wildcard settings, as well as an important bugfix for the emissions from land transport.
|
||||
|
||||
This release is known to work with `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ Version 0.3.0 and `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0.
|
||||
|
||||
Please note that the data bundle has also been updated.
|
||||
|
||||
New features and bugfixes:
|
||||
|
||||
* The cost database for retrofitting of the thermal envelope of buildings has been updated. Now, for calculating the space heat savings of a building, losses by thermal bridges and ventilation are included as well as heat gains (internal and by solar radiation). See the section :ref:`retro` for more details on the retrofitting module.
|
||||
* For the myopic investment option, a carbon budget and a type of decay (exponential or beta) can be selected in the ``config.yaml`` file to distribute the budget across the ``planning_horizons``. For example, ``cb40ex0`` in the ``{sector_opts}`` wildcard will distribute a carbon budget of 40 GtCO2 following an exponential decay with initial growth rate 0.
|
||||
* Added an option to alter the capital cost or maximum capacity of carriers by a factor via ``carrier+factor`` in the ``{sector_opts}`` wildcard. This can be useful for exploring uncertain cost parameters. Example: ``solar+c0.5`` reduces the ``capital_cost`` of solar to 50\% of original values. Similarly ``solar+p3`` multiplies the ``p_nom_max`` by 3.
|
||||
* Rename the bus for European liquid hydrocarbons from ``Fischer-Tropsch`` to ``EU oil``, since it can be supplied not just with the Fischer-Tropsch process, but also with fossil oil.
|
||||
* Bugfix: The new separation of land transport by carrier in Version 0.4.0 failed to account for the carbon dioxide emissions from internal combustion engines in land transport. This is now treated as a negative load on the atmospheric carbon dioxide bus, just like aviation emissions.
|
||||
* Bugfix: Fix reading in of ``pypsa-eur/resources/powerplants.csv`` to PyPSA-Eur Version 0.3.0 (use column attribute name ``DateIn`` instead of old ``YearDecommissioned``).
|
||||
* Bugfix: Make sure that ``Store`` components (battery and H2) are also removed from PyPSA-Eur, so they can be added later by PyPSA-Eur-Sec.
|
||||
|
||||
Thanks to Lisa Zeyen (KIT) for the retrofitting improvements and Marta Victoria (Aarhus University) for the carbon budget and wildcard management.
|
||||
|
||||
PyPSA-Eur-Sec 0.4.0 (11th December 2020)
|
||||
=========================================
|
||||
|
||||
This release includes a more accurate nodal disaggregation of industry demand within each country, fixes to CHP and CCS representations, as well as changes to some configuration settings.
|
||||
|
||||
It has been released to coincide with `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_ Version 0.3.0 and `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0, and is known to work with these releases.
|
||||
|
||||
New features:
|
||||
|
||||
* The `Hotmaps Industrial Database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_ is used to disaggregate the industrial demand spatially to the nodes inside each country (previously it was distributed by population density).
|
||||
* Electricity demand from industry is now separated from the regular electricity demand and distributed according to the industry demand. Only the remaining regular electricity demand for households and services is distributed according to GDP and population.
|
||||
* A cost database for the retrofitting of the thermal envelope of residential and services buildings has been integrated, as well as endogenous optimisation of the level of retrofitting. This is described in the paper `Mitigating heat demand peaks in buildings in a highly renewable European energy system <https://arxiv.org/abs/2012.01831>`_. Retrofitting can be activated both exogenously and endogenously from the ``config.yaml``.
|
||||
* The biomass and gas combined heat and power (CHP) parameters ``c_v`` and ``c_b`` were read in assuming they were extraction plants rather than back pressure plants. The data is now corrected in `Technology Data <https://github.com/PyPSA/technology-data>`_ Version 0.2.0 to the correct DEA back pressure assumptions and they are now implemented as single links with a fixed ratio of electricity to heat output (even as extraction plants, they were always sitting on the backpressure line in simulations, so there was no point in modelling the full heat-electricity feasibility polygon). The old assumptions underestimated the heat output.
|
||||
* The Danish Energy Agency released `new assumptions for carbon capture <https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-industrial-process-heat-and>`_ in October 2020, which have now been incorporated in PyPSA-Eur-Sec, including direct air capture (DAC) and post-combustion capture on CHPs, cement kilns and other industrial facilities. The electricity and heat demand for DAC is modelled for each node (with heat coming from district heating), but currently the electricity and heat demand for industrial capture is not modelled very cleanly (for process heat, 10% of the energy is assumed to go to carbon capture) - a new issue will be opened on this.
|
||||
* Land transport is separated by energy carrier (fossil, hydrogen fuel cell electric vehicle, and electric vehicle), but still needs to be separated into heavy and light vehicles (the data is there, just not the code yet).
|
||||
* For assumptions that change with the investment year, there is a new time-dependent format in the ``config.yaml`` using a dictionary with keys for each year. Implemented examples include the CO2 budget, exogenous retrofitting share and land transport energy carrier; more parameters will be dynamised like this in future.
|
||||
* Some assumptions have been moved out of the code and into the ``config.yaml``, including the carbon sequestration potential and cost, the heat pump sink temperature, reductions in demand for high value chemicals, and some BEV DSM parameters and transport efficiencies.
|
||||
* Documentation on :doc:`supply_demand` options has been added.
|
||||
|
||||
Many thanks to Fraunhofer ISI for opening the hotmaps database and to Lisa Zeyen (KIT) for implementing the building retrofitting.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.3.0 (27th September 2020)
|
||||
=========================================
|
||||
|
||||
@ -52,7 +156,7 @@ Many thanks to Marta Victoria for implementing the myopic foresight, and Marta V
|
||||
PyPSA-Eur-Sec 0.1.0 (8th July 2020)
|
||||
===================================
|
||||
|
||||
This is the first release of PyPSA-Eur-Sec, a model of the European energy system at the transmission network level that covers the full ENTSO-E area.
|
||||
This is the first proper release of PyPSA-Eur-Sec, a model of the European energy system at the transmission network level that covers the full ENTSO-E area.
|
||||
|
||||
It is known to work with PyPSA-Eur v0.1.0 (commit bb3477cd69) and PyPSA v0.17.0.
|
||||
|
||||
@ -65,7 +169,7 @@ heating, biomass, industry and industrial feedstocks. This completes
|
||||
the energy system and includes all greenhouse gas emitters except
|
||||
waste management, agriculture, forestry and land use.
|
||||
|
||||
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 described
|
||||
PyPSA-Eur-Sec was initially based on the model PyPSA-Eur-Sec-30 (Version 0.0.1 below) described
|
||||
in the paper `Synergies of sector coupling and transmission
|
||||
reinforcement in a cost-optimised, highly renewable European energy
|
||||
system <https://arxiv.org/abs/1801.05290>`_ (2018) but it differs by
|
||||
@ -85,6 +189,40 @@ PyPSA-Eur-Sec adds other conventional generators, storage units and
|
||||
the additional sectors.
|
||||
|
||||
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.0.2 (4th September 2020)
|
||||
========================================
|
||||
|
||||
This version, also called PyPSA-Eur-Sec-30-Path, built on
|
||||
PyPSA-Eur-Sec 0.0.1 (also called PyPSA-Eur-Sec-30) to include myopic
|
||||
pathway optimisation for the paper `Early decarbonisation of the
|
||||
European energy system pays off <https://arxiv.org/abs/2004.11009>`_
|
||||
(2020). The myopic pathway optimisation was then merged into the main
|
||||
PyPSA-Eur-Sec codebase in Version 0.2.0 above.
|
||||
|
||||
This model has `its own github repository
|
||||
<https://github.com/martavp/pypsa-eur-sec-30-path>`_ and is `archived
|
||||
on Zenodo <https://zenodo.org/record/4014807>`_.
|
||||
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.0.1 (12th January 2018)
|
||||
========================================
|
||||
|
||||
This is the first published version of PyPSA-Eur-Sec, also called
|
||||
PyPSA-Eur-Sec-30. It was first used in the research paper `Synergies of
|
||||
sector coupling and transmission reinforcement in a cost-optimised,
|
||||
highly renewable European energy system
|
||||
<https://arxiv.org/abs/1801.05290>`_ (2018). The model covers 30
|
||||
European countries with one node per country. It includes demand and
|
||||
supply for electricity, space and water heating in buildings, and land
|
||||
transport.
|
||||
|
||||
It is `archived on Zenodo <https://zenodo.org/record/1146666>`_.
|
||||
|
||||
|
||||
|
||||
Release Process
|
||||
===============
|
||||
|
||||
@ -92,6 +230,8 @@ Release Process
|
||||
|
||||
* Update version number in ``doc/conf.py`` and ``*config.*.yaml``.
|
||||
|
||||
* Make a ``git commit``.
|
||||
|
||||
* Tag a release by running ``git tag v0.x.x``, ``git push``, ``git push --tags``. Include release notes in the tag message.
|
||||
|
||||
* Make a `GitHub release <https://github.com/PyPSA/pypsa-eur-sec/releases>`_, which automatically triggers archiving by `zenodo <https://doi.org/10.5281/zenodo.3938042>`_.
|
||||
@ -102,4 +242,4 @@ To make a new release of the data bundle, make an archive of the files in ``data
|
||||
|
||||
.. code:: bash
|
||||
|
||||
data % tar pczf pypsa-eur-sec-data-bundle-date.tar.gz eea switzerland-sfoe biomass eurostat-energy_balances-* jrc-idees-2015 emobility urban_percent.csv timezone_mappings.csv heat_load_profile_DK_AdamJensen.csv WindWaveWEC_GLTB.xlsx myb1-2017-nitro.xls Industrial_Database.csv
|
||||
data % tar pczf pypsa-eur-sec-data-bundle-YYMMDD.tar.gz eea/UNFCCC_v23.csv switzerland-sfoe biomass eurostat-energy_balances-* jrc-idees-2015 emobility urban_percent.csv timezone_mappings.csv heat_load_profile_DK_AdamJensen.csv WindWaveWEC_GLTB.xlsx myb1-2017-nitro.xls Industrial_Database.csv retro/tabula-calculator-calcsetbuilding.csv
|
||||
|
54
doc/spatial_resolution.rst
Normal file
54
doc/spatial_resolution.rst
Normal file
@ -0,0 +1,54 @@
|
||||
.. _spatial_resolution:
|
||||
|
||||
##########################################
|
||||
Spatial resolution
|
||||
##########################################
|
||||
|
||||
The default nodal resolution of the model follows the electricity
|
||||
generation and transmission model `PyPSA-Eur
|
||||
<https://github.com/PyPSA/pypsa-eur>`_, which clusters down the
|
||||
electricity transmission substations in each European country based on
|
||||
the k-means algorithm. This gives nodes which correspond to major load
|
||||
and generation centres (typically cities).
|
||||
|
||||
The total number of nodes for Europe is set in the ``config.yaml`` file
|
||||
under ``clusters``. The number of nodes can vary between 37, the number
|
||||
of independent countries / synchronous areas, and several
|
||||
hundred. With 200-300 nodes the model needs 100-150 GB RAM to solve
|
||||
with a commerical solver like Gurobi.
|
||||
|
||||
|
||||
Not all of the sectors are at the full nodal resolution, and some
|
||||
demand for some sectors is distributed to nodes using heuristics that
|
||||
need to be corrected. Some networks are copper-plated to reduce
|
||||
computational times.
|
||||
|
||||
For example:
|
||||
|
||||
Electricity network: nodal.
|
||||
|
||||
Electricity residential and commercial demand: nodal, distributed in
|
||||
each country based on population and GDP.
|
||||
|
||||
Electricity demand in industry: based on the location of industrial
|
||||
facilities from `HotMaps database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.
|
||||
|
||||
Building heating demand: nodal, distributed in each country based on
|
||||
population.
|
||||
|
||||
Industry demand: nodal, distributed in each country based on
|
||||
locations of industry from `HotMaps database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.
|
||||
|
||||
Hydrogen network: nodal.
|
||||
|
||||
Methane network: single node for Europe, since future demand is so
|
||||
low and no bottlenecks are expected.
|
||||
|
||||
Solid biomass: single node for Europe, until transport costs can be
|
||||
incorporated.
|
||||
|
||||
CO2: single node for Europe, but a transport and storage cost is added for
|
||||
sequestered CO2.
|
||||
|
||||
Liquid hydrocarbons: single node for Europe, since transport costs for
|
||||
liquids are low.
|
230
doc/supply_demand.rst
Normal file
230
doc/supply_demand.rst
Normal file
@ -0,0 +1,230 @@
|
||||
.. _supply_demand:
|
||||
|
||||
##########################################
|
||||
Supply and demand
|
||||
##########################################
|
||||
|
||||
An initial orientation to the supply and demand options in the model
|
||||
PyPSA-Eur-Sec can be found in the description of the model
|
||||
PyPSA-Eur-Sec-30 in the paper `Synergies of sector coupling and
|
||||
transmission reinforcement in a cost-optimised, highly renewable
|
||||
European energy system <https://arxiv.org/abs/1801.05290>`_ (2018).
|
||||
The latest version of PyPSA-Eur-Sec differs by including biomass,
|
||||
industry, industrial feedstocks, aviation, shipping, better carbon
|
||||
management, carbon capture and usage/sequestration, and gas networks.
|
||||
|
||||
The basic supply (left column) and demand (right column) options in the model are described in this figure:
|
||||
|
||||
.. image:: ../graphics/multisector_figure.png
|
||||
|
||||
|
||||
|
||||
Electricity supply and demand
|
||||
=============================
|
||||
|
||||
Electricity supply and demand follows the electricity generation and
|
||||
transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`_,
|
||||
except that hydrogen storage is integrated into the hydrogen supply,
|
||||
demand and network, and PyPSA-Eur-Sec includes CHPs.
|
||||
|
||||
Unlike PyPSA-Eur, PyPSA-Eur-Sec does not distribution electricity demand for industry according to population and GDP, but uses the
|
||||
geographical data from the `Hotmaps Industrial Database
|
||||
<https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.
|
||||
|
||||
Also unlike PyPSA-Eur, PyPSA-Eur-Sec subtracts existing electrified heating from the existing electricity demand, so that power-to-heat can be optimised separately.
|
||||
|
||||
The remaining electricity demand for households and services is distributed inside each country proportional to GDP and population.
|
||||
|
||||
|
||||
Heat demand
|
||||
=============================
|
||||
|
||||
Heat demand is split into:
|
||||
|
||||
* ``urban central``: large-scale district heating networks in urban areas with dense heat demand
|
||||
* ``residential/services urban decentral``: heating for individual buildings in urban areas
|
||||
* ``residential/services rural``: heating for individual buildings in rural areas
|
||||
|
||||
|
||||
Heat supply
|
||||
=======================
|
||||
|
||||
Oil and gas boilers
|
||||
--------------------
|
||||
|
||||
Heat pumps
|
||||
-------------
|
||||
|
||||
Either air-to-water or ground-to-water heat pumps are implemented.
|
||||
|
||||
They have coefficient of performance (COP) based on either the
|
||||
external air or the soil hourly temperature.
|
||||
|
||||
Ground-source heat pumps are only allowed in rural areas because of
|
||||
space constraints.
|
||||
|
||||
Only air-source heat pumps are allowed in urban areas. This is a
|
||||
conservative assumption, since there are many possible sources of
|
||||
low-temperature heat that could be tapped in cities (waste water,
|
||||
rivers, lakes, seas, etc.).
|
||||
|
||||
Resistive heaters
|
||||
--------------------
|
||||
|
||||
|
||||
Large Combined Heat and Power (CHP) plants
|
||||
--------------------------------------------
|
||||
|
||||
A good summary of CHP options that can be implemented in PyPSA can be found in the paper `Cost sensitivity of optimal sector-coupled district heating production systems <https://doi.org/10.1016/j.energy.2018.10.044>`_.
|
||||
|
||||
PyPSA-Eur-Sec includes CHP plants fuelled by methane, hydrogen and solid biomass from waste and residues.
|
||||
|
||||
Hydrogen CHPs are fuel cells.
|
||||
|
||||
Methane and biomass CHPs are based on back pressure plants operating with a fixed ratio of electricity to heat output. The methane CHP is modelled on the Danish Energy Agency (DEA) "Gas turbine simple cycle (large)" while the solid biomass CHP is based on the DEA's "09b Wood Pellets Medium".
|
||||
|
||||
The efficiencies of each are given on the back pressure line, where the back pressure coefficient ``c_b`` is the electricity output divided by the heat output. The plants are not allowed to deviate from the back pressure line and are implement as ``Link`` objects with a fixed ratio of heat to electricity output.
|
||||
|
||||
|
||||
NB: The old PyPSA-Eur-Sec-30 model assumed an extraction plant (like the DEA coal CHP) for gas which has flexible production of heat and electricity within the feasibility diagram of Figure 4 in the `Synergies paper <https://arxiv.org/abs/1801.05290>`_. We have switched to the DEA back pressure plants since these are more common for smaller plants for biomass, and because the extraction plants were on the back pressure line for 99.5% of the time anyway. The plants were all changed to back pressure in PyPSA-Eur-Sec v0.4.0.
|
||||
|
||||
|
||||
Micro-CHP for individual buildings
|
||||
-----------------------------------
|
||||
|
||||
Optional.
|
||||
|
||||
Waste heat from Fuel Cells, Methanation and Fischer-Tropsch plants
|
||||
-------------------------------------------------------------------
|
||||
|
||||
|
||||
Solar thermal collectors
|
||||
-------------------------
|
||||
|
||||
Thermal energy storage using hot water tanks
|
||||
---------------------------------------------
|
||||
|
||||
Small for decentral applications.
|
||||
|
||||
Big water pit storage for district heating.
|
||||
|
||||
.. _retro:
|
||||
|
||||
Retrofitting of the thermal envelope of buildings
|
||||
===================================================
|
||||
Co-optimising building renovation is only enabled if in the ``config.yaml`` the
|
||||
option :mod:`retro_endogen: True`. To reduce the computational burden
|
||||
default setting is
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
:lines: 134-135
|
||||
|
||||
Renovation of the thermal envelope reduces the space heating demand and is
|
||||
optimised at each node for every heat bus. Renovation measures through additional
|
||||
insulation material and replacement of energy inefficient windows are considered.
|
||||
|
||||
In a first step, costs per energy savings are estimated in :mod:`build_retro_cost.py`.
|
||||
They depend on the insulation condition of the building stock and costs for
|
||||
renovation of the building elements.
|
||||
In a second step, for those cost per energy savings two possible renovation
|
||||
strengths are determined: a moderate renovation with lower costs and lower
|
||||
maximum possible space heat savings, and an ambitious renovation with associated
|
||||
higher costs and higher efficiency gains. They are added by step-wise
|
||||
linearisation in form of two additional generations in
|
||||
:mod:`prepare_sector_network.py`.
|
||||
|
||||
Settings in the config.yaml concerning the endogenously optimisation of building
|
||||
renovation
|
||||
|
||||
.. literalinclude:: ../config.default.yaml
|
||||
:language: yaml
|
||||
:lines: 136-140
|
||||
|
||||
Further information are given in the publication
|
||||
|
||||
`Mitigating heat demand peaks in buildings in a highly renewable European energy system, (2021) <https://arxiv.org/abs/2012.01831>`_.
|
||||
|
||||
|
||||
Hydrogen demand
|
||||
==================
|
||||
|
||||
Stationary fuel cell CHP.
|
||||
|
||||
Transport applications.
|
||||
|
||||
Industry (ammonia, precursor to hydrocarbons for chemicals and iron/steel).
|
||||
|
||||
|
||||
Hydrogen supply
|
||||
=================
|
||||
|
||||
Steam Methane Reforming (SMR), SMR+CCS, electrolysers.
|
||||
|
||||
|
||||
Methane demand
|
||||
==================
|
||||
|
||||
Can be used in boilers, in CHPs, in industry for high temperature heat, in OCGT.
|
||||
|
||||
Not used in transport because of engine slippage.
|
||||
|
||||
Methane supply
|
||||
=================
|
||||
|
||||
Fossil, biogas, Sabatier (hydrogen to methane), HELMETH (directly power to methane with efficient heat integration).
|
||||
|
||||
|
||||
Solid biomass demand
|
||||
=====================
|
||||
|
||||
Solid biomass provides process heat up to 500 Celsius in industry, as well as feeding CHP plants in district heating networks.
|
||||
|
||||
Solid biomass supply
|
||||
=====================
|
||||
|
||||
Only wastes and residues from the JRC biomass dataset.
|
||||
|
||||
|
||||
Oil product demand
|
||||
=====================
|
||||
|
||||
Transport fuels and naphtha as a feedstock for the chemicals industry.
|
||||
|
||||
Oil product supply
|
||||
======================
|
||||
|
||||
Fossil or Fischer-Tropsch.
|
||||
|
||||
|
||||
Industry demand
|
||||
================
|
||||
|
||||
Based on materials demand from JRC-IDEES and other sources such as the USGS for ammonia.
|
||||
|
||||
Industry is split into many sectors, including iron and steel, ammonia, other basic chemicals, cement, non-metalic minerals, alumuninium, other non-ferrous metals, pulp, paper and printing, food, beverages and tobacco, and other more minor sectors.
|
||||
|
||||
Inside each country the industrial demand is distributed using the `Hotmaps Industrial Database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`_.
|
||||
|
||||
|
||||
Industry supply
|
||||
================
|
||||
|
||||
Process switching (e.g. from blast furnaces to direct reduction and electric arc furnaces for steel) is defined exogenously.
|
||||
|
||||
Fuel switching for process heat is mostly also done exogenously.
|
||||
|
||||
Solid biomass is used for up to 500 Celsius, mostly in paper and pulp and food and beverages.
|
||||
|
||||
Higher temperatures are met with methane.
|
||||
|
||||
|
||||
Carbon dioxide capture, usage and sequestration (CCU/S)
|
||||
=========================================================
|
||||
|
||||
Carbon dioxide can be captured from industry process emissions,
|
||||
emissions related to industry process heat, combined heat and power
|
||||
plants, and directly from the air (DAC).
|
||||
|
||||
Carbon dioxide can be used as an input for methanation and
|
||||
Fischer-Tropsch fuels, or it can be sequestered underground.
|
4
matplotlibrc
Normal file
4
matplotlibrc
Normal file
@ -0,0 +1,4 @@
|
||||
backend: Agg
|
||||
font.family: sans-serif
|
||||
font.sans-serif: Ubuntu, DejaVu Sans
|
||||
image.cmap: viridis
|
@ -2,43 +2,16 @@
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
idx = pd.IndexSlice
|
||||
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import xarray as xr
|
||||
import re, os
|
||||
|
||||
from six import iteritems, string_types
|
||||
|
||||
import pypsa
|
||||
|
||||
import yaml
|
||||
|
||||
import pytz
|
||||
|
||||
from add_existing_baseyear import add_build_year_to_new_assets
|
||||
from helper import override_component_attrs
|
||||
|
||||
#First tell PyPSA that links can have multiple outputs by
|
||||
#overriding the component_attrs. This can be done for
|
||||
#as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
|
||||
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
|
||||
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
|
||||
|
||||
override_component_attrs["Link"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Generator"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
|
||||
def add_brownfield(n, n_p, year):
|
||||
|
||||
@ -48,72 +21,85 @@ def add_brownfield(n, n_p, year):
|
||||
|
||||
attr = "e" if c.name == "Store" else "p"
|
||||
|
||||
#first, remove generators, links and stores that track CO2 or global EU values
|
||||
#since these are already in n
|
||||
n_p.mremove(c.name,
|
||||
c.df.index[c.df.lifetime.isna()])
|
||||
# first, remove generators, links and stores that track
|
||||
# CO2 or global EU values since these are already in n
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
c.df.index[c.df.lifetime.isna()]
|
||||
)
|
||||
|
||||
#remove assets whose build_year + lifetime < year
|
||||
n_p.mremove(c.name,
|
||||
c.df.index[c.df.build_year + c.df.lifetime < year])
|
||||
# remove assets whose build_year + lifetime < year
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
c.df.index[c.df.build_year + c.df.lifetime < year]
|
||||
)
|
||||
|
||||
#remove assets if their optimized nominal capacity is lower than a threshold
|
||||
#since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible
|
||||
chp_heat = c.df.index[c.df[attr + "_nom_extendable"] & c.df.index.str.contains("urban central") & c.df.index.str.contains("CHP") & c.df.index.str.contains("heat")]
|
||||
# remove assets if their optimized nominal capacity is lower than a threshold
|
||||
# since CHP heat Link is proportional to CHP electric Link, make sure threshold is compatible
|
||||
chp_heat = c.df.index[(
|
||||
c.df[attr + "_nom_extendable"]
|
||||
& c.df.index.str.contains("urban central")
|
||||
& c.df.index.str.contains("CHP")
|
||||
& c.df.index.str.contains("heat")
|
||||
)]
|
||||
|
||||
threshold = snakemake.config['existing_capacities']['threshold_capacity']
|
||||
|
||||
if not chp_heat.empty:
|
||||
n_p.mremove(c.name,
|
||||
chp_heat[c.df.loc[chp_heat, attr + "_nom_opt"] < snakemake.config['existing_capacities']['threshold_capacity']*c.df.efficiency[chp_heat.str.replace("heat","electric")].values*c.df.p_nom_ratio[chp_heat.str.replace("heat","electric")].values/c.df.efficiency[chp_heat].values])
|
||||
n_p.mremove(c.name,
|
||||
c.df.index[c.df[attr + "_nom_extendable"] & ~c.df.index.isin(chp_heat) & (c.df[attr + "_nom_opt"] < snakemake.config['existing_capacities']['threshold_capacity'])])
|
||||
threshold_chp_heat = (threshold
|
||||
* c.df.efficiency[chp_heat.str.replace("heat", "electric")].values
|
||||
* c.df.p_nom_ratio[chp_heat.str.replace("heat", "electric")].values
|
||||
/ c.df.efficiency[chp_heat].values
|
||||
)
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
chp_heat[c.df.loc[chp_heat, attr + "_nom_opt"] < threshold_chp_heat]
|
||||
)
|
||||
|
||||
n_p.mremove(
|
||||
c.name,
|
||||
c.df.index[c.df[attr + "_nom_extendable"] & ~c.df.index.isin(chp_heat) & (c.df[attr + "_nom_opt"] < threshold)]
|
||||
)
|
||||
|
||||
#copy over assets but fix their capacity
|
||||
# copy over assets but fix their capacity
|
||||
c.df[attr + "_nom"] = c.df[attr + "_nom_opt"]
|
||||
c.df[attr + "_nom_extendable"] = False
|
||||
|
||||
n.import_components_from_dataframe(c.df,
|
||||
c.name)
|
||||
n.import_components_from_dataframe(c.df, c.name)
|
||||
|
||||
#copy time-dependent
|
||||
for tattr in n.component_attrs[c.name].index[(n.component_attrs[c.name].type.str.contains("series") &
|
||||
n.component_attrs[c.name].status.str.contains("Input"))]:
|
||||
n.import_series_from_dataframe(c.pnl[tattr],
|
||||
c.name,
|
||||
tattr)
|
||||
# copy time-dependent
|
||||
selection = (
|
||||
n.component_attrs[c.name].type.str.contains("series")
|
||||
& n.component_attrs[c.name].status.str.contains("Input")
|
||||
)
|
||||
for tattr in n.component_attrs[c.name].index[selection]:
|
||||
n.import_series_from_dataframe(c.pnl[tattr], c.name, tattr)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake
|
||||
snakemake = MockSnakemake(
|
||||
wildcards=dict(network='elec', simpl='', clusters='37', lv='1.0',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
co2_budget_name='go',
|
||||
planning_horizons='2030'),
|
||||
input=dict(network='pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc',
|
||||
network_p='pypsa-eur-sec/results/test/postnetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_2020.nc',
|
||||
costs='pypsa-eur-sec/data/costs/costs_{planning_horizons}.csv',
|
||||
cop_air_total="pypsa-eur-sec/resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_total="pypsa-eur-sec/resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc"),
|
||||
output=['pypsa-eur-sec/results/test/prenetworks_brownfield/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{planning_horizons}.nc']
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'add_brownfield',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2030,
|
||||
)
|
||||
import yaml
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
|
||||
print(snakemake.input.network_p)
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
year=int(snakemake.wildcards.planning_horizons)
|
||||
year = int(snakemake.wildcards.planning_horizons)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network,
|
||||
override_component_attrs=override_component_attrs)
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
add_build_year_to_new_assets(n, year)
|
||||
|
||||
n_p = pypsa.Network(snakemake.input.network_p,
|
||||
override_component_attrs=override_component_attrs)
|
||||
#%%
|
||||
n_p = pypsa.Network(snakemake.input.network_p, override_component_attrs=overrides)
|
||||
|
||||
add_brownfield(n, n_p, year)
|
||||
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -2,261 +2,244 @@
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
idx = pd.IndexSlice
|
||||
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import xarray as xr
|
||||
import re, os
|
||||
|
||||
from six import iteritems, string_types
|
||||
|
||||
import pypsa
|
||||
|
||||
import yaml
|
||||
|
||||
import pytz
|
||||
|
||||
from vresutils.costdata import annuity
|
||||
|
||||
from prepare_sector_network import prepare_costs
|
||||
|
||||
#First tell PyPSA that links can have multiple outputs by
|
||||
#overriding the component_attrs. This can be done for
|
||||
#as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
|
||||
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
|
||||
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
|
||||
|
||||
override_component_attrs["Link"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Generator"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
|
||||
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"build year","Input (optional)"]
|
||||
from helper import override_component_attrs
|
||||
|
||||
|
||||
def add_build_year_to_new_assets(n, baseyear):
|
||||
|
||||
"""
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : network
|
||||
|
||||
baseyear: year in which optimized assets are built
|
||||
n : pypsa.Network
|
||||
baseyear : int
|
||||
year in which optimized assets are built
|
||||
"""
|
||||
|
||||
#Give assets with lifetimes and no build year the build year baseyear
|
||||
# Give assets with lifetimes and no build year the build year baseyear
|
||||
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
||||
|
||||
assets = c.df.index[~c.df.lifetime.isna() & c.df.build_year.isna()]
|
||||
c.df.loc[assets, "build_year"] = baseyear
|
||||
|
||||
#add -baseyear to name
|
||||
# add -baseyear to name
|
||||
rename = pd.Series(c.df.index, c.df.index)
|
||||
rename[assets] += "-" + str(baseyear)
|
||||
c.df.rename(index=rename, inplace=True)
|
||||
|
||||
#rename time-dependent
|
||||
for attr in n.component_attrs[c.name].index[(n.component_attrs[c.name].type.str.contains("series") &
|
||||
n.component_attrs[c.name].status.str.contains("Input"))]:
|
||||
# rename time-dependent
|
||||
selection = (
|
||||
n.component_attrs[c.name].type.str.contains("series")
|
||||
& n.component_attrs[c.name].status.str.contains("Input")
|
||||
)
|
||||
for attr in n.component_attrs[c.name].index[selection]:
|
||||
c.pnl[attr].rename(columns=rename, inplace=True)
|
||||
|
||||
|
||||
def add_existing_renewables(df_agg):
|
||||
"""
|
||||
Append existing renewables to the df_agg pd.DataFrame
|
||||
with the conventional power plants.
|
||||
"""
|
||||
|
||||
cc = pd.read_csv('data/Country_codes.csv',
|
||||
index_col=0)
|
||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||
|
||||
carriers = {"solar" : "solar",
|
||||
"onwind" : "onwind",
|
||||
"offwind" : "offwind-ac"}
|
||||
carriers = {
|
||||
"solar": "solar",
|
||||
"onwind": "onwind",
|
||||
"offwind": "offwind-ac"
|
||||
}
|
||||
|
||||
for tech in ['solar', 'onwind', 'offwind']:
|
||||
|
||||
carrier = carriers[tech]
|
||||
df = pd.read_csv('data/existing_infrastructure/{}_capacity_IRENA.csv'.format(tech),
|
||||
index_col=0)
|
||||
df = df.fillna(0.)
|
||||
|
||||
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.)
|
||||
df.columns = df.columns.astype(int)
|
||||
|
||||
df.rename(index={'Czechia':'Czech Republic',
|
||||
'UK':'United Kingdom',
|
||||
'Bosnia Herzg':'Bosnia Herzegovina',
|
||||
'North Macedonia': 'Macedonia'}, inplace=True)
|
||||
rename_countries = {
|
||||
'Czechia': 'Czech Republic',
|
||||
'UK': 'United Kingdom',
|
||||
'Bosnia Herzg': 'Bosnia Herzegovina',
|
||||
'North Macedonia': 'Macedonia'
|
||||
}
|
||||
|
||||
df.rename(index=rename_countries, inplace=True)
|
||||
|
||||
df.rename(index=cc["2 letter code (ISO-3166-2)"], inplace=True)
|
||||
|
||||
# calculate yearly differences
|
||||
df.insert(loc=0, value=.0, column='1999')
|
||||
df = df.diff(axis=1).drop('1999', axis=1)
|
||||
df = df.clip(lower=0)
|
||||
df = df.diff(axis=1).drop('1999', axis=1).clip(lower=0)
|
||||
|
||||
|
||||
#distribute capacities among nodes according to capacity factor
|
||||
#weighting with nodal_fraction
|
||||
# distribute capacities among nodes according to capacity factor
|
||||
# weighting with nodal_fraction
|
||||
elec_buses = n.buses.index[n.buses.carrier == "AC"].union(n.buses.index[n.buses.carrier == "DC"])
|
||||
nodal_fraction = pd.Series(0.,elec_buses)
|
||||
nodal_fraction = pd.Series(0., elec_buses)
|
||||
|
||||
for country in n.buses.loc[elec_buses,"country"].unique():
|
||||
for country in n.buses.loc[elec_buses, "country"].unique():
|
||||
gens = n.generators.index[(n.generators.index.str[:2] == country) & (n.generators.carrier == carrier)]
|
||||
cfs = n.generators_t.p_max_pu[gens].mean()
|
||||
cfs_key = cfs/cfs.sum()
|
||||
nodal_fraction.loc[n.generators.loc[gens,"bus"]] = cfs_key.values
|
||||
cfs_key = cfs / cfs.sum()
|
||||
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.values
|
||||
|
||||
nodal_df = df.loc[n.buses.loc[elec_buses,"country"]]
|
||||
nodal_df = df.loc[n.buses.loc[elec_buses, "country"]]
|
||||
nodal_df.index = elec_buses
|
||||
nodal_df = nodal_df.multiply(nodal_fraction,axis=0)
|
||||
nodal_df = nodal_df.multiply(nodal_fraction, axis=0)
|
||||
|
||||
for year in nodal_df.columns:
|
||||
for node in nodal_df.index:
|
||||
name = f"{node}-{tech}-{year}"
|
||||
capacity = nodal_df.loc[node,year]
|
||||
capacity = nodal_df.loc[node, year]
|
||||
if capacity > 0.:
|
||||
df_agg.at[name,"Fueltype"] = tech
|
||||
df_agg.at[name,"Capacity"] = capacity
|
||||
df_agg.at[name,"YearCommissioned"] = year
|
||||
df_agg.at[name,"cluster_bus"] = node
|
||||
df_agg.at[name, "Fueltype"] = tech
|
||||
df_agg.at[name, "Capacity"] = capacity
|
||||
df_agg.at[name, "DateIn"] = year
|
||||
df_agg.at[name, "cluster_bus"] = node
|
||||
|
||||
|
||||
def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear):
|
||||
"""
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : network
|
||||
|
||||
grouping_years : intervals to group existing capacities
|
||||
|
||||
costs : to read lifetime to estimate YearDecomissioning
|
||||
|
||||
|
||||
n : pypsa.Network
|
||||
grouping_years :
|
||||
intervals to group existing capacities
|
||||
costs :
|
||||
to read lifetime to estimate YearDecomissioning
|
||||
baseyear : int
|
||||
"""
|
||||
print("adding power capacities installed before baseyear")
|
||||
print("adding power capacities installed before baseyear from powerplants.csv")
|
||||
|
||||
|
||||
### add conventional capacities using 'powerplants.csv'
|
||||
df_agg = pd.read_csv(snakemake.input.powerplants, index_col=0)
|
||||
|
||||
rename_fuel = {'Hard Coal':'coal',
|
||||
'Lignite':'lignite',
|
||||
'Nuclear':'nuclear',
|
||||
'Oil':'oil',
|
||||
'OCGT':'OCGT',
|
||||
'CCGT':'CCGT',
|
||||
'Natural Gas':'gas',}
|
||||
fueltype_to_drop = ['Hydro',
|
||||
'Wind',
|
||||
'Solar',
|
||||
'Geothermal',
|
||||
'Bioenergy',
|
||||
'Waste',
|
||||
'Other',
|
||||
'CCGT, Thermal']
|
||||
technology_to_drop = ['Pv',
|
||||
'Storage Technologies']
|
||||
rename_fuel = {
|
||||
'Hard Coal': 'coal',
|
||||
'Lignite': 'lignite',
|
||||
'Nuclear': 'nuclear',
|
||||
'Oil': 'oil',
|
||||
'OCGT': 'OCGT',
|
||||
'CCGT': 'CCGT',
|
||||
'Natural Gas': 'gas'
|
||||
}
|
||||
|
||||
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)],inplace=True)
|
||||
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)],inplace=True)
|
||||
fueltype_to_drop = [
|
||||
'Hydro',
|
||||
'Wind',
|
||||
'Solar',
|
||||
'Geothermal',
|
||||
'Bioenergy',
|
||||
'Waste',
|
||||
'Other',
|
||||
'CCGT, Thermal'
|
||||
]
|
||||
|
||||
technology_to_drop = [
|
||||
'Pv',
|
||||
'Storage Technologies'
|
||||
]
|
||||
|
||||
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
|
||||
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
|
||||
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
|
||||
|
||||
#assign clustered bus
|
||||
busmap_s = pd.read_hdf(snakemake.input.clustermaps,
|
||||
key="/busmap_s")
|
||||
busmap = pd.read_hdf(snakemake.input.clustermaps,
|
||||
key="/busmap")
|
||||
# assign clustered bus
|
||||
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0, squeeze=True)
|
||||
busmap = pd.read_csv(snakemake.input.busmap, index_col=0, squeeze=True)
|
||||
clustermaps = busmap_s.map(busmap)
|
||||
clustermaps.index = clustermaps.index.astype(int)
|
||||
|
||||
df_agg["cluster_bus"] = df_agg.bus.map(clustermaps)
|
||||
|
||||
|
||||
#include renewables in df_agg
|
||||
# include renewables in df_agg
|
||||
add_existing_renewables(df_agg)
|
||||
|
||||
df_agg["grouping_year"] = np.take(grouping_years,
|
||||
np.digitize(df_agg.YearCommissioned,
|
||||
grouping_years,
|
||||
right=True))
|
||||
df_agg["grouping_year"] = np.take(
|
||||
grouping_years,
|
||||
np.digitize(df_agg.DateIn, grouping_years, right=True)
|
||||
)
|
||||
|
||||
df = df_agg.pivot_table(index=["grouping_year",'Fueltype'], columns='cluster_bus',
|
||||
values='Capacity', aggfunc='sum')
|
||||
df = df_agg.pivot_table(
|
||||
index=["grouping_year", 'Fueltype'],
|
||||
columns='cluster_bus',
|
||||
values='Capacity',
|
||||
aggfunc='sum'
|
||||
)
|
||||
|
||||
carrier = {"OCGT" : "gas",
|
||||
"CCGT" : "gas",
|
||||
"coal" : "coal",
|
||||
"oil" : "oil",
|
||||
"lignite" : "lignite",
|
||||
"nuclear" : "uranium"}
|
||||
carrier = {
|
||||
"OCGT": "gas",
|
||||
"CCGT": "gas",
|
||||
"coal": "coal",
|
||||
"oil": "oil",
|
||||
"lignite": "lignite",
|
||||
"nuclear": "uranium"
|
||||
}
|
||||
|
||||
for grouping_year, generator in df.index:
|
||||
#capacity is the capacity in MW at each node for this
|
||||
|
||||
# capacity is the capacity in MW at each node for this
|
||||
capacity = df.loc[grouping_year, generator]
|
||||
capacity = capacity[~capacity.isna()]
|
||||
capacity = capacity[capacity > snakemake.config['existing_capacities']['threshold_capacity']]
|
||||
|
||||
if generator in ['solar', 'onwind', 'offwind']:
|
||||
if generator =='offwind':
|
||||
p_max_pu=n.generators_t.p_max_pu[capacity.index + ' offwind-ac' + '-' + str(baseyear)]
|
||||
else:
|
||||
p_max_pu=n.generators_t.p_max_pu[capacity.index + ' ' + generator + '-' + str(baseyear)]
|
||||
|
||||
rename = {"offwind": "offwind-ac"}
|
||||
p_max_pu=n.generators_t.p_max_pu[capacity.index + ' ' + rename.get(generator, generator) + '-' + str(baseyear)]
|
||||
|
||||
n.madd("Generator",
|
||||
capacity.index,
|
||||
suffix=' ' + generator +"-"+ str(grouping_year),
|
||||
bus=capacity.index,
|
||||
carrier=generator,
|
||||
p_nom=capacity,
|
||||
marginal_cost=costs.at[generator,'VOM'],
|
||||
capital_cost=costs.at[generator,'fixed'],
|
||||
efficiency=costs.at[generator, 'efficiency'],
|
||||
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator,'lifetime'])
|
||||
capacity.index,
|
||||
suffix=' ' + generator +"-"+ str(grouping_year),
|
||||
bus=capacity.index,
|
||||
carrier=generator,
|
||||
p_nom=capacity,
|
||||
marginal_cost=costs.at[generator, 'VOM'],
|
||||
capital_cost=costs.at[generator, 'fixed'],
|
||||
efficiency=costs.at[generator, 'efficiency'],
|
||||
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator, 'lifetime']
|
||||
)
|
||||
|
||||
else:
|
||||
|
||||
n.madd("Link",
|
||||
capacity.index,
|
||||
suffix= " " + generator +"-" + str(grouping_year),
|
||||
bus0="EU " + carrier[generator],
|
||||
bus1=capacity.index,
|
||||
bus2="co2 atmosphere",
|
||||
carrier=generator,
|
||||
marginal_cost=costs.at[generator,'efficiency']*costs.at[generator,'VOM'], #NB: VOM is per MWel
|
||||
capital_cost=costs.at[generator,'efficiency']*costs.at[generator,'fixed'], #NB: fixed cost is per MWel
|
||||
p_nom=capacity/costs.at[generator,'efficiency'],
|
||||
efficiency=costs.at[generator,'efficiency'],
|
||||
efficiency2=costs.at[carrier[generator],'CO2 intensity'],
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator,'lifetime'])
|
||||
capacity.index,
|
||||
suffix= " " + generator +"-" + str(grouping_year),
|
||||
bus0="EU " + carrier[generator],
|
||||
bus1=capacity.index,
|
||||
bus2="co2 atmosphere",
|
||||
carrier=generator,
|
||||
marginal_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'VOM'], #NB: VOM is per MWel
|
||||
capital_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'fixed'], #NB: fixed cost is per MWel
|
||||
p_nom=capacity / costs.at[generator, 'efficiency'],
|
||||
efficiency=costs.at[generator, 'efficiency'],
|
||||
efficiency2=costs.at[carrier[generator], 'CO2 intensity'],
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator, 'lifetime']
|
||||
)
|
||||
|
||||
|
||||
def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years, ashp_cop, gshp_cop, time_dep_hp_cop, costs, default_lifetime):
|
||||
|
||||
"""
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : network
|
||||
|
||||
baseyear: last year covered in the existing capacities database
|
||||
|
||||
n : pypsa.Network
|
||||
baseyear : last year covered in the existing capacities database
|
||||
grouping_years : intervals to group existing capacities
|
||||
|
||||
linear decomissioning of heating capacities from 2020 to 2045 is
|
||||
currently assumed
|
||||
|
||||
heating capacities split between residential and services proportional
|
||||
to heating load in both
|
||||
50% capacities in rural busess 50% in urban buses
|
||||
linear decommissioning of heating capacities from 2020 to 2045 is
|
||||
currently assumed heating capacities split between residential and
|
||||
services proportional to heating load in both 50% capacities
|
||||
in rural busess 50% in urban buses
|
||||
"""
|
||||
print("adding heating capacities installed before baseyear")
|
||||
|
||||
@ -265,43 +248,42 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
||||
# heating/cooling fuel deployment (fossil/renewables) "
|
||||
# https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1
|
||||
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
||||
# TODO start from original file
|
||||
|
||||
# retrieve existing heating capacities
|
||||
techs = ['gas boiler',
|
||||
'oil boiler',
|
||||
'resistive heater',
|
||||
'air heat pump',
|
||||
'ground heat pump']
|
||||
df = pd.read_csv('data/existing_infrastructure/existing_heating_raw.csv',
|
||||
index_col=0,
|
||||
header=0)
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
df.loc['Albania']=np.nan
|
||||
df.loc['Montenegro']=np.nan
|
||||
df.loc['Macedonia']=np.nan
|
||||
df.fillna(0, inplace=True)
|
||||
df *= 1e3 # GW to MW
|
||||
techs = [
|
||||
'gas boiler',
|
||||
'oil boiler',
|
||||
'resistive heater',
|
||||
'air heat pump',
|
||||
'ground heat pump'
|
||||
]
|
||||
df = pd.read_csv(snakemake.input.existing_heating, index_col=0, header=0)
|
||||
|
||||
cc = pd.read_csv('data/Country_codes.csv',
|
||||
index_col=0)
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
df.loc['Albania'] = np.nan
|
||||
df.loc['Montenegro'] = np.nan
|
||||
df.loc['Macedonia'] = np.nan
|
||||
|
||||
df.fillna(0., inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
df *= 1e3
|
||||
|
||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||
|
||||
df.rename(index=cc["2 letter code (ISO-3166-2)"], inplace=True)
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
df['oil boiler'] =df['oil boiler'] + df['coal boiler']
|
||||
df['oil boiler'] = df['oil boiler'] + df['coal boiler']
|
||||
df.drop(['coal boiler'], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,
|
||||
index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
||||
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total.get)
|
||||
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_df = df.loc[pop_layout.ct]
|
||||
nodal_df.index = pop_layout.index
|
||||
nodal_df = nodal_df.multiply(pop_layout.fraction,axis=0)
|
||||
nodal_df = nodal_df.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
@ -311,121 +293,126 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
||||
for node in nodal_df.index], index=nodal_df.index)
|
||||
|
||||
for tech in techs:
|
||||
nodal_df['residential ' + tech] = nodal_df[tech]*ratio_residential
|
||||
nodal_df['services ' + tech] = nodal_df[tech]*(1-ratio_residential)
|
||||
nodal_df['residential ' + tech] = nodal_df[tech] * ratio_residential
|
||||
nodal_df['services ' + tech] = nodal_df[tech] * (1 - ratio_residential)
|
||||
|
||||
nodes={}
|
||||
p_nom={}
|
||||
for name in ["residential rural",
|
||||
"services rural",
|
||||
"residential urban decentral",
|
||||
"services urban decentral",
|
||||
"urban central"]:
|
||||
names = [
|
||||
"residential rural",
|
||||
"services rural",
|
||||
"residential urban decentral",
|
||||
"services urban decentral",
|
||||
"urban central"
|
||||
]
|
||||
|
||||
nodes = {}
|
||||
p_nom = {}
|
||||
for name in names:
|
||||
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
nodes[name] = pd.Index([n.buses.at[index,"location"] for index in n.buses.index[n.buses.index.str.contains(name) & n.buses.index.str.contains('heat')]])
|
||||
nodes[name] = pd.Index([n.buses.at[index, "location"] for index in n.buses.index[n.buses.index.str.contains(name) & n.buses.index.str.contains('heat')]])
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
heat_type= "residential" if "residential" in name else "services"
|
||||
|
||||
if name == "urban central":
|
||||
p_nom[name]=nodal_df['air heat pump'][nodes[name]]
|
||||
p_nom[name] = nodal_df['air heat pump'][nodes[name]]
|
||||
else:
|
||||
p_nom[name] = nodal_df['{} {} heat pump'.format(heat_type, heat_pump_type)][nodes[name]]
|
||||
p_nom[name] = nodal_df[f'{heat_type} {heat_pump_type} heat pump'][nodes[name]]
|
||||
|
||||
# Add heat pumps
|
||||
costs_name = "{} {}-sourced heat pump".format("decentral", heat_pump_type)
|
||||
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
|
||||
|
||||
cop = {"air": ashp_cop, "ground": gshp_cop}
|
||||
|
||||
if time_dep_hp_cop:
|
||||
efficiency = cop[heat_pump_type][nodes[name]]
|
||||
else:
|
||||
efficiency = costs.at[costs_name, 'efficiency']
|
||||
|
||||
for i, grouping_year in enumerate(grouping_years):
|
||||
|
||||
cop = {"air" : ashp_cop, "ground" : gshp_cop}
|
||||
efficiency = cop[heat_pump_type][nodes[name]] if time_dep_hp_cop else costs.at[costs_name,'efficiency']
|
||||
for i,grouping_year in enumerate(grouping_years):
|
||||
if int(grouping_year) + default_lifetime <= int(baseyear):
|
||||
ratio=0
|
||||
ratio = 0
|
||||
else:
|
||||
#installation is assumed to be linear for the past 25 years (default lifetime)
|
||||
ratio = (int(grouping_year)-int(grouping_years[i-1]))/default_lifetime
|
||||
# installation is assumed to be linear for the past 25 years (default lifetime)
|
||||
ratio = (int(grouping_year) - int(grouping_years[i-1])) / default_lifetime
|
||||
|
||||
n.madd("Link",
|
||||
nodes[name],
|
||||
suffix=" {} {} heat pump-{}".format(name,heat_pump_type, grouping_year),
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier="{} {} heat pump".format(name,heat_pump_type),
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name,'efficiency']*costs.at[costs_name,'fixed'],
|
||||
p_nom=p_nom[name]*ratio/costs.at[costs_name,'efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name,'lifetime'])
|
||||
nodes[name],
|
||||
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=f"{name} {heat_pump_type} heat pump",
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, 'efficiency'] * costs.at[costs_name, 'fixed'],
|
||||
p_nom=p_nom[name] * ratio / costs.at[costs_name, 'efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, 'lifetime']
|
||||
)
|
||||
|
||||
# add resistive heater, gas boilers and oil boilers
|
||||
# (50% capacities to rural buses, 50% to urban buses)
|
||||
n.madd("Link",
|
||||
nodes[name],
|
||||
suffix= " " + name + " resistive heater-{}".format(grouping_year),
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[name_type + ' resistive heater','efficiency'],
|
||||
capital_cost=costs.at[name_type + ' resistive heater','efficiency']*costs.at[name_type + ' resistive heater','fixed'],
|
||||
p_nom=0.5*nodal_df['{} resistive heater'.format(heat_type)][nodes[name]]*ratio/costs.at[name_type + ' resistive heater','efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name,'lifetime'])
|
||||
nodes[name],
|
||||
suffix=f" {name} resistive heater-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[name_type + ' resistive heater', 'efficiency'],
|
||||
capital_cost=costs.at[name_type + ' resistive heater', 'efficiency'] * costs.at[name_type + ' resistive heater', 'fixed'],
|
||||
p_nom=0.5 * nodal_df[f'{heat_type} resistive heater'][nodes[name]] * ratio / costs.at[name_type + ' resistive heater', 'efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, 'lifetime']
|
||||
)
|
||||
|
||||
n.madd("Link",
|
||||
nodes[name],
|
||||
suffix= " " + name + " gas boiler-{}".format(grouping_year),
|
||||
bus0=["EU gas"]*len(nodes[name]),
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[name_type + ' gas boiler','efficiency'],
|
||||
efficiency2=costs.at['gas','CO2 intensity'],
|
||||
capital_cost=costs.at[name_type + ' gas boiler','efficiency']*costs.at[name_type + ' gas boiler','fixed'],
|
||||
p_nom=0.5*nodal_df['{} gas boiler'.format(heat_type)][nodes[name]]*ratio/costs.at[name_type + ' gas boiler','efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + ' gas boiler','lifetime'])
|
||||
nodes[name],
|
||||
suffix= f" {name} gas boiler-{grouping_year}",
|
||||
bus0="EU gas",
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[name_type + ' gas boiler', 'efficiency'],
|
||||
efficiency2=costs.at['gas', 'CO2 intensity'],
|
||||
capital_cost=costs.at[name_type + ' gas boiler', 'efficiency'] * costs.at[name_type + ' gas boiler', 'fixed'],
|
||||
p_nom=0.5*nodal_df[f'{heat_type} gas boiler'][nodes[name]] * ratio / costs.at[name_type + ' gas boiler', 'efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + ' gas boiler', 'lifetime']
|
||||
)
|
||||
|
||||
n.madd("Link",
|
||||
nodes[name],
|
||||
suffix=" " + name + " oil boiler-{}".format(grouping_year),
|
||||
bus0=["EU oil"]*len(nodes[name]),
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " oil boiler",
|
||||
efficiency=costs.at['decentral oil boiler','efficiency'],
|
||||
efficiency2=costs.at['oil','CO2 intensity'],
|
||||
capital_cost=costs.at['decentral oil boiler','efficiency']*costs.at['decentral oil boiler','fixed'],
|
||||
p_nom=0.5*nodal_df['{} oil boiler'.format(heat_type)][nodes[name]]*ratio/costs.at['decentral oil boiler','efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + ' gas boiler','lifetime'])
|
||||
nodes[name],
|
||||
suffix=f" {name} oil boiler-{grouping_year}",
|
||||
bus0="EU oil",
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " oil boiler",
|
||||
efficiency=costs.at['decentral oil boiler', 'efficiency'],
|
||||
efficiency2=costs.at['oil', 'CO2 intensity'],
|
||||
capital_cost=costs.at['decentral oil boiler', 'efficiency'] * costs.at['decentral oil boiler', 'fixed'],
|
||||
p_nom=0.5 * nodal_df[f'{heat_type} oil boiler'][nodes[name]] * ratio / costs.at['decentral oil boiler', 'efficiency'],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + ' gas boiler', 'lifetime']
|
||||
)
|
||||
|
||||
# delete links with p_nom=nan corresponding to extra nodes in country
|
||||
n.mremove("Link", [index for index in n.links.index.to_list() if str(grouping_year) in index and np.isnan(n.links.p_nom[index])])
|
||||
|
||||
# delete links if their lifetime is over and p_nom=0
|
||||
n.mremove("Link", [index for index in n.links.index.to_list() if str(grouping_year) in index and n.links.p_nom[index]<snakemake.config['existing_capacities']['threshold_capacity']])
|
||||
threshold = snakemake.config['existing_capacities']['threshold_capacity']
|
||||
n.mremove("Link", [index for index in n.links.index.to_list() if str(grouping_year) in index and n.links.p_nom[index] < threshold])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake
|
||||
snakemake = MockSnakemake(
|
||||
wildcards=dict(network='elec', simpl='', clusters='39', lv='1.0',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
co2_budget_name='b30b3',
|
||||
planning_horizons='2020'),
|
||||
input=dict(network='pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc',
|
||||
powerplants='pypsa-eur/resources/powerplants.csv',
|
||||
clustermaps='pypsa-eur/resources/clustermaps_{network}_s{simpl}_{clusters}.h5',
|
||||
costs='pypsa-eur-sec/data/costs/costs_{planning_horizons}.csv',
|
||||
cop_air_total="pypsa-eur-sec/resources/cop_air_total_{network}_s{simpl}_{clusters}.nc",
|
||||
cop_soil_total="pypsa-eur-sec/resources/cop_soil_total_{network}_s{simpl}_{clusters}.nc"),
|
||||
output=['pypsa-eur-sec/results/test/prenetworks_brownfield/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{planning_horizons}.nc'],
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'add_existing_baseyear',
|
||||
simpl='',
|
||||
clusters=45,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2020,
|
||||
)
|
||||
import yaml
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
@ -434,24 +421,27 @@ if __name__ == "__main__":
|
||||
|
||||
baseyear= snakemake.config['scenario']["planning_horizons"][0]
|
||||
|
||||
n = pypsa.Network(snakemake.input.network,
|
||||
override_component_attrs=override_component_attrs)
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
add_build_year_to_new_assets(n, baseyear)
|
||||
|
||||
Nyears = n.snapshot_weightings.sum()/8760.
|
||||
costs = prepare_costs(snakemake.input.costs,
|
||||
snakemake.config['costs']['USD2013_to_EUR2013'],
|
||||
snakemake.config['costs']['discountrate'],
|
||||
Nyears)
|
||||
Nyears = n.snapshot_weightings.generators.sum() / 8760.
|
||||
costs = prepare_costs(
|
||||
snakemake.input.costs,
|
||||
snakemake.config['costs']['USD2013_to_EUR2013'],
|
||||
snakemake.config['costs']['discountrate'],
|
||||
Nyears,
|
||||
snakemake.config['costs']['lifetime']
|
||||
)
|
||||
|
||||
grouping_years=snakemake.config['existing_capacities']['grouping_years']
|
||||
add_power_capacities_installed_before_baseyear(n, grouping_years, costs, baseyear)
|
||||
|
||||
if "H" in opts:
|
||||
time_dep_hp_cop = options["time_dep_hp_cop"]
|
||||
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).T.to_pandas().reindex(index=n.snapshots)
|
||||
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).T.to_pandas().reindex(index=n.snapshots)
|
||||
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).to_pandas().reindex(index=n.snapshots)
|
||||
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).to_pandas().reindex(index=n.snapshots)
|
||||
default_lifetime = snakemake.config['costs']['lifetime']
|
||||
add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years, ashp_cop, gshp_cop, time_dep_hp_cop, costs, default_lifetime)
|
||||
|
||||
|
@ -1,45 +1,53 @@
|
||||
|
||||
"""Build ammonia production."""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
ammonia = pd.read_excel(snakemake.input.usgs,
|
||||
sheet_name="T12",
|
||||
skiprows=5,
|
||||
header=0,
|
||||
index_col=0,
|
||||
skipfooter=19)
|
||||
|
||||
rename = {"Austriae" : "AT",
|
||||
"Bulgaria" : "BG",
|
||||
"Belgiume" : "BE",
|
||||
"Croatia" : "HR",
|
||||
"Czechia" : "CZ",
|
||||
"Estonia" : "EE",
|
||||
"Finland" : "FI",
|
||||
"France" : "FR",
|
||||
"Germany" : "DE",
|
||||
"Greece" : "GR",
|
||||
"Hungarye" : "HU",
|
||||
"Italye" : "IT",
|
||||
"Lithuania" : "LT",
|
||||
"Netherlands" : "NL",
|
||||
"Norwaye" : "NO",
|
||||
"Poland" : "PL",
|
||||
"Romania" : "RO",
|
||||
"Serbia" : "RS",
|
||||
"Slovakia" : "SK",
|
||||
"Spain" : "ES",
|
||||
"Switzerland" : "CH",
|
||||
"United Kingdom" : "GB",
|
||||
country_to_alpha2 = {
|
||||
"Austriae": "AT",
|
||||
"Bulgaria": "BG",
|
||||
"Belgiume": "BE",
|
||||
"Croatia": "HR",
|
||||
"Czechia": "CZ",
|
||||
"Estonia": "EE",
|
||||
"Finland": "FI",
|
||||
"France": "FR",
|
||||
"Germany": "DE",
|
||||
"Greece": "GR",
|
||||
"Hungarye": "HU",
|
||||
"Italye": "IT",
|
||||
"Lithuania": "LT",
|
||||
"Netherlands": "NL",
|
||||
"Norwaye": "NO",
|
||||
"Poland": "PL",
|
||||
"Romania": "RO",
|
||||
"Serbia": "RS",
|
||||
"Slovakia": "SK",
|
||||
"Spain": "ES",
|
||||
"Switzerland": "CH",
|
||||
"United Kingdom": "GB",
|
||||
}
|
||||
|
||||
ammonia = ammonia.rename(rename)
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_ammonia_production')
|
||||
|
||||
ammonia = ammonia.loc[rename.values(),[str(i) for i in range(2013,2018)]].astype(float)
|
||||
ammonia = pd.read_excel(snakemake.input.usgs,
|
||||
sheet_name="T12",
|
||||
skiprows=5,
|
||||
header=0,
|
||||
index_col=0,
|
||||
skipfooter=19)
|
||||
|
||||
#convert from ktonN to ktonNH3
|
||||
ammonia = ammonia*17/14
|
||||
ammonia.rename(country_to_alpha2, inplace=True)
|
||||
|
||||
ammonia.index.name = "ktonNH3/a"
|
||||
years = [str(i) for i in range(2013, 2018)]
|
||||
countries = country_to_alpha2.values()
|
||||
ammonia = ammonia.loc[countries, years].astype(float)
|
||||
|
||||
ammonia.to_csv(snakemake.output.ammonia_production)
|
||||
# convert from ktonN to ktonNH3
|
||||
ammonia *= 17 / 14
|
||||
|
||||
ammonia.index.name = "ktonNH3/a"
|
||||
|
||||
ammonia.to_csv(snakemake.output.ammonia_production)
|
||||
|
@ -1,63 +1,68 @@
|
||||
|
||||
import pandas as pd
|
||||
|
||||
idx = pd.IndexSlice
|
||||
rename = {"UK" : "GB", "BH" : "BA"}
|
||||
|
||||
|
||||
def build_biomass_potentials():
|
||||
|
||||
#delete empty column C from this sheet first before reading it in
|
||||
config = snakemake.config['biomass']
|
||||
year = config["year"]
|
||||
scenario = config["scenario"]
|
||||
|
||||
df = pd.read_excel(snakemake.input.jrc_potentials,
|
||||
"Potentials (PJ)",
|
||||
index_col=[0,1])
|
||||
"Potentials (PJ)",
|
||||
index_col=[0,1])
|
||||
|
||||
df.rename(columns={"Unnamed: 18":"Municipal waste"},inplace=True)
|
||||
df.drop(columns="Total",inplace=True)
|
||||
df.replace("-",0.,inplace=True)
|
||||
df.rename(columns={"Unnamed: 18": "Municipal waste"}, inplace=True)
|
||||
df.drop(columns="Total", inplace=True)
|
||||
df.replace("-", 0., inplace=True)
|
||||
|
||||
df_dict = {}
|
||||
column = df.iloc[:,0]
|
||||
countries = column.where(column.str.isalpha()).pad()
|
||||
countries = [rename.get(ct, ct) for ct in countries]
|
||||
countries_i = pd.Index(countries, name='country')
|
||||
df.set_index(countries_i, append=True, inplace=True)
|
||||
|
||||
for i in range(36):
|
||||
df_dict[df.iloc[i*16,1]] = df.iloc[1+i*16:(i+1)*16].astype(float)
|
||||
df.drop(index='MS', level=0, inplace=True)
|
||||
|
||||
#convert from PJ to MWh
|
||||
df_new = pd.concat(df_dict).rename({"UK" : "GB", "BH" : "BA"})/3.6*1e6
|
||||
df_new.index.name = "MWh/a"
|
||||
df_new.to_csv(snakemake.output.biomass_potentials_all)
|
||||
# convert from PJ to MWh
|
||||
df = df / 3.6 * 1e6
|
||||
|
||||
# solid biomass includes: Primary agricultural residues (MINBIOAGRW1),
|
||||
# Forestry energy residue (MINBIOFRSF1),
|
||||
# Secondary forestry residues (MINBIOWOOW1),
|
||||
# Secondary Forestry residues – sawdust (MINBIOWOO1a)',
|
||||
# Forestry residues from landscape care biomass (MINBIOFRSF1a),
|
||||
# Municipal waste (MINBIOMUN1)',
|
||||
df.to_csv(snakemake.output.biomass_potentials_all)
|
||||
|
||||
# biogas includes : Manure biomass potential (MINBIOGAS1),
|
||||
# Sludge biomass (MINBIOSLU1)
|
||||
# solid biomass includes:
|
||||
# Primary agricultural residues (MINBIOAGRW1),
|
||||
# Forestry energy residue (MINBIOFRSF1),
|
||||
# Secondary forestry residues (MINBIOWOOW1),
|
||||
# Secondary Forestry residues – sawdust (MINBIOWOO1a)',
|
||||
# Forestry residues from landscape care biomass (MINBIOFRSF1a),
|
||||
# Municipal waste (MINBIOMUN1)',
|
||||
|
||||
us_type = pd.Series("", df_new.columns)
|
||||
# biogas includes:
|
||||
# Manure biomass potential (MINBIOGAS1),
|
||||
# Sludge biomass (MINBIOSLU1),
|
||||
|
||||
for k,v in snakemake.config['biomass']['classes'].items():
|
||||
us_type.loc[v] = k
|
||||
df = df.loc[year, scenario, :]
|
||||
|
||||
biomass_potentials = df_new.swaplevel(0,2).loc[snakemake.config['biomass']['scenario'],snakemake.config['biomass']['year']].groupby(us_type,axis=1).sum()
|
||||
biomass_potentials.index.name = "MWh/a"
|
||||
biomass_potentials.to_csv(snakemake.output.biomass_potentials)
|
||||
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
|
||||
df = df.groupby(grouper, axis=1).sum()
|
||||
|
||||
df.index.name = "MWh/a"
|
||||
|
||||
df.to_csv(snakemake.output.biomass_potentials)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
snakemake.input = Dict()
|
||||
snakemake.input['jrc_potentials'] = "data/biomass/JRC Biomass Potentials.xlsx"
|
||||
snakemake.output = Dict()
|
||||
snakemake.output['biomass_potentials'] = 'data/biomass_potentials.csv'
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_biomass_potentials')
|
||||
|
||||
|
||||
# This is a hack, to be replaced once snakemake is unicode-conform
|
||||
|
||||
solid_biomass = snakemake.config['biomass']['classes']['solid biomass']
|
||||
if 'Secondary Forestry residues sawdust' in solid_biomass:
|
||||
solid_biomass.remove('Secondary Forestry residues sawdust')
|
||||
solid_biomass.append('Secondary Forestry residues – sawdust')
|
||||
|
||||
build_biomass_potentials()
|
||||
|
@ -1,32 +1,36 @@
|
||||
"""Build clustered population layouts."""
|
||||
|
||||
import geopandas as gpd
|
||||
import xarray as xr
|
||||
import pandas as pd
|
||||
import atlite
|
||||
import helper
|
||||
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
||||
cutout_dir=snakemake.config['atlite']['cutout_dir'])
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_clustered_population_layouts',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout'])
|
||||
|
||||
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
||||
clustered_regions = gpd.read_file(
|
||||
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
|
||||
|
||||
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
helper.clean_invalid_geometries(clustered_busregions)
|
||||
pop = {}
|
||||
for item in ["total", "urban", "rural"]:
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{item}'])
|
||||
pop[item] = I.dot(pop_layout.stack(spatial=('y', 'x')))
|
||||
|
||||
I = cutout.indicatormatrix(clustered_busregions)
|
||||
pop = pd.DataFrame(pop, index=clustered_regions.index)
|
||||
|
||||
pop["ct"] = pop.index.str[:2]
|
||||
country_population = pop.total.groupby(pop.ct).sum()
|
||||
pop["fraction"] = pop.total / pop.ct.map(country_population)
|
||||
|
||||
items = ["total","urban","rural"]
|
||||
|
||||
pop = pd.DataFrame(columns=items,
|
||||
index=clustered_busregions.index)
|
||||
|
||||
|
||||
for item in items:
|
||||
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
||||
pop[item] = I.dot(pop_layout.stack(spatial=('y', 'x')))
|
||||
|
||||
pop.to_csv(snakemake.output.clustered_pop_layout)
|
||||
pop.to_csv(snakemake.output.clustered_pop_layout)
|
||||
|
@ -1,25 +1,40 @@
|
||||
"""Build COP time series for air- or ground-sourced heat pumps."""
|
||||
|
||||
import xarray as xr
|
||||
|
||||
#quadratic regression based on Staffell et al. (2012)
|
||||
#https://doi.org/10.1039/C2EE22653G
|
||||
|
||||
# COP is function of temp difference source to sink
|
||||
|
||||
cop_f = {"air" : lambda d_t: 6.81 -0.121*d_t + 0.000630*d_t**2,
|
||||
"soil" : lambda d_t: 8.77 -0.150*d_t + 0.000734*d_t**2}
|
||||
|
||||
sink_T = 55. # Based on DTU / large area radiators
|
||||
def coefficient_of_performance(delta_T, source='air'):
|
||||
"""
|
||||
COP is function of temp difference source to sink.
|
||||
The quadratic regression is based on Staffell et al. (2012)
|
||||
https://doi.org/10.1039/C2EE22653G.
|
||||
"""
|
||||
if source == 'air':
|
||||
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
|
||||
elif source == 'soil':
|
||||
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
|
||||
else:
|
||||
raise NotImplementedError("'source' must be one of ['air', 'soil']")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_cop_profiles',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
for area in ["total", "urban", "rural"]:
|
||||
for source in ["air", "soil"]:
|
||||
for area in ["total", "urban", "rural"]:
|
||||
|
||||
source_T = xr.open_dataarray(snakemake.input["temp_{}_{}".format(source,area)])
|
||||
for source in ["air", "soil"]:
|
||||
|
||||
delta_T = sink_T - source_T
|
||||
source_T = xr.open_dataarray(
|
||||
snakemake.input[f"temp_{source}_{area}"])
|
||||
|
||||
cop = cop_f[source](delta_T)
|
||||
delta_T = snakemake.config['sector']['heat_pump_sink_T'] - source_T
|
||||
|
||||
cop.to_netcdf(snakemake.output["cop_{}_{}".format(source,area)])
|
||||
cop = coefficient_of_performance(delta_T, source)
|
||||
|
||||
cop.to_netcdf(snakemake.output[f"cop_{source}_{area}"])
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,42 +1,46 @@
|
||||
"""Build heat demand time series."""
|
||||
|
||||
import geopandas as gpd
|
||||
import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import scipy as sp
|
||||
import helper
|
||||
import numpy as np
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_heat_demands',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
|
||||
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
||||
cutout_dir=snakemake.config['atlite']['cutout_dir'],
|
||||
**params)
|
||||
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
cutout_config = snakemake.config['atlite']['cutout']
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
||||
clustered_regions = gpd.read_file(
|
||||
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
|
||||
|
||||
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
helper.clean_invalid_geometries(clustered_busregions)
|
||||
for area in ["rural", "urban", "total"]:
|
||||
|
||||
I = cutout.indicatormatrix(clustered_busregions)
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
for item in ["rural","urban","total"]:
|
||||
heat_demand = cutout.heat_demand(
|
||||
matrix=M.T, index=clustered_regions.index)
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
||||
|
||||
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
|
||||
|
||||
heat_demand = cutout.heat_demand(matrix=M.T,index=clustered_busregions.index)
|
||||
|
||||
heat_demand.to_netcdf(snakemake.output["heat_demand_"+item])
|
||||
heat_demand.to_netcdf(snakemake.output[f"heat_demand_{area}"])
|
||||
|
@ -1,39 +0,0 @@
|
||||
|
||||
import pandas as pd
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
def build_industrial_demand():
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
||||
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
|
||||
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
|
||||
|
||||
industrial_demand_per_country = pd.read_csv(snakemake.input.industrial_demand_per_country,index_col=0)
|
||||
|
||||
industrial_demand = industrial_demand_per_country.loc[pop_layout.ct].fillna(0.)
|
||||
industrial_demand.index = pop_layout.index
|
||||
industrial_demand = industrial_demand.multiply(pop_layout.fraction,axis=0)
|
||||
|
||||
|
||||
industrial_demand.to_csv(snakemake.output.industrial_demand)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
snakemake.input = Dict()
|
||||
snakemake.input['clustered_pop_layout'] = "resources/pop_layout_elec_s_128.csv"
|
||||
snakemake.input['industrial_demand_per_country']="resources/industrial_demand_per_country.csv"
|
||||
snakemake.output = Dict()
|
||||
snakemake.output['industrial_demand'] = "resources/industrial_demand_elec_s_128.csv"
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
|
||||
build_industrial_demand()
|
@ -1,153 +1,131 @@
|
||||
"""Build industrial distribution keys from hotmaps database."""
|
||||
|
||||
import pypsa
|
||||
import uuid
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
from shapely import wkt, prepared
|
||||
from scipy.spatial import cKDTree as KDTree
|
||||
from itertools import product
|
||||
|
||||
|
||||
def prepare_hotmaps_database():
|
||||
def locate_missing_industrial_sites(df):
|
||||
"""
|
||||
Locate industrial sites without valid locations based on
|
||||
city and countries. Should only be used if the model's
|
||||
spatial resolution is coarser than individual cities.
|
||||
"""
|
||||
|
||||
df = pd.read_csv(snakemake.input.hotmaps_industrial_database,
|
||||
sep=";",
|
||||
index_col=0)
|
||||
try:
|
||||
from geopy.geocoders import Nominatim
|
||||
from geopy.extra.rate_limiter import RateLimiter
|
||||
except:
|
||||
raise ModuleNotFoundError("Optional dependency 'geopy' not found."
|
||||
"Install via 'conda install -c conda-forge geopy'"
|
||||
"or set 'industry: hotmaps_locate_missing: false'.")
|
||||
|
||||
#remove those sites without valid geometries
|
||||
df.drop(df.index[df.geom.isna()],
|
||||
inplace=True)
|
||||
locator = Nominatim(user_agent=str(uuid.uuid4()))
|
||||
geocode = RateLimiter(locator.geocode, min_delay_seconds=2)
|
||||
|
||||
#parse geometry
|
||||
#https://geopandas.org/gallery/create_geopandas_from_pandas.html?highlight=parse#from-wkt-format
|
||||
df["Coordinates"] = df.geom.apply(lambda x : wkt.loads(x[x.find(";POINT")+1:]))
|
||||
def locate_missing(s):
|
||||
|
||||
gdf = gpd.GeoDataFrame(df, geometry='Coordinates')
|
||||
if pd.isna(s.City) or s.City == "CONFIDENTIAL":
|
||||
return None
|
||||
|
||||
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
|
||||
europe_shape_prepped = prepared.prep(europe_shape)
|
||||
not_in_europe = gdf.index[~gdf.geometry.apply(europe_shape_prepped.contains)]
|
||||
print("Removing the following industrial facilities since they are not in European area:")
|
||||
print(gdf.loc[not_in_europe])
|
||||
gdf.drop(not_in_europe,
|
||||
inplace=True)
|
||||
loc = geocode([s.City, s.Country], geometry='wkt')
|
||||
if loc is not None:
|
||||
print(f"Found:\t{loc}\nFor:\t{s['City']}, {s['Country']}\n")
|
||||
return f"POINT({loc.longitude} {loc.latitude})"
|
||||
else:
|
||||
return None
|
||||
|
||||
country_to_code = {
|
||||
'Belgium' : 'BE',
|
||||
'Bulgaria' : 'BG',
|
||||
'Czech Republic' : 'CZ',
|
||||
'Denmark' : 'DK',
|
||||
'Germany' : 'DE',
|
||||
'Estonia' : 'EE',
|
||||
'Ireland' : 'IE',
|
||||
'Greece' : 'GR',
|
||||
'Spain' : 'ES',
|
||||
'France' : 'FR',
|
||||
'Croatia' : 'HR',
|
||||
'Italy' : 'IT',
|
||||
'Cyprus' : 'CY',
|
||||
'Latvia' : 'LV',
|
||||
'Lithuania' : 'LT',
|
||||
'Luxembourg' : 'LU',
|
||||
'Hungary' : 'HU',
|
||||
'Malta' : 'MA',
|
||||
'Netherland' : 'NL',
|
||||
'Austria' : 'AT',
|
||||
'Poland' : 'PL',
|
||||
'Portugal' : 'PT',
|
||||
'Romania' : 'RO',
|
||||
'Slovenia' : 'SI',
|
||||
'Slovakia' : 'SK',
|
||||
'Finland' : 'FI',
|
||||
'Sweden' : 'SE',
|
||||
'United Kingdom' : 'GB',
|
||||
'Iceland' : 'IS',
|
||||
'Norway' : 'NO',
|
||||
'Montenegro' : 'ME',
|
||||
'FYR of Macedonia' : 'MK',
|
||||
'Albania' : 'AL',
|
||||
'Serbia' : 'RS',
|
||||
'Turkey' : 'TU',
|
||||
'Bosnia and Herzegovina' : 'BA',
|
||||
'Switzerland' : 'CH',
|
||||
'Liechtenstein' : 'AT',
|
||||
}
|
||||
gdf["country_code"] = gdf.Country.map(country_to_code)
|
||||
missing = df.index[df.geom.isna()]
|
||||
df.loc[missing, 'coordinates'] = df.loc[missing].apply(locate_missing, axis=1)
|
||||
|
||||
if gdf["country_code"].isna().any():
|
||||
print("Warning, some countries not assigned an ISO code")
|
||||
# report stats
|
||||
num_still_missing = df.coordinates.isna().sum()
|
||||
num_found = len(missing) - num_still_missing
|
||||
share_missing = len(missing) / len(df) * 100
|
||||
share_still_missing = num_still_missing / len(df) * 100
|
||||
print(f"Found {num_found} missing locations.",
|
||||
f"Share of missing locations reduced from {share_missing:.2f}% to {share_still_missing:.2f}%.")
|
||||
|
||||
gdf["x"] = gdf.geometry.x
|
||||
gdf["y"] = gdf.geometry.y
|
||||
return df
|
||||
|
||||
|
||||
def prepare_hotmaps_database(regions):
|
||||
"""
|
||||
Load hotmaps database of industrial sites and map onto bus regions.
|
||||
"""
|
||||
|
||||
df = pd.read_csv(snakemake.input.hotmaps_industrial_database, sep=";", index_col=0)
|
||||
|
||||
df[["srid", "coordinates"]] = df.geom.str.split(';', expand=True)
|
||||
|
||||
if snakemake.config['industry'].get('hotmaps_locate_missing', False):
|
||||
df = locate_missing_industrial_sites(df)
|
||||
|
||||
# remove those sites without valid locations
|
||||
df.drop(df.index[df.coordinates.isna()], inplace=True)
|
||||
|
||||
df['coordinates'] = gpd.GeoSeries.from_wkt(df['coordinates'])
|
||||
|
||||
gdf = gpd.GeoDataFrame(df, geometry='coordinates', crs="EPSG:4326")
|
||||
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", op='within')
|
||||
|
||||
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
gdf["country"] = gdf.bus.str[:2]
|
||||
|
||||
return gdf
|
||||
|
||||
|
||||
def assign_buses(gdf):
|
||||
def build_nodal_distribution_key(hotmaps, regions):
|
||||
"""Build nodal distribution keys for each sector."""
|
||||
|
||||
gdf["bus"] = ""
|
||||
sectors = hotmaps.Subsector.unique()
|
||||
countries = regions.index.str[:2].unique()
|
||||
|
||||
for c in n.buses.country.unique():
|
||||
buses_i = n.buses.index[n.buses.country == c]
|
||||
kdtree = KDTree(n.buses.loc[buses_i, ['x','y']].values)
|
||||
keys = pd.DataFrame(index=regions.index, columns=sectors, dtype=float)
|
||||
|
||||
industry_i = gdf.index[(gdf.country_code == c)]
|
||||
pop = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
pop['country'] = pop.index.str[:2]
|
||||
ct_total = pop.total.groupby(pop['country']).sum()
|
||||
keys['population'] = pop.total / pop.country.map(ct_total)
|
||||
|
||||
if industry_i.empty:
|
||||
print("Skipping country with no industry:",c)
|
||||
else:
|
||||
tree_i = kdtree.query(gdf.loc[industry_i, ['x','y']].values)[1]
|
||||
gdf.loc[industry_i, 'bus'] = buses_i[tree_i]
|
||||
for sector, country in product(sectors, countries):
|
||||
|
||||
if (gdf.bus == "").any():
|
||||
print("Some industrial facilities have empty buses")
|
||||
if gdf.bus.isna().any():
|
||||
print("Some industrial facilities have NaN buses")
|
||||
regions_ct = regions.index[regions.index.str.contains(country)]
|
||||
|
||||
facilities = hotmaps.query("country == @country and Subsector == @sector")
|
||||
|
||||
def build_nodal_distribution_key(gdf):
|
||||
|
||||
sectors = ['Iron and steel','Chemical industry','Cement','Non-metallic mineral products','Glass','Paper and printing','Non-ferrous metals']
|
||||
|
||||
distribution_keys = pd.DataFrame(index=n.buses.index,
|
||||
columns=sectors,
|
||||
dtype=float)
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
||||
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
|
||||
distribution_keys["population"] = pop_layout["total"]/pop_layout["ct_total"]
|
||||
|
||||
for c in n.buses.country.unique():
|
||||
buses = n.buses.index[n.buses.country == c]
|
||||
for sector in sectors:
|
||||
facilities = gdf.index[(gdf.country_code == c) & (gdf.Subsector == sector)]
|
||||
if not facilities.empty:
|
||||
emissions = gdf.loc[facilities,"Emissions_ETS_2014"]
|
||||
if emissions.sum() == 0:
|
||||
distribution_key = pd.Series(1/len(facilities),
|
||||
facilities)
|
||||
else:
|
||||
#BEWARE: this is a strong assumption
|
||||
emissions = emissions.fillna(emissions.mean())
|
||||
distribution_key = emissions/emissions.sum()
|
||||
distribution_key = distribution_key.groupby(gdf.loc[facilities,"bus"]).sum().reindex(buses,fill_value=0.)
|
||||
if not facilities.empty:
|
||||
emissions = facilities["Emissions_ETS_2014"]
|
||||
if emissions.sum() == 0:
|
||||
key = pd.Series(1 / len(facilities), facilities.index)
|
||||
else:
|
||||
distribution_key = distribution_keys.loc[buses,"population"]
|
||||
#BEWARE: this is a strong assumption
|
||||
emissions = emissions.fillna(emissions.mean())
|
||||
key = emissions / emissions.sum()
|
||||
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.)
|
||||
else:
|
||||
key = keys.loc[regions_ct, 'population']
|
||||
|
||||
if abs(distribution_key.sum() - 1) > 1e-4:
|
||||
print(c,sector,distribution_key)
|
||||
keys.loc[regions_ct, sector] = key
|
||||
|
||||
distribution_keys.loc[buses,sector] = distribution_key
|
||||
return keys
|
||||
|
||||
distribution_keys.to_csv(snakemake.output.industrial_distribution_key)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_industrial_distribution_key',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions_onshore).set_index('name')
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
hotmaps = prepare_hotmaps_database(regions)
|
||||
|
||||
hotmaps_database = prepare_hotmaps_database()
|
||||
keys = build_nodal_distribution_key(hotmaps, regions)
|
||||
|
||||
assign_buses(hotmaps_database)
|
||||
|
||||
build_nodal_distribution_key(hotmaps_database)
|
||||
keys.to_csv(snakemake.output.industrial_distribution_key)
|
||||
|
@ -1,83 +0,0 @@
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
tj_to_ktoe = 0.0238845
|
||||
ktoe_to_twh = 0.01163
|
||||
|
||||
eb_base_dir = "data/eurostat-energy_balances-may_2018_edition"
|
||||
jrc_base_dir = "data/jrc-idees-2015"
|
||||
|
||||
# import EU ratios df as csv
|
||||
industry_sector_ratios=pd.read_csv(snakemake.input.industry_sector_ratios,
|
||||
index_col=0)
|
||||
|
||||
#material demand per country and industry (kton/a)
|
||||
countries_production = pd.read_csv(snakemake.input.industrial_production_per_country, index_col=0)
|
||||
|
||||
#Annual energy consumption in Switzerland by sector in 2015 (in TJ)
|
||||
#From: Energieverbrauch in der Industrie und im Dienstleistungssektor, Der Bundesrat
|
||||
#http://www.bfe.admin.ch/themen/00526/00541/00543/index.html?lang=de&dossier_id=00775
|
||||
|
||||
dic_Switzerland ={'Iron and steel': 7889.,
|
||||
'Chemicals Industry': 26871.,
|
||||
'Non-metallic mineral products': 15513.+3820.,
|
||||
'Pulp, paper and printing': 12004.,
|
||||
'Food, beverages and tobacco': 17728.,
|
||||
'Non Ferrous Metals': 3037.,
|
||||
'Transport Equipment': 14993.,
|
||||
'Machinery Equipment': 4724.,
|
||||
'Textiles and leather': 1742.,
|
||||
'Wood and wood products': 0.,
|
||||
'Other Industrial Sectors': 10825.,
|
||||
'current electricity': 53760.}
|
||||
|
||||
|
||||
eb_names={'NO':'Norway', 'AL':'Albania', 'BA':'Bosnia and Herzegovina',
|
||||
'MK':'FYR of Macedonia', 'GE':'Georgia', 'IS':'Iceland',
|
||||
'KO':'Kosovo', 'MD':'Moldova', 'ME':'Montenegro', 'RS':'Serbia',
|
||||
'UA':'Ukraine', 'TR':'Turkey', }
|
||||
|
||||
jrc_names = {"GR" : "EL",
|
||||
"GB" : "UK"}
|
||||
|
||||
#final energy consumption per country and industry (TWh/a)
|
||||
countries_df = countries_production.dot(industry_sector_ratios.T)
|
||||
countries_df*= 0.001 #GWh -> TWh (ktCO2 -> MtCO2)
|
||||
|
||||
|
||||
|
||||
non_EU = ['NO', 'CH', 'ME', 'MK', 'RS', 'BA', 'AL']
|
||||
|
||||
|
||||
# save current electricity consumption
|
||||
for country in countries_df.index:
|
||||
if country in non_EU:
|
||||
if country == 'CH':
|
||||
countries_df.loc[country, 'current electricity']=dic_Switzerland['current electricity']*tj_to_ktoe*ktoe_to_twh
|
||||
else:
|
||||
excel_balances = pd.read_excel('{}/{}.XLSX'.format(eb_base_dir,eb_names[country]),
|
||||
sheet_name='2016', index_col=1,header=0, skiprows=1 ,squeeze=True)
|
||||
|
||||
countries_df.loc[country, 'current electricity'] = excel_balances.loc['Industry', 'Electricity']*ktoe_to_twh
|
||||
|
||||
else:
|
||||
|
||||
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(jrc_base_dir,jrc_names.get(country,country)),
|
||||
sheet_name='Ind_Summary',index_col=0,header=0,squeeze=True) # the summary sheet
|
||||
|
||||
s_out = excel_out.iloc[27:48,-1]
|
||||
countries_df.loc[country, 'current electricity'] = s_out['Electricity']*ktoe_to_twh
|
||||
|
||||
|
||||
rename_sectors = {'elec':'electricity',
|
||||
'biomass':'solid biomass',
|
||||
'heat':'low-temperature heat'}
|
||||
|
||||
countries_df.rename(columns=rename_sectors,inplace=True)
|
||||
|
||||
countries_df.index.name = "TWh/a (MtCO2/a)"
|
||||
|
||||
countries_df.to_csv(snakemake.output.industrial_energy_demand_per_country,
|
||||
float_format='%.2f')
|
@ -1,140 +1,165 @@
|
||||
"""Build industrial energy demand per country."""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
# sub-sectors as used in PyPSA-Eur-Sec and listed in JRC-IDEES industry sheets
|
||||
sub_sectors = {'Iron and steel' : ['Integrated steelworks','Electric arc'],
|
||||
'Non-ferrous metals' : ['Alumina production','Aluminium - primary production','Aluminium - secondary production','Other non-ferrous metals'],
|
||||
'Chemicals' : ['Basic chemicals', 'Other chemicals', 'Pharmaceutical products etc.', 'Basic chemicals feedstock'],
|
||||
'Non-metalic mineral' : ['Cement','Ceramics & other NMM','Glass production'],
|
||||
'Printing' : ['Pulp production','Paper production','Printing and media reproduction'],
|
||||
'Food' : ['Food, beverages and tobacco'],
|
||||
'Transport equipment' : ['Transport Equipment'],
|
||||
'Machinery equipment' : ['Machinery Equipment'],
|
||||
'Textiles and leather' : ['Textiles and leather'],
|
||||
'Wood and wood products' : ['Wood and wood products'],
|
||||
'Other Industrial Sectors' : ['Other Industrial Sectors'],
|
||||
}
|
||||
|
||||
|
||||
# name in JRC-IDEES Energy Balances
|
||||
eb_sheet_name = {'Integrated steelworks' : 'cisb',
|
||||
'Electric arc' : 'cise',
|
||||
'Alumina production' : 'cnfa',
|
||||
'Aluminium - primary production' : 'cnfp',
|
||||
'Aluminium - secondary production' : 'cnfs',
|
||||
'Other non-ferrous metals' : 'cnfo',
|
||||
'Basic chemicals' : 'cbch',
|
||||
'Other chemicals' : 'coch',
|
||||
'Pharmaceutical products etc.' : 'cpha',
|
||||
'Basic chemicals feedstock' : 'cpch',
|
||||
'Cement' : 'ccem',
|
||||
'Ceramics & other NMM' : 'ccer',
|
||||
'Glass production' : 'cgla',
|
||||
'Pulp production' : 'cpul',
|
||||
'Paper production' : 'cpap',
|
||||
'Printing and media reproduction' : 'cprp',
|
||||
'Food, beverages and tobacco' : 'cfbt',
|
||||
'Transport Equipment' : 'ctre',
|
||||
'Machinery Equipment' : 'cmae',
|
||||
'Textiles and leather' : 'ctel',
|
||||
'Wood and wood products' : 'cwwp',
|
||||
'Mining and quarrying' : 'cmiq',
|
||||
'Construction' : 'ccon',
|
||||
'Non-specified': 'cnsi',
|
||||
}
|
||||
|
||||
|
||||
|
||||
fuels = {'all' : ['All Products'],
|
||||
'solid' : ['Solid Fuels'],
|
||||
'liquid' : ['Total petroleum products (without biofuels)'],
|
||||
'gas' : ['Gases'],
|
||||
'heat' : ['Nuclear heat','Derived heat'],
|
||||
'biomass' : ['Biomass and Renewable wastes'],
|
||||
'waste' : ['Wastes (non-renewable)'],
|
||||
'electricity' : ['Electricity'],
|
||||
}
|
||||
import multiprocessing as mp
|
||||
from tqdm import tqdm
|
||||
|
||||
ktoe_to_twh = 0.011630
|
||||
|
||||
# name in JRC-IDEES Energy Balances
|
||||
sector_sheets = {'Integrated steelworks': 'cisb',
|
||||
'Electric arc': 'cise',
|
||||
'Alumina production': 'cnfa',
|
||||
'Aluminium - primary production': 'cnfp',
|
||||
'Aluminium - secondary production': 'cnfs',
|
||||
'Other non-ferrous metals': 'cnfo',
|
||||
'Basic chemicals': 'cbch',
|
||||
'Other chemicals': 'coch',
|
||||
'Pharmaceutical products etc.': 'cpha',
|
||||
'Basic chemicals feedstock': 'cpch',
|
||||
'Cement': 'ccem',
|
||||
'Ceramics & other NMM': 'ccer',
|
||||
'Glass production': 'cgla',
|
||||
'Pulp production': 'cpul',
|
||||
'Paper production': 'cpap',
|
||||
'Printing and media reproduction': 'cprp',
|
||||
'Food, beverages and tobacco': 'cfbt',
|
||||
'Transport Equipment': 'ctre',
|
||||
'Machinery Equipment': 'cmae',
|
||||
'Textiles and leather': 'ctel',
|
||||
'Wood and wood products': 'cwwp',
|
||||
'Mining and quarrying': 'cmiq',
|
||||
'Construction': 'ccon',
|
||||
'Non-specified': 'cnsi',
|
||||
}
|
||||
|
||||
|
||||
fuels = {'All Products': 'all',
|
||||
'Solid Fuels': 'solid',
|
||||
'Total petroleum products (without biofuels)': 'liquid',
|
||||
'Gases': 'gas',
|
||||
'Nuclear heat': 'heat',
|
||||
'Derived heat': 'heat',
|
||||
'Biomass and Renewable wastes': 'biomass',
|
||||
'Wastes (non-renewable)': 'waste',
|
||||
'Electricity': 'electricity'
|
||||
}
|
||||
|
||||
eu28 = ['FR', 'DE', 'GB', 'IT', 'ES', 'PL', 'SE', 'NL', 'BE', 'FI',
|
||||
'DK', 'PT', 'RO', 'AT', 'BG', 'EE', 'GR', 'LV', 'CZ',
|
||||
'HU', 'IE', 'SK', 'LT', 'HR', 'LU', 'SI', 'CY', 'MT']
|
||||
|
||||
jrc_names = {"GR" : "EL",
|
||||
"GB" : "UK"}
|
||||
|
||||
year = 2015
|
||||
summaries = {}
|
||||
|
||||
#for some reason the Energy Balances list Other Industrial Sectors separately
|
||||
ois_subs = ['Mining and quarrying','Construction','Non-specified']
|
||||
jrc_names = {"GR": "EL", "GB": "UK"}
|
||||
|
||||
|
||||
#MtNH3/a
|
||||
ammonia = pd.read_csv(snakemake.input.ammonia_production,
|
||||
index_col=0)/1e3
|
||||
def industrial_energy_demand_per_country(country):
|
||||
|
||||
jrc_dir = snakemake.input.jrc
|
||||
jrc_country = jrc_names.get(country, country)
|
||||
fn = f'{jrc_dir}/JRC-IDEES-2015_EnergyBalance_{jrc_country}.xlsx'
|
||||
|
||||
sheets = list(sector_sheets.values())
|
||||
df_dict = pd.read_excel(fn, sheet_name=sheets, index_col=0)
|
||||
|
||||
def get_subsector_data(sheet):
|
||||
|
||||
df = df_dict[sheet][year].groupby(fuels).sum()
|
||||
|
||||
df['other'] = df['all'] - df.loc[df.index != 'all'].sum()
|
||||
|
||||
return df
|
||||
|
||||
df = pd.concat({sub: get_subsector_data(sheet)
|
||||
for sub, sheet in sector_sheets.items()}, axis=1)
|
||||
|
||||
sel = ['Mining and quarrying', 'Construction', 'Non-specified']
|
||||
df['Other Industrial Sectors'] = df[sel].sum(axis=1)
|
||||
df['Basic chemicals'] += df['Basic chemicals feedstock']
|
||||
|
||||
df.drop(columns=sel+['Basic chemicals feedstock'], index='all', inplace=True)
|
||||
|
||||
df *= ktoe_to_twh
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def add_ammonia_energy_demand(demand):
|
||||
|
||||
for ct in eu28:
|
||||
print(ct)
|
||||
filename = 'data/jrc-idees-2015/JRC-IDEES-2015_EnergyBalance_{}.xlsx'.format(jrc_names.get(ct,ct))
|
||||
# MtNH3/a
|
||||
fn = snakemake.input.ammonia_production
|
||||
ammonia = pd.read_csv(fn, index_col=0)[str(year)] / 1e3
|
||||
|
||||
summary = pd.DataFrame(index=list(fuels.keys()) + ['other'])
|
||||
def ammonia_by_fuel(x):
|
||||
|
||||
for sector in sub_sectors:
|
||||
if sector == 'Other Industrial Sectors':
|
||||
subs = ois_subs
|
||||
else:
|
||||
subs = sub_sectors[sector]
|
||||
fuels = {'gas': config['MWh_CH4_per_tNH3_SMR'],
|
||||
'electricity': config['MWh_elec_per_tNH3_SMR']}
|
||||
|
||||
for sub in subs:
|
||||
df = pd.read_excel(filename,
|
||||
sheet_name=eb_sheet_name[sub],
|
||||
index_col=0)
|
||||
return pd.Series({k: x*v for k,v in fuels.items()})
|
||||
|
||||
s = df[year].astype(float)
|
||||
ammonia = ammonia.apply(ammonia_by_fuel).T
|
||||
|
||||
for fuel in fuels:
|
||||
summary.at[fuel,sub] = s[fuels[fuel]].sum()
|
||||
summary.at['other',sub] = summary.at['all',sub] - summary.loc[summary.index^['all','other'],sub].sum()
|
||||
demand['Ammonia'] = ammonia.unstack().reindex(index=demand.index, fill_value=0.)
|
||||
|
||||
summary['Other Industrial Sectors'] = summary[ois_subs].sum(axis=1)
|
||||
summary.drop(columns=ois_subs,inplace=True)
|
||||
demand['Basic chemicals (without ammonia)'] = demand["Basic chemicals"] - demand["Ammonia"]
|
||||
|
||||
summary.drop(index=['all'],inplace=True)
|
||||
demand['Basic chemicals (without ammonia)'].clip(lower=0, inplace=True)
|
||||
demand.drop(columns='Basic chemicals', inplace=True)
|
||||
|
||||
summary *= ktoe_to_twh
|
||||
|
||||
summary['Basic chemicals'] += summary['Basic chemicals feedstock']
|
||||
summary.drop(columns=['Basic chemicals feedstock'], inplace=True)
|
||||
|
||||
summary['Ammonia'] = 0.
|
||||
summary.at['gas','Ammonia'] = snakemake.config['industry']['MWh_CH4_per_tNH3_SMR']*ammonia[str(year)].get(ct,0.)
|
||||
summary.at['electricity','Ammonia'] = snakemake.config['industry']['MWh_elec_per_tNH3_SMR']*ammonia[str(year)].get(ct,0.)
|
||||
summary['Basic chemicals (without ammonia)'] = summary['Basic chemicals'] - summary['Ammonia']
|
||||
summary.loc[summary['Basic chemicals (without ammonia)'] < 0, 'Basic chemicals (without ammonia)'] = 0.
|
||||
summary.drop(columns=['Basic chemicals'], inplace=True)
|
||||
|
||||
summaries[ct] = summary
|
||||
|
||||
final_summary = pd.concat(summaries,axis=1)
|
||||
|
||||
# add in the non-EU28 based on their output (which is derived from their energy too)
|
||||
# output in MtMaterial/a
|
||||
output = pd.read_csv(snakemake.input.industrial_production_per_country,
|
||||
index_col=0)/1e3
|
||||
|
||||
eu28_averages = final_summary.groupby(level=1,axis=1).sum().divide(output.loc[eu28].sum(),axis=1)
|
||||
|
||||
non_eu28 = output.index^eu28
|
||||
|
||||
for ct in non_eu28:
|
||||
print(ct)
|
||||
final_summary = pd.concat((final_summary,pd.concat({ct : eu28_averages.multiply(output.loc[ct],axis=1)},axis=1)),axis=1)
|
||||
return demand
|
||||
|
||||
|
||||
final_summary.index.name = 'TWh/a'
|
||||
def add_non_eu28_industrial_energy_demand(demand):
|
||||
|
||||
final_summary.to_csv(snakemake.output.industrial_energy_demand_per_country_today)
|
||||
# output in MtMaterial/a
|
||||
fn = snakemake.input.industrial_production_per_country
|
||||
production = pd.read_csv(fn, index_col=0) / 1e3
|
||||
|
||||
eu28_production = production.loc[eu28].sum()
|
||||
eu28_energy = demand.groupby(level=1).sum()
|
||||
eu28_averages = eu28_energy / eu28_production
|
||||
|
||||
non_eu28 = production.index.symmetric_difference(eu28)
|
||||
|
||||
demand_non_eu28 = pd.concat({k: v * eu28_averages
|
||||
for k, v in production.loc[non_eu28].iterrows()})
|
||||
|
||||
return pd.concat([demand, demand_non_eu28])
|
||||
|
||||
|
||||
def industrial_energy_demand(countries):
|
||||
|
||||
nprocesses = snakemake.threads
|
||||
func = industrial_energy_demand_per_country
|
||||
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
|
||||
desc="Build industrial energy demand")
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
demand = pd.concat(demand_l, keys=countries)
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_industrial_energy_demand_per_country_today')
|
||||
|
||||
config = snakemake.config['industry']
|
||||
year = config.get('reference_year', 2015)
|
||||
|
||||
demand = industrial_energy_demand(eu28)
|
||||
|
||||
demand = add_ammonia_energy_demand(demand)
|
||||
|
||||
demand = add_non_eu28_industrial_energy_demand(demand)
|
||||
|
||||
# for format compatibility
|
||||
demand = demand.stack(dropna=False).unstack(level=[0,2])
|
||||
|
||||
# style and annotation
|
||||
demand.index.name = 'TWh/a'
|
||||
demand.sort_index(axis=1, inplace=True)
|
||||
|
||||
fn = snakemake.output.industrial_energy_demand_per_country_today
|
||||
demand.to_csv(fn)
|
||||
|
@ -1,33 +1,44 @@
|
||||
"""Build industrial energy demand per node."""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
# import EU ratios df as csv
|
||||
industry_sector_ratios=pd.read_csv(snakemake.input.industry_sector_ratios,
|
||||
index_col=0)
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_industrial_energy_demand_per_node',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
# import EU ratios df as csv
|
||||
fn = snakemake.input.industry_sector_ratios
|
||||
industry_sector_ratios = pd.read_csv(fn, index_col=0)
|
||||
|
||||
#material demand per node and industry (kton/a)
|
||||
nodal_production = pd.read_csv(snakemake.input.industrial_production_per_node,
|
||||
index_col=0)
|
||||
# material demand per node and industry (kton/a)
|
||||
fn = snakemake.input.industrial_production_per_node
|
||||
nodal_production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
#energy demand today to get current electricity
|
||||
nodal_today = pd.read_csv(snakemake.input.industrial_energy_demand_per_node_today,
|
||||
index_col=0)
|
||||
# energy demand today to get current electricity
|
||||
fn = snakemake.input.industrial_energy_demand_per_node_today
|
||||
nodal_today = pd.read_csv(fn, index_col=0)
|
||||
|
||||
#final energy consumption per node and industry (TWh/a)
|
||||
nodal_df = nodal_production.dot(industry_sector_ratios.T)
|
||||
nodal_df*= 0.001 #GWh -> TWh (ktCO2 -> MtCO2)
|
||||
# final energy consumption per node and industry (TWh/a)
|
||||
nodal_df = nodal_production.dot(industry_sector_ratios.T)
|
||||
|
||||
# convert GWh to TWh and ktCO2 to MtCO2
|
||||
nodal_df *= 0.001
|
||||
|
||||
rename_sectors = {
|
||||
'elec': 'electricity',
|
||||
'biomass': 'solid biomass',
|
||||
'heat': 'low-temperature heat'
|
||||
}
|
||||
nodal_df.rename(columns=rename_sectors, inplace=True)
|
||||
|
||||
rename_sectors = {'elec':'electricity',
|
||||
'biomass':'solid biomass',
|
||||
'heat':'low-temperature heat'}
|
||||
nodal_df["current electricity"] = nodal_today["electricity"]
|
||||
|
||||
nodal_df.rename(columns=rename_sectors,inplace=True)
|
||||
nodal_df.index.name = "TWh/a (MtCO2/a)"
|
||||
|
||||
nodal_df["current electricity"] = nodal_today["electricity"]
|
||||
|
||||
nodal_df.index.name = "TWh/a (MtCO2/a)"
|
||||
|
||||
nodal_df.to_csv(snakemake.output.industrial_energy_demand_per_node,
|
||||
float_format='%.2f')
|
||||
fn = snakemake.output.industrial_energy_demand_per_node
|
||||
nodal_df.to_csv(fn, float_format='%.2f')
|
||||
|
@ -1,54 +1,73 @@
|
||||
"""Build industrial energy demand per node."""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from itertools import product
|
||||
|
||||
def build_nodal_demand():
|
||||
# map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {
|
||||
'Electric arc': 'Iron and steel',
|
||||
'Integrated steelworks': 'Iron and steel',
|
||||
'DRI + Electric arc': 'Iron and steel',
|
||||
'Ammonia': 'Chemical industry',
|
||||
'Basic chemicals (without ammonia)': 'Chemical industry',
|
||||
'Other chemicals': 'Chemical industry',
|
||||
'Pharmaceutical products etc.': 'Chemical industry',
|
||||
'Cement': 'Cement',
|
||||
'Ceramics & other NMM': 'Non-metallic mineral products',
|
||||
'Glass production': 'Glass',
|
||||
'Pulp production': 'Paper and printing',
|
||||
'Paper production': 'Paper and printing',
|
||||
'Printing and media reproduction': 'Paper and printing',
|
||||
'Alumina production': 'Non-ferrous metals',
|
||||
'Aluminium - primary production': 'Non-ferrous metals',
|
||||
'Aluminium - secondary production': 'Non-ferrous metals',
|
||||
'Other non-ferrous metals': 'Non-ferrous metals',
|
||||
}
|
||||
|
||||
industrial_demand = pd.read_csv(snakemake.input.industrial_energy_demand_per_country_today,
|
||||
header=[0,1],
|
||||
index_col=0)
|
||||
|
||||
distribution_keys = pd.read_csv(snakemake.input.industrial_distribution_key,
|
||||
index_col=0)
|
||||
distribution_keys["country"] = distribution_keys.index.str[:2]
|
||||
def build_nodal_industrial_energy_demand():
|
||||
|
||||
nodal_demand = pd.DataFrame(0.,
|
||||
index=distribution_keys.index,
|
||||
columns=industrial_demand.index,
|
||||
dtype=float)
|
||||
fn = snakemake.input.industrial_energy_demand_per_country_today
|
||||
industrial_demand = pd.read_csv(fn, header=[0, 1], index_col=0)
|
||||
|
||||
#map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {'Electric arc' : 'Iron and steel',
|
||||
'Integrated steelworks' : 'Iron and steel',
|
||||
'DRI + Electric arc' : 'Iron and steel',
|
||||
'Ammonia' : 'Chemical industry',
|
||||
'Basic chemicals (without ammonia)' : 'Chemical industry',
|
||||
'Other chemicals' : 'Chemical industry',
|
||||
'Pharmaceutical products etc.' : 'Chemical industry',
|
||||
'Cement' : 'Cement',
|
||||
'Ceramics & other NMM' : 'Non-metallic mineral products',
|
||||
'Glass production' : 'Glass',
|
||||
'Pulp production' : 'Paper and printing',
|
||||
'Paper production' : 'Paper and printing',
|
||||
'Printing and media reproduction' : 'Paper and printing',
|
||||
'Alumina production' : 'Non-ferrous metals',
|
||||
'Aluminium - primary production' : 'Non-ferrous metals',
|
||||
'Aluminium - secondary production' : 'Non-ferrous metals',
|
||||
'Other non-ferrous metals' : 'Non-ferrous metals',
|
||||
}
|
||||
fn = snakemake.input.industrial_distribution_key
|
||||
keys = pd.read_csv(fn, index_col=0)
|
||||
keys["country"] = keys.index.str[:2]
|
||||
|
||||
for c in distribution_keys.country.unique():
|
||||
buses = distribution_keys.index[distribution_keys.country == c]
|
||||
for sector in industrial_demand.columns.levels[1]:
|
||||
distribution_key = distribution_keys.loc[buses,sector_mapping.get(sector,"population")]
|
||||
demand = industrial_demand[c,sector]
|
||||
outer = pd.DataFrame(np.outer(distribution_key,demand),index=distribution_key.index,columns=demand.index)
|
||||
nodal_demand.loc[buses] += outer
|
||||
nodal_demand = pd.DataFrame(0., dtype=float,
|
||||
index=keys.index,
|
||||
columns=industrial_demand.index)
|
||||
|
||||
countries = keys.country.unique()
|
||||
sectors = industrial_demand.columns.levels[1]
|
||||
|
||||
for country, sector in product(countries, sectors):
|
||||
|
||||
buses = keys.index[keys.country == country]
|
||||
mapping = sector_mapping.get(sector, 'population')
|
||||
|
||||
key = keys.loc[buses, mapping]
|
||||
demand = industrial_demand[country, sector]
|
||||
|
||||
outer = pd.DataFrame(np.outer(key, demand),
|
||||
index=key.index,
|
||||
columns=demand.index)
|
||||
|
||||
nodal_demand.loc[buses] += outer
|
||||
|
||||
nodal_demand.index.name = "TWh/a"
|
||||
|
||||
nodal_demand.to_csv(snakemake.output.industrial_energy_demand_per_node_today)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
build_nodal_demand()
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_industrial_energy_demand_per_node_today',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
build_nodal_industrial_energy_demand()
|
||||
|
@ -1,218 +1,222 @@
|
||||
"""Build industrial production per country."""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import multiprocessing as mp
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
tj_to_ktoe = 0.0238845
|
||||
ktoe_to_twh = 0.01163
|
||||
|
||||
jrc_base_dir = "data/jrc-idees-2015"
|
||||
eb_base_dir = "data/eurostat-energy_balances-may_2018_edition"
|
||||
|
||||
# year for which data is retrieved
|
||||
raw_year = 2015
|
||||
year = raw_year-2016
|
||||
|
||||
sub_sheet_name_dict = { 'Iron and steel':'ISI',
|
||||
'Chemicals Industry':'CHI',
|
||||
'Non-metallic mineral products': 'NMM',
|
||||
'Pulp, paper and printing': 'PPA',
|
||||
'Food, beverages and tobacco': 'FBT',
|
||||
'Non Ferrous Metals' : 'NFM',
|
||||
'Transport Equipment': 'TRE',
|
||||
'Machinery Equipment': 'MAE',
|
||||
'Textiles and leather':'TEL',
|
||||
'Wood and wood products': 'WWP',
|
||||
'Other Industrial Sectors': 'OIS'}
|
||||
|
||||
index = ['elec','biomass','methane','hydrogen','heat','naphtha','process emission','process emission from feedstock']
|
||||
sub_sheet_name_dict = {'Iron and steel': 'ISI',
|
||||
'Chemicals Industry': 'CHI',
|
||||
'Non-metallic mineral products': 'NMM',
|
||||
'Pulp, paper and printing': 'PPA',
|
||||
'Food, beverages and tobacco': 'FBT',
|
||||
'Non Ferrous Metals': 'NFM',
|
||||
'Transport Equipment': 'TRE',
|
||||
'Machinery Equipment': 'MAE',
|
||||
'Textiles and leather': 'TEL',
|
||||
'Wood and wood products': 'WWP',
|
||||
'Other Industrial Sectors': 'OIS'}
|
||||
|
||||
non_EU = ['NO', 'CH', 'ME', 'MK', 'RS', 'BA', 'AL']
|
||||
|
||||
jrc_names = {"GR" : "EL",
|
||||
"GB" : "UK"}
|
||||
jrc_names = {"GR": "EL", "GB": "UK"}
|
||||
|
||||
eu28 = ['FR', 'DE', 'GB', 'IT', 'ES', 'PL', 'SE', 'NL', 'BE', 'FI',
|
||||
'DK', 'PT', 'RO', 'AT', 'BG', 'EE', 'GR', 'LV', 'CZ',
|
||||
'HU', 'IE', 'SK', 'LT', 'HR', 'LU', 'SI', 'CY', 'MT']
|
||||
|
||||
|
||||
countries = non_EU + eu28
|
||||
|
||||
|
||||
sectors = ['Iron and steel','Chemicals Industry','Non-metallic mineral products',
|
||||
'Pulp, paper and printing', 'Food, beverages and tobacco', 'Non Ferrous Metals',
|
||||
'Transport Equipment', 'Machinery Equipment', 'Textiles and leather',
|
||||
'Wood and wood products', 'Other Industrial Sectors']
|
||||
|
||||
sect2sub = {'Iron and steel':['Electric arc','Integrated steelworks'],
|
||||
sect2sub = {'Iron and steel': ['Electric arc', 'Integrated steelworks'],
|
||||
'Chemicals Industry': ['Basic chemicals', 'Other chemicals', 'Pharmaceutical products etc.'],
|
||||
'Non-metallic mineral products': ['Cement','Ceramics & other NMM','Glass production'],
|
||||
'Pulp, paper and printing': ['Pulp production','Paper production','Printing and media reproduction'],
|
||||
'Non-metallic mineral products': ['Cement', 'Ceramics & other NMM', 'Glass production'],
|
||||
'Pulp, paper and printing': ['Pulp production', 'Paper production', 'Printing and media reproduction'],
|
||||
'Food, beverages and tobacco': ['Food, beverages and tobacco'],
|
||||
'Non Ferrous Metals': ['Alumina production', 'Aluminium - primary production', 'Aluminium - secondary production', 'Other non-ferrous metals'],
|
||||
'Transport Equipment': ['Transport Equipment'],
|
||||
'Machinery Equipment': ['Machinery Equipment'],
|
||||
'Textiles and leather': ['Textiles and leather'],
|
||||
'Wood and wood products' :['Wood and wood products'],
|
||||
'Other Industrial Sectors':['Other Industrial Sectors']}
|
||||
'Wood and wood products': ['Wood and wood products'],
|
||||
'Other Industrial Sectors': ['Other Industrial Sectors']}
|
||||
|
||||
subsectors = [ss for s in sectors for ss in sect2sub[s]]
|
||||
sub2sect = {v: k for k, vv in sect2sub.items() for v in vv}
|
||||
|
||||
#material demand per country and industry (kton/a)
|
||||
countries_demand = pd.DataFrame(index=countries,
|
||||
columns=subsectors,
|
||||
dtype=float)
|
||||
|
||||
|
||||
out_dic ={'Electric arc': 'Electric arc',
|
||||
fields = {'Electric arc': 'Electric arc',
|
||||
'Integrated steelworks': 'Integrated steelworks',
|
||||
'Basic chemicals': 'Basic chemicals (kt ethylene eq.)',
|
||||
'Other chemicals':'Other chemicals (kt ethylene eq.)',
|
||||
'Pharmaceutical products etc.':'Pharmaceutical products etc. (kt ethylene eq.)',
|
||||
'Cement':'Cement (kt)',
|
||||
'Ceramics & other NMM':'Ceramics & other NMM (kt bricks eq.)',
|
||||
'Glass production':'Glass production (kt)',
|
||||
'Pulp production':'Pulp production (kt)',
|
||||
'Paper production':'Paper production (kt)',
|
||||
'Printing and media reproduction':'Printing and media reproduction (kt paper eq.)',
|
||||
'Other chemicals': 'Other chemicals (kt ethylene eq.)',
|
||||
'Pharmaceutical products etc.': 'Pharmaceutical products etc. (kt ethylene eq.)',
|
||||
'Cement': 'Cement (kt)',
|
||||
'Ceramics & other NMM': 'Ceramics & other NMM (kt bricks eq.)',
|
||||
'Glass production': 'Glass production (kt)',
|
||||
'Pulp production': 'Pulp production (kt)',
|
||||
'Paper production': 'Paper production (kt)',
|
||||
'Printing and media reproduction': 'Printing and media reproduction (kt paper eq.)',
|
||||
'Food, beverages and tobacco': 'Physical output (index)',
|
||||
'Alumina production':'Alumina production (kt)',
|
||||
'Alumina production': 'Alumina production (kt)',
|
||||
'Aluminium - primary production': 'Aluminium - primary production',
|
||||
'Aluminium - secondary production': 'Aluminium - secondary production',
|
||||
'Other non-ferrous metals' : 'Other non-ferrous metals (kt lead eq.)',
|
||||
'Other non-ferrous metals': 'Other non-ferrous metals (kt lead eq.)',
|
||||
'Transport Equipment': 'Physical output (index)',
|
||||
'Machinery Equipment': 'Physical output (index)',
|
||||
'Textiles and leather': 'Physical output (index)',
|
||||
'Wood and wood products': 'Physical output (index)',
|
||||
'Other Industrial Sectors': 'Physical output (index)'}
|
||||
|
||||
loc_dic={'Iron and steel':[5,8],
|
||||
'Chemicals Industry': [7,11],
|
||||
'Non-metallic mineral products': [6,10],
|
||||
'Pulp, paper and printing': [7,11],
|
||||
'Food, beverages and tobacco': [2,6],
|
||||
'Non Ferrous Metals': [9,14],
|
||||
'Transport Equipment': [3,5],
|
||||
'Machinery Equipment': [3,5],
|
||||
'Textiles and leather': [3,5],
|
||||
'Wood and wood products': [3,5],
|
||||
'Other Industrial Sectors': [3,5]}
|
||||
eb_names = {'NO': 'Norway', 'AL': 'Albania', 'BA': 'Bosnia and Herzegovina',
|
||||
'MK': 'FYR of Macedonia', 'GE': 'Georgia', 'IS': 'Iceland',
|
||||
'KO': 'Kosovo', 'MD': 'Moldova', 'ME': 'Montenegro', 'RS': 'Serbia',
|
||||
'UA': 'Ukraine', 'TR': 'Turkey', }
|
||||
|
||||
# In the summary sheet (IDEES database) some names include a white space
|
||||
dic_sec_summary = {'Iron and steel': 'Iron and steel',
|
||||
'Chemicals Industry': 'Chemicals Industry',
|
||||
'Non-metallic mineral products': 'Non-metallic mineral products',
|
||||
'Pulp, paper and printing': 'Pulp, paper and printing',
|
||||
'Food, beverages and tobacco': ' Food, beverages and tobacco',
|
||||
'Non Ferrous Metals': 'Non Ferrous Metals',
|
||||
'Transport Equipment': ' Transport Equipment',
|
||||
'Machinery Equipment': ' Machinery Equipment',
|
||||
'Textiles and leather': ' Textiles and leather',
|
||||
'Wood and wood products': ' Wood and wood products',
|
||||
'Other Industrial Sectors': ' Other Industrial Sectors'}
|
||||
eb_sectors = {'Iron & steel industry': 'Iron and steel',
|
||||
'Chemical and Petrochemical industry': 'Chemicals Industry',
|
||||
'Non-ferrous metal industry': 'Non-metallic mineral products',
|
||||
'Paper, Pulp and Print': 'Pulp, paper and printing',
|
||||
'Food and Tabacco': 'Food, beverages and tobacco',
|
||||
'Non-metallic Minerals (Glass, pottery & building mat. Industry)': 'Non Ferrous Metals',
|
||||
'Transport Equipment': 'Transport Equipment',
|
||||
'Machinery': 'Machinery Equipment',
|
||||
'Textile and Leather': 'Textiles and leather',
|
||||
'Wood and Wood Products': 'Wood and wood products',
|
||||
'Non-specified (Industry)': 'Other Industrial Sectors'}
|
||||
|
||||
#countries=['CH']
|
||||
eb_names={'NO':'Norway', 'AL':'Albania', 'BA':'Bosnia and Herzegovina',
|
||||
'MK':'FYR of Macedonia', 'GE':'Georgia', 'IS':'Iceland',
|
||||
'KO':'Kosovo', 'MD':'Moldova', 'ME':'Montenegro', 'RS':'Serbia',
|
||||
'UA':'Ukraine', 'TR':'Turkey', }
|
||||
|
||||
dic_sec ={'Iron and steel':'Iron & steel industry',
|
||||
'Chemicals Industry': 'Chemical and Petrochemical industry',
|
||||
'Non-metallic mineral products': 'Non-ferrous metal industry',
|
||||
'Pulp, paper and printing': 'Paper, Pulp and Print',
|
||||
'Food, beverages and tobacco': 'Food and Tabacco',
|
||||
'Non Ferrous Metals': 'Non-metallic Minerals (Glass, pottery & building mat. Industry)',
|
||||
'Transport Equipment': 'Transport Equipment',
|
||||
'Machinery Equipment': 'Machinery',
|
||||
'Textiles and leather': 'Textile and Leather',
|
||||
'Wood and wood products': 'Wood and Wood Products',
|
||||
'Other Industrial Sectors': 'Non-specified (Industry)'}
|
||||
# Mining and Quarrying, Construction
|
||||
|
||||
#Annual energy consumption in Switzerland by sector in 2015 (in TJ)
|
||||
#From: Energieverbrauch in der Industrie und im Dienstleistungssektor, Der Bundesrat
|
||||
#http://www.bfe.admin.ch/themen/00526/00541/00543/index.html?lang=de&dossier_id=00775
|
||||
|
||||
dic_Switzerland ={'Iron and steel': 7889.,
|
||||
'Chemicals Industry': 26871.,
|
||||
'Non-metallic mineral products': 15513.+3820.,
|
||||
'Pulp, paper and printing': 12004.,
|
||||
'Food, beverages and tobacco': 17728.,
|
||||
'Non Ferrous Metals': 3037.,
|
||||
'Transport Equipment': 14993.,
|
||||
'Machinery Equipment': 4724.,
|
||||
'Textiles and leather': 1742.,
|
||||
'Wood and wood products': 0.,
|
||||
'Other Industrial Sectors': 10825.,
|
||||
'current electricity': 53760.}
|
||||
|
||||
dic_sec_position={}
|
||||
for country in countries:
|
||||
countries_demand.loc[country] = 0.
|
||||
print(country)
|
||||
for sector in sectors:
|
||||
if country in non_EU:
|
||||
if country == 'CH':
|
||||
e_country = dic_Switzerland[sector]*tj_to_ktoe
|
||||
else:
|
||||
# estimate physical output
|
||||
#energy consumption in the sector and country
|
||||
excel_balances = pd.read_excel('{}/{}.XLSX'.format(eb_base_dir,eb_names[country]),
|
||||
sheet_name='2016', index_col=2,header=0, skiprows=1 ,squeeze=True)
|
||||
e_country = excel_balances.loc[dic_sec[sector], 'Total all products']
|
||||
|
||||
#energy consumption in the sector and EU28
|
||||
excel_sum_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_EU28.xlsx'.format(jrc_base_dir),
|
||||
sheet_name='Ind_Summary', index_col=0,header=0,squeeze=True) # the summary sheet
|
||||
s_sum_out = excel_sum_out.iloc[49:76,year]
|
||||
e_EU28 = s_sum_out[dic_sec_summary[sector]]
|
||||
|
||||
ratio_country_EU28=e_country/e_EU28
|
||||
|
||||
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_EU28.xlsx'.format(jrc_base_dir),
|
||||
sheet_name=sub_sheet_name_dict[sector],index_col=0,header=0,squeeze=True) # the summary sheet
|
||||
|
||||
s_out = excel_out.iloc[loc_dic[sector][0]:loc_dic[sector][1],year]
|
||||
|
||||
for subsector in sect2sub[sector]:
|
||||
countries_demand.loc[country,subsector] = ratio_country_EU28*s_out[out_dic[subsector]]
|
||||
|
||||
else:
|
||||
|
||||
# read the input sheets
|
||||
excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(jrc_base_dir,jrc_names.get(country,country)), sheet_name=sub_sheet_name_dict[sector],index_col=0,header=0,squeeze=True) # the summary sheet
|
||||
|
||||
s_out = excel_out.iloc[loc_dic[sector][0]:loc_dic[sector][1],year]
|
||||
|
||||
for subsector in sect2sub[sector]:
|
||||
countries_demand.loc[country,subsector] = s_out[out_dic[subsector]]
|
||||
# TODO: this should go in a csv in `data`
|
||||
# Annual energy consumption in Switzerland by sector in 2015 (in TJ)
|
||||
# From: Energieverbrauch in der Industrie und im Dienstleistungssektor, Der Bundesrat
|
||||
# http://www.bfe.admin.ch/themen/00526/00541/00543/index.html?lang=de&dossier_id=00775
|
||||
e_switzerland = pd.Series({'Iron and steel': 7889.,
|
||||
'Chemicals Industry': 26871.,
|
||||
'Non-metallic mineral products': 15513.+3820.,
|
||||
'Pulp, paper and printing': 12004.,
|
||||
'Food, beverages and tobacco': 17728.,
|
||||
'Non Ferrous Metals': 3037.,
|
||||
'Transport Equipment': 14993.,
|
||||
'Machinery Equipment': 4724.,
|
||||
'Textiles and leather': 1742.,
|
||||
'Wood and wood products': 0.,
|
||||
'Other Industrial Sectors': 10825.,
|
||||
'current electricity': 53760.})
|
||||
|
||||
|
||||
#include ammonia demand separately and remove ammonia from basic chemicals
|
||||
def find_physical_output(df):
|
||||
start = np.where(df.index.str.contains('Physical output', na=''))[0][0]
|
||||
empty_row = np.where(df.index.isnull())[0]
|
||||
end = empty_row[np.argmax(empty_row > start)]
|
||||
return slice(start, end)
|
||||
|
||||
ammonia = pd.read_csv(snakemake.input.ammonia_production,
|
||||
index_col=0)
|
||||
|
||||
there = ammonia.index.intersection(countries_demand.index)
|
||||
missing = countries_demand.index^there
|
||||
def get_energy_ratio(country):
|
||||
|
||||
print("Following countries have no ammonia demand:", missing)
|
||||
if country == 'CH':
|
||||
e_country = e_switzerland * tj_to_ktoe
|
||||
else:
|
||||
# estimate physical output, energy consumption in the sector and country
|
||||
fn = f"{eurostat_dir}/{eb_names[country]}.XLSX"
|
||||
df = pd.read_excel(fn, sheet_name='2016', index_col=2,
|
||||
header=0, skiprows=1, squeeze=True)
|
||||
e_country = df.loc[eb_sectors.keys(
|
||||
), 'Total all products'].rename(eb_sectors)
|
||||
|
||||
countries_demand.insert(2,"Ammonia",0.)
|
||||
fn = f'{jrc_dir}/JRC-IDEES-2015_Industry_EU28.xlsx'
|
||||
|
||||
countries_demand.loc[there,"Ammonia"] = ammonia.loc[there, str(raw_year)]
|
||||
df = pd.read_excel(fn, sheet_name='Ind_Summary',
|
||||
index_col=0, header=0, squeeze=True)
|
||||
|
||||
countries_demand["Basic chemicals"] -= countries_demand["Ammonia"]
|
||||
assert df.index[48] == "by sector"
|
||||
year_i = df.columns.get_loc(year)
|
||||
e_eu28 = df.iloc[49:76, year_i]
|
||||
e_eu28.index = e_eu28.index.str.lstrip()
|
||||
|
||||
#EE, HR and LT got negative demand through subtraction - poor data
|
||||
countries_demand.loc[countries_demand["Basic chemicals"] < 0.,"Basic chemicals"] = 0.
|
||||
e_ratio = e_country / e_eu28
|
||||
|
||||
countries_demand.rename(columns={"Basic chemicals" : "Basic chemicals (without ammonia)"},
|
||||
inplace=True)
|
||||
return pd.Series({k: e_ratio[v] for k, v in sub2sect.items()})
|
||||
|
||||
countries_demand.index.name = "kton/a"
|
||||
|
||||
countries_demand.to_csv(snakemake.output.industrial_production_per_country,
|
||||
float_format='%.2f')
|
||||
def industry_production_per_country(country):
|
||||
|
||||
def get_sector_data(sector, country):
|
||||
|
||||
jrc_country = jrc_names.get(country, country)
|
||||
fn = f'{jrc_dir}/JRC-IDEES-2015_Industry_{jrc_country}.xlsx'
|
||||
sheet = sub_sheet_name_dict[sector]
|
||||
df = pd.read_excel(fn, sheet_name=sheet,
|
||||
index_col=0, header=0, squeeze=True)
|
||||
|
||||
year_i = df.columns.get_loc(year)
|
||||
df = df.iloc[find_physical_output(df), year_i]
|
||||
|
||||
df = df.loc[map(fields.get, sect2sub[sector])]
|
||||
df.index = sect2sub[sector]
|
||||
|
||||
return df
|
||||
|
||||
ct = "EU28" if country in non_EU else country
|
||||
demand = pd.concat([get_sector_data(s, ct) for s in sect2sub.keys()])
|
||||
|
||||
if country in non_EU:
|
||||
demand *= get_energy_ratio(country)
|
||||
|
||||
demand.name = country
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
def industry_production(countries):
|
||||
|
||||
nprocesses = snakemake.threads
|
||||
func = industry_production_per_country
|
||||
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
|
||||
desc="Build industry production")
|
||||
with mp.Pool(processes=nprocesses) as pool:
|
||||
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
|
||||
|
||||
demand = pd.concat(demand_l, axis=1).T
|
||||
|
||||
demand.index.name = "kton/a"
|
||||
|
||||
return demand
|
||||
|
||||
|
||||
def add_ammonia_demand_separately(demand):
|
||||
"""Include ammonia demand separately and remove ammonia from basic chemicals."""
|
||||
|
||||
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
|
||||
|
||||
there = ammonia.index.intersection(demand.index)
|
||||
missing = demand.index.symmetric_difference(there)
|
||||
|
||||
print("Following countries have no ammonia demand:", missing)
|
||||
|
||||
demand.insert(2, "Ammonia", 0.)
|
||||
|
||||
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year)]
|
||||
|
||||
demand["Basic chemicals"] -= demand["Ammonia"]
|
||||
|
||||
# EE, HR and LT got negative demand through subtraction - poor data
|
||||
demand['Basic chemicals'].clip(lower=0., inplace=True)
|
||||
|
||||
to_rename = {"Basic chemicals": "Basic chemicals (without ammonia)"}
|
||||
demand.rename(columns=to_rename, inplace=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_industrial_production_per_country')
|
||||
|
||||
countries = non_EU + eu28
|
||||
|
||||
year = snakemake.config['industry']['reference_year']
|
||||
|
||||
jrc_dir = snakemake.input.jrc
|
||||
eurostat_dir = snakemake.input.eurostat
|
||||
|
||||
demand = industry_production(countries)
|
||||
|
||||
add_ammonia_demand_separately(demand)
|
||||
|
||||
fn = snakemake.output.industrial_production_per_country
|
||||
demand.to_csv(fn, float_format='%.2f')
|
||||
|
@ -1,27 +1,39 @@
|
||||
"""Build future industrial production per country."""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country,
|
||||
index_col=0)
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_industrial_production_per_country_tomorrow')
|
||||
|
||||
total_steel = industrial_production[["Integrated steelworks","Electric arc"]].sum(axis=1)
|
||||
config = snakemake.config["industry"]
|
||||
|
||||
fraction_primary_stays_primary = snakemake.config["industry"]["St_primary_fraction"]*total_steel.sum()/industrial_production["Integrated steelworks"].sum()
|
||||
fn = snakemake.input.industrial_production_per_country
|
||||
production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
industrial_production.insert(2, "DRI + Electric arc",
|
||||
fraction_primary_stays_primary*industrial_production["Integrated steelworks"])
|
||||
keys = ["Integrated steelworks", "Electric arc"]
|
||||
total_steel = production[keys].sum(axis=1)
|
||||
|
||||
industrial_production["Electric arc"] = total_steel - industrial_production["DRI + Electric arc"]
|
||||
industrial_production["Integrated steelworks"] = 0.
|
||||
int_steel = production["Integrated steelworks"].sum()
|
||||
fraction_persistent_primary = config["St_primary_fraction"] * total_steel.sum() / int_steel
|
||||
|
||||
dri = fraction_persistent_primary * production["Integrated steelworks"]
|
||||
production.insert(2, "DRI + Electric arc", dri)
|
||||
|
||||
total_aluminium = industrial_production[["Aluminium - primary production","Aluminium - secondary production"]].sum(axis=1)
|
||||
production["Electric arc"] = total_steel - production["DRI + Electric arc"]
|
||||
production["Integrated steelworks"] = 0.
|
||||
|
||||
fraction_primary_stays_primary = snakemake.config["industry"]["Al_primary_fraction"]*total_aluminium.sum()/industrial_production["Aluminium - primary production"].sum()
|
||||
keys = ["Aluminium - primary production", "Aluminium - secondary production"]
|
||||
total_aluminium = production[keys].sum(axis=1)
|
||||
|
||||
industrial_production["Aluminium - primary production"] = fraction_primary_stays_primary*industrial_production["Aluminium - primary production"]
|
||||
industrial_production["Aluminium - secondary production"] = total_aluminium - industrial_production["Aluminium - primary production"]
|
||||
key_pri = "Aluminium - primary production"
|
||||
key_sec = "Aluminium - secondary production"
|
||||
fraction_persistent_primary = config["Al_primary_fraction"] * total_aluminium.sum() / production[key_pri].sum()
|
||||
production[key_pri] = fraction_persistent_primary * production[key_pri]
|
||||
production[key_sec] = total_aluminium - production[key_pri]
|
||||
|
||||
production["Basic chemicals (without ammonia)"] *= config['HVC_primary_fraction']
|
||||
|
||||
industrial_production.to_csv(snakemake.output.industrial_production_per_country_tomorrow,
|
||||
float_format='%.2f')
|
||||
fn = snakemake.output.industrial_production_per_country_tomorrow
|
||||
production.to_csv(fn, float_format='%.2f')
|
||||
|
@ -1,47 +1,63 @@
|
||||
"""Build industrial production per node."""
|
||||
|
||||
import pandas as pd
|
||||
from itertools import product
|
||||
|
||||
# map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {
|
||||
'Electric arc': 'Iron and steel',
|
||||
'Integrated steelworks': 'Iron and steel',
|
||||
'DRI + Electric arc': 'Iron and steel',
|
||||
'Ammonia': 'Chemical industry',
|
||||
'Basic chemicals (without ammonia)': 'Chemical industry',
|
||||
'Other chemicals': 'Chemical industry',
|
||||
'Pharmaceutical products etc.': 'Chemical industry',
|
||||
'Cement': 'Cement',
|
||||
'Ceramics & other NMM': 'Non-metallic mineral products',
|
||||
'Glass production': 'Glass',
|
||||
'Pulp production': 'Paper and printing',
|
||||
'Paper production': 'Paper and printing',
|
||||
'Printing and media reproduction': 'Paper and printing',
|
||||
'Alumina production': 'Non-ferrous metals',
|
||||
'Aluminium - primary production': 'Non-ferrous metals',
|
||||
'Aluminium - secondary production': 'Non-ferrous metals',
|
||||
'Other non-ferrous metals': 'Non-ferrous metals',
|
||||
}
|
||||
|
||||
|
||||
def build_nodal_industrial_production():
|
||||
|
||||
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow,
|
||||
index_col=0)
|
||||
fn = snakemake.input.industrial_production_per_country_tomorrow
|
||||
industrial_production = pd.read_csv(fn, index_col=0)
|
||||
|
||||
distribution_keys = pd.read_csv(snakemake.input.industrial_distribution_key,
|
||||
index_col=0)
|
||||
distribution_keys["country"] = distribution_keys.index.str[:2]
|
||||
fn = snakemake.input.industrial_distribution_key
|
||||
keys = pd.read_csv(fn, index_col=0)
|
||||
keys["country"] = keys.index.str[:2]
|
||||
|
||||
nodal_industrial_production = pd.DataFrame(index=distribution_keys.index,
|
||||
columns=industrial_production.columns,
|
||||
dtype=float)
|
||||
nodal_production = pd.DataFrame(index=keys.index,
|
||||
columns=industrial_production.columns,
|
||||
dtype=float)
|
||||
|
||||
#map JRC/our sectors to hotmaps sector, where mapping exist
|
||||
sector_mapping = {'Electric arc' : 'Iron and steel',
|
||||
'Integrated steelworks' : 'Iron and steel',
|
||||
'DRI + Electric arc' : 'Iron and steel',
|
||||
'Ammonia' : 'Chemical industry',
|
||||
'Basic chemicals (without ammonia)' : 'Chemical industry',
|
||||
'Other chemicals' : 'Chemical industry',
|
||||
'Pharmaceutical products etc.' : 'Chemical industry',
|
||||
'Cement' : 'Cement',
|
||||
'Ceramics & other NMM' : 'Non-metallic mineral products',
|
||||
'Glass production' : 'Glass',
|
||||
'Pulp production' : 'Paper and printing',
|
||||
'Paper production' : 'Paper and printing',
|
||||
'Printing and media reproduction' : 'Paper and printing',
|
||||
'Alumina production' : 'Non-ferrous metals',
|
||||
'Aluminium - primary production' : 'Non-ferrous metals',
|
||||
'Aluminium - secondary production' : 'Non-ferrous metals',
|
||||
'Other non-ferrous metals' : 'Non-ferrous metals',
|
||||
}
|
||||
countries = keys.country.unique()
|
||||
sectors = industrial_production.columns
|
||||
|
||||
for country, sector in product(countries, sectors):
|
||||
|
||||
for c in distribution_keys.country.unique():
|
||||
buses = distribution_keys.index[distribution_keys.country == c]
|
||||
for sector in industrial_production.columns:
|
||||
distribution_key = distribution_keys.loc[buses,sector_mapping.get(sector,"population")]
|
||||
nodal_industrial_production.loc[buses,sector] = industrial_production.at[c,sector]*distribution_key
|
||||
buses = keys.index[keys.country == country]
|
||||
mapping = sector_mapping.get(sector, "population")
|
||||
|
||||
key = keys.loc[buses, mapping]
|
||||
nodal_production.loc[buses, sector] = industrial_production.at[country, sector] * key
|
||||
|
||||
nodal_production.to_csv(snakemake.output.industrial_production_per_node)
|
||||
|
||||
nodal_industrial_production.to_csv(snakemake.output.industrial_production_per_node)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_industrial_production_per_node',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
build_nodal_industrial_production()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,103 +1,98 @@
|
||||
"""Build mapping between grid cells and population (total, urban, rural)"""
|
||||
|
||||
# Build mapping between grid cells and population (total, urban, rural)
|
||||
|
||||
import multiprocessing as mp
|
||||
import atlite
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import geopandas as gpd
|
||||
|
||||
from vresutils import shapes as vshapes
|
||||
|
||||
import geopandas as gpd
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_population_layouts')
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout'])
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
grid_cells = cutout.grid_cells()
|
||||
|
||||
snakemake.input["urban_percent"] = "data/urban_percent.csv"
|
||||
# nuts3 has columns country, gdp, pop, geometry
|
||||
# population is given in dimensions of 1e3=k
|
||||
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index('index')
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
||||
cutout_dir=snakemake.config['atlite']['cutout_dir'])
|
||||
# Indicator matrix NUTS3 -> grid cells
|
||||
I = atlite.cutout.compute_indicatormatrix(nuts3.geometry, grid_cells)
|
||||
|
||||
grid_cells = cutout.grid_cells()
|
||||
# Indicator matrix grid_cells -> NUTS3; inprinciple Iinv*I is identity
|
||||
# but imprecisions mean not perfect
|
||||
Iinv = cutout.indicatormatrix(nuts3.geometry)
|
||||
|
||||
#nuts3 has columns country, gdp, pop, geometry
|
||||
#population is given in dimensions of 1e3=k
|
||||
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index('index')
|
||||
countries = np.sort(nuts3.country.unique())
|
||||
|
||||
urban_fraction = pd.read_csv(snakemake.input.urban_percent,
|
||||
header=None, index_col=0,
|
||||
names=['fraction'], squeeze=True) / 100.
|
||||
|
||||
# Indicator matrix NUTS3 -> grid cells
|
||||
I = atlite.cutout.compute_indicatormatrix(nuts3.geometry, grid_cells)
|
||||
# fill missing Balkans values
|
||||
missing = ["AL", "ME", "MK"]
|
||||
reference = ["RS", "BA"]
|
||||
average = urban_fraction[reference].mean()
|
||||
fill_values = pd.Series({ct: average for ct in missing})
|
||||
urban_fraction = urban_fraction.append(fill_values)
|
||||
|
||||
# Indicator matrix grid_cells -> NUTS3; inprinciple Iinv*I is identity
|
||||
# but imprecisions mean not perfect
|
||||
Iinv = cutout.indicatormatrix(nuts3.geometry)
|
||||
# population in each grid cell
|
||||
pop_cells = pd.Series(I.dot(nuts3['pop']))
|
||||
|
||||
countries = nuts3.country.value_counts().index.sort_values()
|
||||
# in km^2
|
||||
with mp.Pool(processes=snakemake.threads) as pool:
|
||||
cell_areas = pd.Series(pool.map(vshapes.area, grid_cells)) / 1e6
|
||||
|
||||
urban_fraction = pd.read_csv(snakemake.input.urban_percent,
|
||||
header=None,index_col=0,squeeze=True)/100.
|
||||
# pop per km^2
|
||||
density_cells = pop_cells / cell_areas
|
||||
|
||||
#fill missing Balkans values
|
||||
missing = ["AL","ME","MK"]
|
||||
reference = ["RS","BA"]
|
||||
urban_fraction = urban_fraction.reindex(urban_fraction.index|missing)
|
||||
urban_fraction.loc[missing] = urban_fraction[reference].mean()
|
||||
# rural or urban population in grid cell
|
||||
pop_rural = pd.Series(0., density_cells.index)
|
||||
pop_urban = pd.Series(0., density_cells.index)
|
||||
|
||||
for ct in countries:
|
||||
print(ct, urban_fraction[ct])
|
||||
|
||||
#population in each grid cell
|
||||
pop_cells = pd.Series(I.dot(nuts3['pop']))
|
||||
indicator_nuts3_ct = nuts3.country.apply(lambda x: 1. if x == ct else 0.)
|
||||
|
||||
#in km^2
|
||||
cell_areas = pd.Series(cutout.grid_cells()).map(vshapes.area)/1e6
|
||||
indicator_cells_ct = pd.Series(Iinv.T.dot(indicator_nuts3_ct))
|
||||
|
||||
#pop per km^2
|
||||
density_cells = pop_cells/cell_areas
|
||||
density_cells_ct = indicator_cells_ct * density_cells
|
||||
|
||||
pop_cells_ct = indicator_cells_ct * pop_cells
|
||||
|
||||
#rural or urban population in grid cell
|
||||
pop_rural = pd.Series(0.,density_cells.index)
|
||||
pop_urban = pd.Series(0.,density_cells.index)
|
||||
# correct for imprecision of Iinv*I
|
||||
pop_ct = nuts3.loc[nuts3.country==ct,'pop'].sum()
|
||||
pop_cells_ct *= pop_ct / pop_cells_ct.sum()
|
||||
|
||||
for ct in countries:
|
||||
print(ct,urban_fraction[ct])
|
||||
# The first low density grid cells to reach rural fraction are rural
|
||||
asc_density_i = density_cells_ct.sort_values().index
|
||||
asc_density_cumsum = pop_cells_ct[asc_density_i].cumsum() / pop_cells_ct.sum()
|
||||
rural_fraction_ct = 1 - urban_fraction[ct]
|
||||
pop_ct_rural_b = asc_density_cumsum < rural_fraction_ct
|
||||
pop_ct_urban_b = ~pop_ct_rural_b
|
||||
|
||||
indicator_nuts3_ct = pd.Series(0.,nuts3.index)
|
||||
indicator_nuts3_ct[nuts3.index[nuts3.country==ct]] = 1.
|
||||
pop_ct_rural_b[indicator_cells_ct == 0.] = False
|
||||
pop_ct_urban_b[indicator_cells_ct == 0.] = False
|
||||
|
||||
indicator_cells_ct = pd.Series(Iinv.T.dot(indicator_nuts3_ct))
|
||||
pop_rural += pop_cells_ct.where(pop_ct_rural_b, 0.)
|
||||
pop_urban += pop_cells_ct.where(pop_ct_urban_b, 0.)
|
||||
|
||||
density_cells_ct = indicator_cells_ct*density_cells
|
||||
pop_cells = {"total": pop_cells}
|
||||
pop_cells["rural"] = pop_rural
|
||||
pop_cells["urban"] = pop_urban
|
||||
|
||||
pop_cells_ct = indicator_cells_ct*pop_cells
|
||||
for key, pop in pop_cells.items():
|
||||
|
||||
#correct for imprecision of Iinv*I
|
||||
pop_ct = nuts3['pop'][indicator_nuts3_ct.index[indicator_nuts3_ct == 1.]].sum()
|
||||
pop_cells_ct = pop_cells_ct*pop_ct/pop_cells_ct.sum()
|
||||
ycoords = ('y', cutout.coords['y'])
|
||||
xcoords = ('x', cutout.coords['x'])
|
||||
values = pop.values.reshape(cutout.shape)
|
||||
layout = xr.DataArray(values, [ycoords, xcoords])
|
||||
|
||||
# The first low density grid cells to reach rural fraction are rural
|
||||
index_from_low_d_to_high_d = density_cells_ct.sort_values().index
|
||||
pop_ct_rural_b = pop_cells_ct[index_from_low_d_to_high_d].cumsum()/pop_cells_ct.sum() < (1-urban_fraction[ct])
|
||||
pop_ct_urban_b = ~pop_ct_rural_b
|
||||
|
||||
pop_ct_rural_b[indicator_cells_ct==0.] = False
|
||||
pop_ct_urban_b[indicator_cells_ct==0.] = False
|
||||
|
||||
pop_rural += pop_cells_ct.where(pop_ct_rural_b,0.)
|
||||
pop_urban += pop_cells_ct.where(pop_ct_urban_b,0.)
|
||||
|
||||
pop_cells = {"total" : pop_cells}
|
||||
|
||||
pop_cells["rural"] = pop_rural
|
||||
pop_cells["urban"] = pop_urban
|
||||
|
||||
for key in pop_cells.keys():
|
||||
layout = xr.DataArray(pop_cells[key].values.reshape(cutout.shape),
|
||||
[('y', cutout.coords['y']), ('x', cutout.coords['x'])])
|
||||
|
||||
layout.to_netcdf(snakemake.output["pop_layout_"+key])
|
||||
layout.to_netcdf(snakemake.output[f"pop_layout_{key}"])
|
||||
|
884
scripts/build_retro_cost.py
Normal file
884
scripts/build_retro_cost.py
Normal file
@ -0,0 +1,884 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Jan 22 10:36:39 2021
|
||||
|
||||
This script should calculate the space heating savings through better
|
||||
insulation of the thermal envelope of a building and corresponding costs for
|
||||
different building types in different countries.
|
||||
|
||||
-----------------METHODOLOGY ------------------------------------------------
|
||||
The energy savings calculations are based on the
|
||||
|
||||
EN ISO 13790 / seasonal method https://www.iso.org/obp/ui/#iso:std:iso:13790:ed-2:v1:en:
|
||||
|
||||
- calculations heavily oriented on the TABULAWebTool
|
||||
http://webtool.building-typology.eu/
|
||||
http://www.episcope.eu/fileadmin/tabula/public/docs/report/TABULA_CommonCalculationMethod.pdf
|
||||
which is following the EN ISO 13790 / seasonal method
|
||||
|
||||
- building stock data:
|
||||
mainly: hotmaps project https://gitlab.com/hotmaps/building-stock
|
||||
missing: EU building observatory https://ec.europa.eu/energy/en/eu-buildings-database
|
||||
|
||||
- building types with typical surfaces/ standard values:
|
||||
- tabula https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
|
||||
|
||||
|
||||
---------------------BASIC EQUAIONS -------------------------------------------
|
||||
The basic equations:
|
||||
|
||||
The Energy needed for space heating E_space [W/m²] are calculated as the
|
||||
sum of heat losses and heat gains:
|
||||
|
||||
E_space = H_losses - H_gains
|
||||
|
||||
Heat losses constitute from the losses through heat trasmission (H_tr [W/m²K])
|
||||
(this includes heat transfer through building elements and thermal bridges)
|
||||
and losses by ventilation (H_ve [W/m²K]):
|
||||
|
||||
H_losses = (H_tr + H_ve) * F_red * (T_threshold - T_averaged_d_heat) * d_heat * 1/365
|
||||
|
||||
F_red : reduction factor, considering non-uniform heating [°C], p.16 chapter 2.6 [-]
|
||||
T_threshold : heating temperature threshold, assumed 15 C
|
||||
d_heat : Length of heating season, number of days with daily averaged temperature below T_threshold
|
||||
T_averaged_d_heat : mean daily averaged temperature of the days within heating season d_heat
|
||||
|
||||
Heat gains constitute from the gains by solar radiation (H_solar) and
|
||||
internal heat gains (H_int) weighted by a gain utilisation factor nu:
|
||||
|
||||
H_gains = nu * (H_solar + H_int)
|
||||
|
||||
---------------- STRUCTURE OF THE SCRIPT --------------------------------------
|
||||
|
||||
The script has the following structure:
|
||||
|
||||
(i) fixed parameters are set
|
||||
(ii) functions
|
||||
(1) prepare data, bring to same format
|
||||
(2) calculate space heat demand depending on additional insulation material
|
||||
(3) calculate costs for corresponding additional insulation material
|
||||
(4) get cost savings per retrofitting measures for each sector by weighting
|
||||
with heated floor area
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
@author: Lisa
|
||||
"""
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
|
||||
# (i) --- FIXED PARAMETER / STANDARD VALUES -----------------------------------
|
||||
|
||||
# thermal conductivity standard value
|
||||
k = 0.035
|
||||
# strenght of relative retrofitting depending on the component
|
||||
# determined by historical data of insulation thickness for retrofitting
|
||||
l_weight = pd.DataFrame({"weight": [1.95, 1.48, 1.]},
|
||||
index=["Roof", "Wall", "Floor"])
|
||||
|
||||
# standard room height [m], used to calculate heat transfer by ventilation
|
||||
h_room = 2.5
|
||||
# volume specific heat capacity air [Wh/m^3K]
|
||||
c_p_air = 0.34
|
||||
# internal heat capacity per m² A_c_ref [Wh/(m^2K)]
|
||||
c_m = 45
|
||||
# average thermal output of the internal heat sources per m^2 reference area [W/m^2]
|
||||
phi_int = 3
|
||||
# constant parameter tau_H_0 [h] according to EN 13790 seasonal method
|
||||
tau_H_0 = 30
|
||||
# constant parameter alpha_H_0 [-] according to EN 13790 seasonal method
|
||||
alpha_H_0 = 0.8
|
||||
|
||||
# paramter for solar heat load during heating season -------------------------
|
||||
# tabular standard values table p.8 in documenation
|
||||
external_shading = 0.6 # vertical orientation: fraction of window area shaded [-]
|
||||
frame_area_fraction = 0.3 # fraction of frame area of window [-]
|
||||
non_perpendicular = 0.9 # reduction factor, considering radiation non perpendicular to the glazing[-]
|
||||
solar_energy_transmittance = 0.5 # solar energy transmiitance for radiation perpecidular to the glazing [-]
|
||||
# solar global radiation [kWh/(m^2a)]
|
||||
solar_global_radiation = pd.Series([246, 401, 246, 148],
|
||||
index=["east", "south", "west", "north"],
|
||||
name="solar_global_radiation [kWh/(m^2a)]")
|
||||
|
||||
# threshold temperature for heating [Celsius] --------------------------------
|
||||
t_threshold = 15
|
||||
|
||||
# rename sectors
|
||||
# rename residential sub sectors
|
||||
rename_sectors = {'Single family- Terraced houses': "SFH",
|
||||
'Multifamily houses': "MFH",
|
||||
'Appartment blocks': "AB"}
|
||||
|
||||
|
||||
# additional insulation thickness, determines maximum possible savings [m]
|
||||
l_strength = [
|
||||
"0.07","0.075", "0.08", "0.1", "0.15",
|
||||
"0.22", "0.24", "0.26"
|
||||
]
|
||||
|
||||
|
||||
# (ii) --- FUNCTIONS ----------------------------------------------------------
|
||||
|
||||
def get_average_temperature_during_heating_season(temperature, t_threshold=15):
|
||||
"""
|
||||
returns average temperature during heating season
|
||||
input:
|
||||
temperature : pd.Series(Index=time, values=temperature)
|
||||
t_threshold : threshold temperature for heating degree days (HDD)
|
||||
returns:
|
||||
average temperature
|
||||
"""
|
||||
t_average_daily = temperature.resample("1D").mean()
|
||||
return t_average_daily.loc[t_average_daily < t_threshold].mean()
|
||||
|
||||
|
||||
def prepare_building_stock_data():
|
||||
"""
|
||||
reads building stock data and cleans up the format, returns
|
||||
--------
|
||||
u_values: pd.DataFrame current U-values
|
||||
area_tot: heated floor area per country and sector [Mm²]
|
||||
area: heated floor area [Mm²] for country, sector, building
|
||||
type and period
|
||||
|
||||
"""
|
||||
|
||||
building_data = pd.read_csv(snakemake.input.building_stock,
|
||||
usecols=list(range(13)))
|
||||
|
||||
# standardize data
|
||||
building_data["type"].replace(
|
||||
{'Covered area: heated [Mm²]': 'Heated area [Mm²]',
|
||||
'Windows ': 'Window',
|
||||
'Windows': 'Window',
|
||||
'Walls ': 'Wall',
|
||||
'Walls': 'Wall',
|
||||
'Roof ': 'Roof',
|
||||
'Floor ': 'Floor',
|
||||
}, inplace=True)
|
||||
|
||||
building_data.country_code = building_data.country_code.str.upper()
|
||||
building_data["subsector"].replace({'Hotels and Restaurants':
|
||||
'Hotels and restaurants'}, inplace=True)
|
||||
building_data["sector"].replace({'Residential sector': 'residential',
|
||||
'Service sector': 'services'},
|
||||
inplace=True)
|
||||
|
||||
# extract u-values
|
||||
u_values = building_data[(building_data.feature.str.contains("U-values"))
|
||||
& (building_data.subsector != "Total")]
|
||||
|
||||
components = list(u_values.type.unique())
|
||||
|
||||
country_iso_dic = building_data.set_index("country")["country_code"].to_dict()
|
||||
|
||||
# add missing /rename countries
|
||||
country_iso_dic.update({'Norway': 'NO',
|
||||
'Iceland': 'IS',
|
||||
'Montenegro': 'ME',
|
||||
'Serbia': 'RS',
|
||||
'Albania': 'AL',
|
||||
'United Kingdom': 'GB',
|
||||
'Bosnia and Herzegovina': 'BA',
|
||||
'Switzerland': 'CH'})
|
||||
|
||||
# heated floor area ----------------------------------------------------------
|
||||
area = building_data[(building_data.type == 'Heated area [Mm²]') &
|
||||
(building_data.subsector != "Total")]
|
||||
area_tot = area.groupby(["country", "sector"]).sum()
|
||||
area = pd.concat([area, area.apply(lambda x: x.value /
|
||||
area_tot.value.loc[(x.country, x.sector)],
|
||||
axis=1).rename("weight")],axis=1)
|
||||
area = area.groupby(['country', 'sector', 'subsector', 'bage']).sum()
|
||||
area_tot.rename(index=country_iso_dic, inplace=True)
|
||||
|
||||
# add for some missing countries floor area from other data sources
|
||||
area_missing = pd.read_csv(snakemake.input.floor_area_missing,
|
||||
index_col=[0, 1], usecols=[0, 1, 2, 3],
|
||||
encoding='ISO-8859-1')
|
||||
area_tot = area_tot.append(area_missing.unstack(level=-1).dropna().stack())
|
||||
area_tot = area_tot.loc[~area_tot.index.duplicated(keep='last')]
|
||||
|
||||
# for still missing countries calculate floor area by population size
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
pop_layout["ct"] = pop_layout.index.str[:2]
|
||||
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
||||
|
||||
area_per_pop = area_tot.unstack().reindex(index=ct_total.index).apply(lambda x: x / ct_total[x.index])
|
||||
missing_area_ct = ct_total.index.difference(area_tot.index.levels[0])
|
||||
for ct in missing_area_ct.intersection(ct_total.index):
|
||||
averaged_data = pd.DataFrame(
|
||||
area_per_pop.value.reindex(map_for_missings[ct]).mean()
|
||||
* ct_total[ct],
|
||||
columns=["value"])
|
||||
index = pd.MultiIndex.from_product([[ct], averaged_data.index.to_list()])
|
||||
averaged_data.index = index
|
||||
averaged_data["estimated"] = 1
|
||||
if ct not in area_tot.index.levels[0]:
|
||||
area_tot = area_tot.append(averaged_data, sort=True)
|
||||
else:
|
||||
area_tot.loc[averaged_data.index] = averaged_data
|
||||
|
||||
# u_values for Poland are missing -> take them from eurostat -----------
|
||||
u_values_PL = pd.read_csv(snakemake.input.u_values_PL)
|
||||
u_values_PL.component.replace({"Walls":"Wall", "Windows": "Window"},
|
||||
inplace=True)
|
||||
area_PL = area.loc["Poland"].reset_index()
|
||||
data_PL = pd.DataFrame(columns=u_values.columns, index=area_PL.index)
|
||||
data_PL["country"] = "Poland"
|
||||
data_PL["country_code"] = "PL"
|
||||
# data from area
|
||||
for col in ["sector", "subsector", "bage"]:
|
||||
data_PL[col] = area_PL[col]
|
||||
data_PL["btype"] = area_PL["subsector"]
|
||||
|
||||
data_PL_final = pd.DataFrame()
|
||||
for component in components:
|
||||
data_PL["type"] = component
|
||||
data_PL["value"] = data_PL.apply(lambda x: u_values_PL[(u_values_PL.component==component)
|
||||
& (u_values_PL.sector==x["sector"])]
|
||||
[x["bage"]].iloc[0], axis=1)
|
||||
data_PL_final = data_PL_final.append(data_PL)
|
||||
|
||||
u_values = pd.concat([u_values,
|
||||
data_PL_final]).reset_index(drop=True)
|
||||
|
||||
# clean data ---------------------------------------------------------------
|
||||
# smallest possible today u values for windows 0.8 (passive house standard)
|
||||
# maybe the u values for the glass and not the whole window including frame
|
||||
# for those types assumed in the dataset
|
||||
u_values.loc[(u_values.type=="Window") & (u_values.value<0.8), "value"] = 0.8
|
||||
# drop unnecessary columns
|
||||
u_values.drop(['topic', 'feature','detail', 'estimated','unit'],
|
||||
axis=1, inplace=True, errors="ignore")
|
||||
|
||||
|
||||
u_values.subsector.replace(rename_sectors, inplace=True)
|
||||
u_values.btype.replace(rename_sectors, inplace=True)
|
||||
|
||||
# for missing weighting of surfaces of building types assume MFH
|
||||
u_values["assumed_subsector"] = u_values.subsector
|
||||
u_values.loc[~u_values.subsector.isin(rename_sectors.values()),
|
||||
"assumed_subsector"] = 'MFH'
|
||||
|
||||
u_values.country_code.replace({"UK":"GB"}, inplace=True)
|
||||
u_values.bage.replace({'Berfore 1945':'Before 1945'}, inplace=True)
|
||||
u_values = u_values[~u_values.bage.isna()]
|
||||
|
||||
u_values.set_index(["country_code", "subsector", "bage", "type"],
|
||||
inplace=True)
|
||||
|
||||
# only take in config.yaml specified countries into account
|
||||
countries = ct_total.index
|
||||
area_tot = area_tot.loc[countries]
|
||||
|
||||
return u_values, country_iso_dic, countries, area_tot, area
|
||||
|
||||
|
||||
|
||||
def prepare_building_topology(u_values, same_building_topology=True):
|
||||
"""
|
||||
reads in typical building topologies (e.g. average surface of building elements)
|
||||
and typical losses trough thermal bridging and air ventilation
|
||||
"""
|
||||
|
||||
data_tabula = pd.read_csv(snakemake.input.data_tabula,
|
||||
skiprows=lambda x: x in range(1,11),
|
||||
low_memory=False).iloc[:2974]
|
||||
|
||||
parameters = ["Code_Country",
|
||||
# building type (SFH/MFH/AB)
|
||||
"Code_BuildingSizeClass",
|
||||
# time period of build year
|
||||
"Year1_Building", "Year2_Building",
|
||||
# areas [m^2]
|
||||
"A_C_Ref", # conditioned area, internal
|
||||
"A_Roof_1", "A_Roof_2", "A_Wall_1", "A_Wall_2",
|
||||
"A_Floor_1", "A_Floor_2", "A_Window_1", "A_Window_2",
|
||||
# for air ventilation loses [1/h]
|
||||
"n_air_use", "n_air_infiltration",
|
||||
# for losses due to thermal bridges, standard values [W/(m^2K)]
|
||||
"delta_U_ThermalBridging",
|
||||
# floor area related heat transfer coefficient by transmission [-]
|
||||
"F_red_temp",
|
||||
# refurbishment state [1: not refurbished, 2: moderate ,3: strong refurbishment]
|
||||
'Number_BuildingVariant',
|
||||
]
|
||||
|
||||
data_tabula = data_tabula[parameters]
|
||||
|
||||
building_elements = ["Roof", "Wall", "Floor", "Window"]
|
||||
|
||||
# get total area of building components
|
||||
for element in building_elements:
|
||||
elements = ["A_{}_1".format(element),
|
||||
"A_{}_2".format(element)]
|
||||
data_tabula = pd.concat([data_tabula.drop(elements, axis=1),
|
||||
data_tabula[elements].sum(axis=1).rename("A_{}".format(element))],
|
||||
axis=1)
|
||||
|
||||
# clean data
|
||||
data_tabula = data_tabula.loc[pd.concat([data_tabula[col]!=0 for col in
|
||||
["A_Wall", "A_Floor", "A_Window", "A_Roof", "A_C_Ref"]],
|
||||
axis=1).all(axis=1)]
|
||||
data_tabula = data_tabula[data_tabula.Number_BuildingVariant.isin([1,2,3])]
|
||||
data_tabula = data_tabula[data_tabula.Code_BuildingSizeClass.isin(["AB", "SFH", "MFH", "TH"])]
|
||||
|
||||
|
||||
|
||||
# map tabula building periods to hotmaps building periods
|
||||
def map_periods(build_year1, build_year2):
|
||||
periods = {(0, 1945): 'Before 1945',
|
||||
(1945,1969) : '1945 - 1969',
|
||||
(1970, 1979) :'1970 - 1979',
|
||||
(1980, 1989) : '1980 - 1989',
|
||||
(1990, 1999) :'1990 - 1999',
|
||||
(2000, 2010) : '2000 - 2010',
|
||||
(2010, 10000) : 'Post 2010'}
|
||||
minimum = 1e5
|
||||
for key in periods:
|
||||
diff = abs(build_year1-key[0]) + abs(build_year2-key[1])
|
||||
if diff < minimum:
|
||||
minimum = diff
|
||||
searched_period = periods[key]
|
||||
return searched_period
|
||||
|
||||
data_tabula["bage"] = data_tabula.apply(lambda x: map_periods(x.Year1_Building, x.Year2_Building),
|
||||
axis=1)
|
||||
|
||||
# set new index
|
||||
data_tabula = data_tabula.set_index(['Code_Country', 'Code_BuildingSizeClass',
|
||||
'bage', 'Number_BuildingVariant'])
|
||||
|
||||
# get typical building topology
|
||||
area_cols = ['A_C_Ref', 'A_Floor', 'A_Roof', 'A_Wall', 'A_Window']
|
||||
typical_building = (data_tabula.groupby(level=[1,2]).mean()
|
||||
.rename(index={"TH": "SFH"}).groupby(level=[0,1]).mean())
|
||||
|
||||
# drop duplicates
|
||||
data_tabula = data_tabula[~data_tabula.index.duplicated(keep="first")]
|
||||
|
||||
# fill missing values
|
||||
hotmaps_data_i = u_values.reset_index().set_index(["country_code", "assumed_subsector",
|
||||
"bage"]).index
|
||||
# missing countries in tabular
|
||||
missing_ct = data_tabula.unstack().reindex(hotmaps_data_i.unique())
|
||||
# areas should stay constant for different retrofitting measures
|
||||
cols_constant = ['Year1_Building', 'Year2_Building', 'A_C_Ref','A_Roof',
|
||||
'A_Wall', 'A_Floor', 'A_Window']
|
||||
for col in cols_constant:
|
||||
missing_ct[col] = missing_ct[col].combine_first(missing_ct[col]
|
||||
.groupby(level=[0,1,2]).mean())
|
||||
missing_ct = missing_ct.unstack().unstack().fillna(missing_ct.unstack()
|
||||
.unstack().mean())
|
||||
data_tabula = missing_ct.stack(level=[-1,-2, -3],dropna=False)
|
||||
|
||||
# sets for different countries same building topology which only depends on
|
||||
# build year and subsector (MFH, SFH, AB)
|
||||
if same_building_topology:
|
||||
typical_building = ((typical_building.reindex(data_tabula.droplevel(0).index))
|
||||
.set_index(data_tabula.index))
|
||||
data_tabula.update(typical_building[area_cols])
|
||||
|
||||
# total buildings envelope surface [m^2]
|
||||
data_tabula["A_envelope"] = data_tabula[["A_{}".format(element) for
|
||||
element in building_elements]].sum(axis=1)
|
||||
|
||||
return data_tabula
|
||||
|
||||
|
||||
def prepare_cost_retro(country_iso_dic):
|
||||
"""
|
||||
read and prepare retro costs, annualises them if annualise_cost=True
|
||||
"""
|
||||
cost_retro = pd.read_csv(snakemake.input.cost_germany,
|
||||
nrows=4, index_col=0, usecols=[0, 1, 2, 3])
|
||||
cost_retro.rename(lambda x: x.capitalize(), inplace=True)
|
||||
|
||||
window_assumptions = pd.read_csv(snakemake.input.window_assumptions,
|
||||
skiprows=[1], usecols=[0,1,2,3], nrows=2)
|
||||
|
||||
if annualise_cost:
|
||||
cost_retro[["cost_fix", "cost_var"]] = (cost_retro[["cost_fix", "cost_var"]]
|
||||
.apply(lambda x: x * interest_rate /
|
||||
(1 - (1 + interest_rate)
|
||||
** -cost_retro.loc[x.index,
|
||||
"life_time"])))
|
||||
|
||||
# weightings of costs ---------------------------------------------
|
||||
if construction_index:
|
||||
cost_w = pd.read_csv(snakemake.input.construction_index,
|
||||
skiprows=3, nrows=32, index_col=0)
|
||||
# since German retrofitting costs are assumed
|
||||
cost_w = ((cost_w["2018"] / cost_w.loc["Germany", "2018"])
|
||||
.rename(index=country_iso_dic))
|
||||
else:
|
||||
cost_w = None
|
||||
|
||||
if tax_weighting:
|
||||
tax_w = pd.read_csv(snakemake.input.tax_w,
|
||||
header=12, nrows=39, index_col=0, usecols=[0, 4])
|
||||
tax_w.rename(index=country_iso_dic, inplace=True)
|
||||
tax_w = tax_w.apply(pd.to_numeric, errors='coerce').iloc[:, 0]
|
||||
tax_w.dropna(inplace=True)
|
||||
else:
|
||||
tax_w = None
|
||||
|
||||
|
||||
return cost_retro, window_assumptions, cost_w, tax_w
|
||||
|
||||
|
||||
def prepare_temperature_data():
|
||||
"""
|
||||
returns the temperature dependent data for each country:
|
||||
|
||||
d_heat : length of heating season pd.Series(index=countries) [days/year]
|
||||
on those days, daily average temperature is below
|
||||
threshold temperature t_threshold
|
||||
temperature_factor : accumulated difference between internal and
|
||||
external temperature pd.Series(index=countries) ([K]) * [days/year]
|
||||
|
||||
temperature_factor = (t_threshold - temperature_average_d_heat) * d_heat * 1/365
|
||||
|
||||
"""
|
||||
temperature = xr.open_dataarray(snakemake.input.air_temperature).to_pandas()
|
||||
d_heat = (temperature.groupby(temperature.columns.str[:2], axis=1).mean()
|
||||
.resample("1D").mean()<t_threshold).sum()
|
||||
temperature_average_d_heat = (temperature.groupby(temperature.columns.str[:2], axis=1)
|
||||
.mean()
|
||||
.apply(lambda x: get_average_temperature_during_heating_season(x, t_threshold=15)))
|
||||
# accumulated difference between internal and external temperature
|
||||
# units ([K]-[K]) * [days/year]
|
||||
temperature_factor = (t_threshold - temperature_average_d_heat) * d_heat * 1/365
|
||||
|
||||
return d_heat, temperature_factor
|
||||
|
||||
# windows ---------------------------------------------------------------
|
||||
def window_limit(l, window_assumptions):
|
||||
"""
|
||||
define limit u value from which on window is retrofitted
|
||||
"""
|
||||
m = (window_assumptions.diff()["u_limit"] /
|
||||
window_assumptions.diff()["strength"]).dropna().iloc[0]
|
||||
a = window_assumptions["u_limit"][0] - m * window_assumptions["strength"][0]
|
||||
return m*l + a
|
||||
|
||||
def u_retro_window(l, window_assumptions):
|
||||
"""
|
||||
define retrofitting value depending on renovation strength
|
||||
"""
|
||||
m = (window_assumptions.diff()["u_value"] /
|
||||
window_assumptions.diff()["strength"]).dropna().iloc[0]
|
||||
a = window_assumptions["u_value"][0] - m * window_assumptions["strength"][0]
|
||||
return max(m*l + a, 0.8)
|
||||
|
||||
def window_cost(u, cost_retro, window_assumptions):
|
||||
"""
|
||||
get costs for new windows depending on u value
|
||||
|
||||
"""
|
||||
m = (window_assumptions.diff()["cost"] /
|
||||
window_assumptions.diff()["u_value"]).dropna().iloc[0]
|
||||
a = window_assumptions["cost"][0] - m * window_assumptions["u_value"][0]
|
||||
window_cost = m*u + a
|
||||
if annualise_cost:
|
||||
window_cost = window_cost * interest_rate / (1 - (1 + interest_rate)
|
||||
** -cost_retro.loc["Window", "life_time"])
|
||||
return window_cost
|
||||
|
||||
|
||||
def calculate_costs(u_values, l, cost_retro, window_assumptions):
|
||||
"""
|
||||
returns costs for a given retrofitting strength weighted by the average
|
||||
surface/volume ratio of the component for each building type
|
||||
"""
|
||||
return u_values.apply(lambda x: (cost_retro.loc[x.name[3], "cost_var"] *
|
||||
100 * float(l) * l_weight.loc[x.name[3]][0]
|
||||
+ cost_retro.loc[x.name[3], "cost_fix"]) * x.A_element / x.A_C_Ref
|
||||
if x.name[3]!="Window"
|
||||
else (window_cost(x["new_U_{}".format(l)], cost_retro, window_assumptions) *
|
||||
x.A_element / x.A_C_Ref
|
||||
if x.value>window_limit(float(l), window_assumptions) else 0),
|
||||
axis=1)
|
||||
|
||||
|
||||
def calculate_new_u(u_values, l, l_weight, window_assumptions, k=0.035):
|
||||
"""
|
||||
calculate U-values after building retrofitting, depending on the old
|
||||
U-values (u_values). This is for simple insulation measuers, adding
|
||||
an additional layer of insulation.
|
||||
|
||||
They depend for the components Roof, Wall, Floor on the additional
|
||||
insulation thickness (l), and the weighting for the corresponding
|
||||
component (l_weight).
|
||||
|
||||
Windows are renovated to new ones with U-value (function: u_retro_window(l))
|
||||
only if the are worse insulated than a certain limit value
|
||||
(function: window_limit).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
u_values: pd.DataFrame
|
||||
l: string
|
||||
l_weight: pd.DataFrame (component, weight)
|
||||
k: thermal conductivity
|
||||
|
||||
"""
|
||||
return u_values.apply(lambda x:
|
||||
k / ((k / x.value) +
|
||||
(float(l) * l_weight.loc[x.name[3]]))
|
||||
if x.name[3]!="Window"
|
||||
else (min(x.value, u_retro_window(float(l), window_assumptions))
|
||||
if x.value>window_limit(float(l), window_assumptions) else x.value),
|
||||
axis=1)
|
||||
|
||||
|
||||
def map_tabula_to_hotmaps(df_tabula, df_hotmaps, column_prefix):
|
||||
"""
|
||||
maps tabula data to hotmaps data with wished column name prefix
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_tabula : pd.Series
|
||||
tabula data with pd.MultiIndex
|
||||
df_hotmaps : pd.DataFrame
|
||||
dataframe with hotmaps pd.MultiIndex
|
||||
column_prefix : string
|
||||
column prefix to rename column names of df_tabula
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame (index=df_hotmaps.index)
|
||||
returns df_tabula with hotmaps index
|
||||
|
||||
"""
|
||||
values = (df_tabula.unstack()
|
||||
.reindex(df_hotmaps.rename(index =
|
||||
lambda x: "MFH" if x not in rename_sectors.values()
|
||||
else x, level=1).index))
|
||||
values.columns = pd.MultiIndex.from_product([[column_prefix], values.columns])
|
||||
values.index = df_hotmaps.index
|
||||
return values
|
||||
|
||||
|
||||
def get_solar_gains_per_year(window_area):
|
||||
"""
|
||||
returns solar heat gains during heating season in [kWh/a] depending on
|
||||
the window area [m^2] of the building, assuming a equal distributed window
|
||||
orientation (east, south, north, west)
|
||||
"""
|
||||
return sum(external_shading * frame_area_fraction * non_perpendicular
|
||||
* 0.25 * window_area * solar_global_radiation)
|
||||
|
||||
|
||||
def map_to_lstrength(l_strength, df):
|
||||
"""
|
||||
renames column names from a pandas dataframe to map tabula retrofitting
|
||||
strengths [2 = moderate, 3 = ambitious] to l_strength
|
||||
"""
|
||||
middle = len(l_strength) // 2
|
||||
map_to_l = pd.MultiIndex.from_arrays([middle*[2] + len(l_strength[middle:])*[3],l_strength])
|
||||
l_strength_df = (df.stack(-2).reindex(map_to_l, axis=1, level=0)
|
||||
.droplevel(0, axis=1).unstack().swaplevel(axis=1).dropna(axis=1))
|
||||
return pd.concat([df.drop([2,3], axis=1, level=1), l_strength_df], axis=1)
|
||||
|
||||
|
||||
def calculate_heat_losses(u_values, data_tabula, l_strength, temperature_factor):
|
||||
"""
|
||||
calculates total annual heat losses Q_ht for different insulation thiknesses
|
||||
(l_strength), depening on current insulation state (u_values), standard
|
||||
building topologies and air ventilation from TABULA (data_tabula) and
|
||||
the accumulated difference between internal and external temperature
|
||||
during the heating season (temperature_factor).
|
||||
|
||||
Total annual heat losses Q_ht constitute from losses by:
|
||||
(1) transmission (H_tr_e)
|
||||
(2) thermal bridges (H_tb)
|
||||
(3) ventilation (H_ve)
|
||||
weighted by a factor (F_red_temp) which is taken account for non-uniform heating
|
||||
and the temperature factor of the heating season
|
||||
|
||||
Q_ht [W/m^2] = (H_tr_e + H_tb + H_ve) [W/m^2K] * F_red_temp * temperature_factor [K]
|
||||
|
||||
returns Q_ht as pd.DataFrame(index=['country_code', 'subsector', 'bage'],
|
||||
columns=[current (1.) + retrofitted (l_strength)])
|
||||
|
||||
"""
|
||||
# (1) by transmission
|
||||
# calculate new U values of building elements due to additional insulation
|
||||
for l in l_strength:
|
||||
u_values["new_U_{}".format(l)] = calculate_new_u(u_values,
|
||||
l, l_weight, window_assumptions)
|
||||
# surface area of building components [m^2]
|
||||
area_element = (data_tabula[["A_{}".format(e) for e in u_values.index.levels[3]]]
|
||||
.rename(columns=lambda x: x[2:]).stack().unstack(-2).stack())
|
||||
u_values["A_element"] = map_tabula_to_hotmaps(area_element,
|
||||
u_values, "A_element").xs(1, level=1, axis=1)
|
||||
|
||||
# heat transfer H_tr_e [W/m^2K] through building element
|
||||
# U_e * A_e / A_C_Ref
|
||||
columns = ["value"] + ["new_U_{}".format(l) for l in l_strength]
|
||||
heat_transfer = pd.concat([u_values[columns].mul(u_values.A_element, axis=0),
|
||||
u_values.A_element], axis=1)
|
||||
# get real subsector back in index
|
||||
heat_transfer.index = u_values.index
|
||||
heat_transfer = heat_transfer.groupby(level=[0,1,2]).sum()
|
||||
|
||||
# rename columns of heat transfer H_tr_e [W/K] and envelope surface A_envelope [m^2]
|
||||
heat_transfer.rename(columns={"A_element":"A_envelope",
|
||||
},inplace=True)
|
||||
|
||||
# map reference area
|
||||
heat_transfer["A_C_Ref"] = map_tabula_to_hotmaps(data_tabula.A_C_Ref,
|
||||
heat_transfer,
|
||||
"A_C_Ref").xs(1.,level=1,axis=1)
|
||||
u_values["A_C_Ref"] = map_tabula_to_hotmaps(data_tabula.A_C_Ref,
|
||||
u_values,
|
||||
"A_C_Ref").xs(1.,level=1,axis=1)
|
||||
|
||||
# get heat transfer by transmission through building element [W/(m^2K)]
|
||||
heat_transfer_perm2 = heat_transfer[columns].div(heat_transfer.A_C_Ref, axis=0)
|
||||
heat_transfer_perm2.columns = pd.MultiIndex.from_product([["H_tr_e"], [1.] + l_strength])
|
||||
|
||||
# (2) heat transfer by thermal bridges H_tb [W/(m^2K)]
|
||||
# H_tb = delta_U [W/(m^2K)]* A_envelope [m^2] / A_C_Ref [m^2]
|
||||
H_tb_tabula = data_tabula.delta_U_ThermalBridging * data_tabula.A_envelope / data_tabula.A_C_Ref
|
||||
heat_transfer_perm2 = pd.concat([heat_transfer_perm2,
|
||||
map_tabula_to_hotmaps(H_tb_tabula, heat_transfer_perm2, "H_tb")], axis=1)
|
||||
|
||||
|
||||
# (3) by ventilation H_ve [W/(m²K)]
|
||||
# = c_p_air [Wh/(m^3K)] * (n_air_use + n_air_infilitraion) [1/h] * h_room [m]
|
||||
H_ve_tabula = (data_tabula.n_air_infiltration + data_tabula.n_air_use) * c_p_air * h_room
|
||||
heat_transfer_perm2 = pd.concat([heat_transfer_perm2,
|
||||
map_tabula_to_hotmaps(H_ve_tabula, heat_transfer_perm2, "H_ve")],
|
||||
axis=1)
|
||||
|
||||
|
||||
# F_red_temp factor which is taken account for non-uniform heating e.g.
|
||||
# lower heating/switch point during night times/weekends
|
||||
# effect is significant for buildings with poor insulation
|
||||
# for well insulated buildings/passive houses it has nearly no effect
|
||||
# based on tabula values depending on the building type
|
||||
F_red_temp = map_tabula_to_hotmaps(data_tabula.F_red_temp,
|
||||
heat_transfer_perm2,
|
||||
"F_red_temp")
|
||||
# total heat transfer Q_ht [W/m^2] =
|
||||
# (H_tr_e + H_tb + H_ve) [W/m^2K] * F_red_temp * temperature_factor [K]
|
||||
# temperature_factor = (t_threshold - temperature_average_d_heat) * d_heat * 1/365
|
||||
heat_transfer_perm2 = map_to_lstrength(l_strength, heat_transfer_perm2)
|
||||
F_red_temp = map_to_lstrength(l_strength, F_red_temp)
|
||||
|
||||
Q_ht = (heat_transfer_perm2.groupby(level=1,axis=1).sum()
|
||||
.mul(F_red_temp.droplevel(0, axis=1))
|
||||
.mul(temperature_factor.reindex(heat_transfer_perm2.index,level=0), axis=0))
|
||||
|
||||
return Q_ht, heat_transfer_perm2
|
||||
|
||||
|
||||
def calculate_heat_gains(data_tabula, heat_transfer_perm2, d_heat):
|
||||
"""
|
||||
calculates heat gains Q_gain [W/m^2], which consititure from gains by:
|
||||
(1) solar radiation
|
||||
(2) internal heat gains
|
||||
|
||||
"""
|
||||
# (1) by solar radiation H_solar [W/m^2]
|
||||
# solar radiation [kWhm^2/a] / A_C_Ref [m^2] *1e3[1/k] / 8760 [a/h]
|
||||
H_solar = (data_tabula.A_Window.apply(lambda x: get_solar_gains_per_year(x))
|
||||
/ data_tabula.A_C_Ref * 1e3 / 8760)
|
||||
|
||||
Q_gain = map_tabula_to_hotmaps(H_solar, heat_transfer_perm2, "H_solar").xs(1.,level=1, axis=1)
|
||||
|
||||
# (2) by internal H_int
|
||||
# phi [W/m^2] * d_heat [d/a] * 1/365 [a/d] -> W/m^2
|
||||
Q_gain["H_int"] = (phi_int * d_heat * 1/365).reindex(index=heat_transfer_perm2.index, level=0)
|
||||
|
||||
return Q_gain
|
||||
|
||||
def calculate_gain_utilisation_factor(heat_transfer_perm2, Q_ht, Q_gain):
|
||||
"""
|
||||
calculates gain utilisation factor nu
|
||||
"""
|
||||
# time constant of the building tau [h] = c_m [Wh/(m^2K)] * 1 /(H_tr_e+H_tb*H_ve) [m^2 K /W]
|
||||
tau = c_m / heat_transfer_perm2.groupby(level=1,axis=1).sum()
|
||||
alpha = alpha_H_0 + (tau/tau_H_0)
|
||||
# heat balance ratio
|
||||
gamma = (1 / Q_ht).mul(Q_gain.sum(axis=1), axis=0)
|
||||
# gain utilisation factor
|
||||
nu = (1 - gamma**alpha) / (1 - gamma**(alpha+1))
|
||||
|
||||
return nu
|
||||
|
||||
|
||||
def calculate_space_heat_savings(u_values, data_tabula, l_strength,
|
||||
temperature_factor, d_heat):
|
||||
"""
|
||||
calculates space heat savings (dE_space [per unit of unrefurbished state])
|
||||
through retrofitting of the thermal envelope by additional insulation
|
||||
material (l_strength[m])
|
||||
"""
|
||||
# heat losses Q_ht [W/m^2]
|
||||
Q_ht, heat_transfer_perm2 = calculate_heat_losses(u_values, data_tabula,
|
||||
l_strength, temperature_factor)
|
||||
# heat gains Q_gain [W/m^2]
|
||||
Q_gain = calculate_heat_gains(data_tabula, heat_transfer_perm2, d_heat)
|
||||
|
||||
# calculate gain utilisation factor nu [dimensionless]
|
||||
nu = calculate_gain_utilisation_factor(heat_transfer_perm2, Q_ht, Q_gain)
|
||||
|
||||
# total space heating demand E_space
|
||||
E_space = Q_ht - nu.mul(Q_gain.sum(axis=1), axis=0)
|
||||
dE_space = E_space.div(E_space[1.], axis=0).iloc[:, 1:]
|
||||
dE_space.columns = pd.MultiIndex.from_product([["dE"], l_strength])
|
||||
|
||||
return dE_space
|
||||
|
||||
|
||||
def calculate_retro_costs(u_values, l_strength, cost_retro):
|
||||
"""
|
||||
returns costs of different retrofitting measures
|
||||
"""
|
||||
costs = pd.concat([calculate_costs(u_values, l, cost_retro, window_assumptions).rename(l)
|
||||
for l in l_strength], axis=1)
|
||||
|
||||
# energy and costs per country, sector, subsector and year
|
||||
cost_tot = costs.groupby(level=['country_code', 'subsector', 'bage']).sum()
|
||||
cost_tot.columns = pd.MultiIndex.from_product([["cost"], cost_tot.columns])
|
||||
|
||||
return cost_tot
|
||||
|
||||
|
||||
def sample_dE_costs_area(area, area_tot, costs, dE_space, countries,
|
||||
construction_index, tax_weighting):
|
||||
"""
|
||||
bring costs and energy savings together, fill area and costs per energy
|
||||
savings for missing countries, weight costs,
|
||||
determine "moderate" and "ambitious" retrofitting
|
||||
"""
|
||||
sub_to_sector_dict = (area.reset_index().replace(rename_sectors)
|
||||
.set_index("subsector")["sector"].to_dict())
|
||||
|
||||
area_reordered = ((area.rename(index=country_iso_dic, level=0)
|
||||
.rename(index=rename_sectors, level=2)
|
||||
.reset_index()).rename(columns={"country":"country_code"})
|
||||
.set_index(["country_code", "subsector", "bage"]))
|
||||
|
||||
cost_dE =(pd.concat([costs, dE_space], axis=1)
|
||||
.mul(area_reordered.weight, axis=0)
|
||||
.rename(sub_to_sector_dict,level=1).groupby(level=[0,1]).sum())
|
||||
|
||||
# map missing countries
|
||||
for ct in countries.difference(cost_dE.index.levels[0]):
|
||||
averaged_data = (cost_dE.reindex(index=map_for_missings[ct], level=0).mean(level=1)
|
||||
.set_index(pd.MultiIndex
|
||||
.from_product([[ct], cost_dE.index.levels[1]])))
|
||||
cost_dE = cost_dE.append(averaged_data)
|
||||
|
||||
|
||||
# weights costs after construction index
|
||||
if construction_index:
|
||||
for ct in list(map_for_missings.keys() - cost_w.index):
|
||||
cost_w.loc[ct] = cost_w.reindex(index=map_for_missings[ct]).mean()
|
||||
cost_dE.cost = cost_dE.cost.mul(cost_w, level=0, axis=0)
|
||||
|
||||
# weights cost depending on country taxes
|
||||
if tax_weighting:
|
||||
for ct in list(map_for_missings.keys() - tax_w.index):
|
||||
tax_w[ct] = tax_w.reindex(index=map_for_missings[ct]).mean()
|
||||
cost_dE.cost = cost_dE.cost.mul(tax_w, level=0, axis=0)
|
||||
|
||||
# drop not considered countries
|
||||
cost_dE = cost_dE.reindex(countries,level=0)
|
||||
# get share of residential and sevice floor area
|
||||
sec_w = area_tot.value / area_tot.value.groupby(level=0).sum()
|
||||
# get the total cost-energy-savings weight by sector area
|
||||
tot = (cost_dE.mul(sec_w, axis=0).groupby(level="country_code").sum()
|
||||
.set_index(pd.MultiIndex
|
||||
.from_product([cost_dE.index.unique(level="country_code"), ["tot"]])))
|
||||
cost_dE = cost_dE.append(tot).unstack().stack()
|
||||
|
||||
summed_area = (pd.DataFrame(area_tot.groupby("country").sum())
|
||||
.set_index(pd.MultiIndex.from_product(
|
||||
[area_tot.index.unique(level="country"), ["tot"]])))
|
||||
area_tot = area_tot.append(summed_area).unstack().stack()
|
||||
|
||||
|
||||
|
||||
cost_per_saving = (cost_dE["cost"] / (1-cost_dE["dE"])) #.diff(axis=1).dropna(axis=1)
|
||||
|
||||
|
||||
moderate_min = cost_per_saving.idxmin(axis=1)
|
||||
moderate_dE_cost = pd.concat([cost_dE.loc[i].xs(moderate_min.loc[i], level=1)
|
||||
for i in moderate_min.index], axis=1).T
|
||||
moderate_dE_cost.columns = pd.MultiIndex.from_product([moderate_dE_cost.columns,
|
||||
["moderate"]])
|
||||
|
||||
ambitious_dE_cost = cost_dE.xs("0.26", level=1,axis=1)
|
||||
ambitious_dE_cost.columns = pd.MultiIndex.from_product([ambitious_dE_cost.columns,
|
||||
["ambitious"]])
|
||||
|
||||
cost_dE_new = pd.concat([moderate_dE_cost, ambitious_dE_cost], axis=1)
|
||||
|
||||
return cost_dE_new, area_tot
|
||||
|
||||
|
||||
#%% --- MAIN --------------------------------------------------------------
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_retro_cost',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1'
|
||||
)
|
||||
|
||||
# ******** config *********************************************************
|
||||
|
||||
retro_opts = snakemake.config["sector"]["retrofitting"]
|
||||
interest_rate = retro_opts["interest_rate"]
|
||||
annualise_cost = retro_opts["annualise_cost"] # annualise the investment costs
|
||||
tax_weighting = retro_opts["tax_weighting"] # weight costs depending on taxes in countries
|
||||
construction_index = retro_opts["construction_index"] # weight costs depending on labour/material costs per ct
|
||||
|
||||
# mapping missing countries by neighbours
|
||||
map_for_missings = {
|
||||
"AL": ["BG", "RO", "GR"],
|
||||
"BA": ["HR"],
|
||||
"RS": ["BG", "RO", "HR", "HU"],
|
||||
"MK": ["BG", "GR"],
|
||||
"ME": ["BA", "AL", "RS", "HR"],
|
||||
"CH": ["SE", "DE"],
|
||||
"NO": ["SE"],
|
||||
}
|
||||
|
||||
# (1) prepare data **********************************************************
|
||||
|
||||
# building stock data -----------------------------------------------------
|
||||
# hotmaps u_values, heated floor areas per sector
|
||||
u_values, country_iso_dic, countries, area_tot, area = prepare_building_stock_data()
|
||||
# building topology, thermal bridges, ventilation losses
|
||||
data_tabula = prepare_building_topology(u_values)
|
||||
# costs for retrofitting -------------------------------------------------
|
||||
cost_retro, window_assumptions, cost_w, tax_w = prepare_cost_retro(country_iso_dic)
|
||||
# temperature dependend parameters
|
||||
d_heat, temperature_factor = prepare_temperature_data()
|
||||
|
||||
|
||||
# (2) space heat savings ****************************************************
|
||||
dE_space = calculate_space_heat_savings(u_values, data_tabula, l_strength,
|
||||
temperature_factor, d_heat)
|
||||
|
||||
# (3) costs *****************************************************************
|
||||
costs = calculate_retro_costs(u_values, l_strength, cost_retro)
|
||||
|
||||
# (4) cost-dE and area per sector *******************************************
|
||||
cost_dE, area_tot = sample_dE_costs_area(area, area_tot, costs, dE_space, countries,
|
||||
construction_index, tax_weighting)
|
||||
|
||||
# save *********************************************************************
|
||||
cost_dE.to_csv(snakemake.output.retro_cost)
|
||||
area_tot.to_csv(snakemake.output.floor_area)
|
||||
|
@ -1,52 +1,52 @@
|
||||
"""Build solar thermal collector time series."""
|
||||
|
||||
import geopandas as gpd
|
||||
import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import scipy as sp
|
||||
import helper
|
||||
import numpy as np
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_solar_thermal_profiles',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
|
||||
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
|
||||
config = snakemake.config['solar_thermal']
|
||||
|
||||
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
cutout_config = snakemake.config['atlite']['cutout']
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
||||
cutout_dir=snakemake.config['atlite']['cutout_dir'],
|
||||
**params)
|
||||
clustered_regions = gpd.read_file(
|
||||
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
|
||||
|
||||
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
||||
for area in ["total", "rural", "urban"]:
|
||||
|
||||
helper.clean_invalid_geometries(clustered_busregions)
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
|
||||
I = cutout.indicatormatrix(clustered_busregions)
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.] = 1.
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
for item in ["total","rural","urban"]:
|
||||
solar_thermal = cutout.solar_thermal(**config, matrix=M_tilde.T,
|
||||
index=clustered_regions.index)
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
||||
|
||||
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.] = 1.
|
||||
M_tilde = M/nonzero_sum
|
||||
|
||||
solar_thermal_angle = 45.
|
||||
#should clearsky_model be "simple" or "enhanced"?
|
||||
solar_thermal = cutout.solar_thermal(clearsky_model="simple",
|
||||
orientation={'slope': solar_thermal_angle, 'azimuth': 180.},
|
||||
matrix = M_tilde.T,
|
||||
index=clustered_busregions.index)
|
||||
|
||||
solar_thermal.to_netcdf(snakemake.output["solar_thermal_"+item])
|
||||
solar_thermal.to_netcdf(snakemake.output[f"solar_thermal_{area}"])
|
||||
|
@ -1,50 +1,46 @@
|
||||
"""Build temperature profiles."""
|
||||
|
||||
import geopandas as gpd
|
||||
import atlite
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
import scipy as sp
|
||||
import helper
|
||||
import numpy as np
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_temperature_profiles',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
|
||||
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
|
||||
time = pd.date_range(freq='h', **snakemake.config['snapshots'])
|
||||
cutout_config = snakemake.config['atlite']['cutout']
|
||||
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
||||
|
||||
clustered_regions = gpd.read_file(
|
||||
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
|
||||
|
||||
cutout = atlite.Cutout(snakemake.config['atlite']['cutout_name'],
|
||||
cutout_dir=snakemake.config['atlite']['cutout_dir'],
|
||||
**params)
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
||||
clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True)
|
||||
for area in ["total", "rural", "urban"]:
|
||||
|
||||
clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index)
|
||||
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
||||
|
||||
helper.clean_invalid_geometries(clustered_busregions)
|
||||
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
||||
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
||||
|
||||
I = cutout.indicatormatrix(clustered_busregions)
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.] = 1.
|
||||
M_tilde = M / nonzero_sum
|
||||
|
||||
temp_air = cutout.temperature(
|
||||
matrix=M_tilde.T, index=clustered_regions.index)
|
||||
|
||||
for item in ["total","rural","urban"]:
|
||||
temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"])
|
||||
|
||||
pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item])
|
||||
temp_soil = cutout.soil_temperature(
|
||||
matrix=M_tilde.T, index=clustered_regions.index)
|
||||
|
||||
M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x')))))
|
||||
nonzero_sum = M.sum(axis=0, keepdims=True)
|
||||
nonzero_sum[nonzero_sum == 0.] = 1.
|
||||
M_tilde = M/nonzero_sum
|
||||
|
||||
temp_air = cutout.temperature(matrix=M_tilde.T,index=clustered_busregions.index)
|
||||
|
||||
temp_air.to_netcdf(snakemake.output["temp_air_"+item])
|
||||
|
||||
temp_soil = cutout.soil_temperature(matrix=M_tilde.T,index=clustered_busregions.index)
|
||||
|
||||
temp_soil.to_netcdf(snakemake.output["temp_soil_"+item])
|
||||
temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"])
|
||||
|
@ -1,10 +1,17 @@
|
||||
|
||||
from shutil import copy
|
||||
|
||||
files = ["config.yaml",
|
||||
"Snakefile",
|
||||
"scripts/solve_network.py",
|
||||
"scripts/prepare_sector_network.py"]
|
||||
files = [
|
||||
"config.yaml",
|
||||
"Snakefile",
|
||||
"scripts/solve_network.py",
|
||||
"scripts/prepare_sector_network.py"
|
||||
]
|
||||
|
||||
for f in files:
|
||||
copy(f,snakemake.config['summary_dir'] + '/' + snakemake.config['run'] + '/configs/')
|
||||
if __name__ == '__main__':
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('copy_config')
|
||||
|
||||
for f in files:
|
||||
copy(f,snakemake.config['summary_dir'] + '/' + snakemake.config['run'] + '/configs/')
|
||||
|
@ -1,15 +1,91 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
from pypsa.descriptors import Dict
|
||||
from pypsa.components import components, component_attrs
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
#https://stackoverflow.com/questions/20833344/fix-invalid-polygon-in-shapely
|
||||
#https://stackoverflow.com/questions/13062334/polygon-intersection-error-in-shapely-shapely-geos-topologicalerror-the-opera
|
||||
#https://shapely.readthedocs.io/en/latest/manual.html#object.buffer
|
||||
def clean_invalid_geometries(geometries):
|
||||
"""Fix self-touching or self-crossing polygons; these seem to appear
|
||||
due to numerical problems from writing and reading, since the geometries
|
||||
are valid before being written in pypsa-eur/scripts/cluster_network.py"""
|
||||
for i,p in geometries.items():
|
||||
if not p.is_valid:
|
||||
logger.warning(f'Clustered region {i} had an invalid geometry, fixing using zero buffer.')
|
||||
geometries[i] = p.buffer(0)
|
||||
|
||||
def override_component_attrs(directory):
|
||||
"""Tell PyPSA that links can have multiple outputs by
|
||||
overriding the component_attrs. This can be done for
|
||||
as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
|
||||
Parameters
|
||||
----------
|
||||
directory : string
|
||||
Folder where component attributes to override are stored
|
||||
analogous to ``pypsa/component_attrs``, e.g. `links.csv`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dictionary of overriden component attributes.
|
||||
"""
|
||||
|
||||
attrs = Dict({k : v.copy() for k,v in component_attrs.items()})
|
||||
|
||||
for component, list_name in components.list_name.items():
|
||||
fn = f"{directory}/{list_name}.csv"
|
||||
if os.path.isfile(fn):
|
||||
overrides = pd.read_csv(fn, index_col=0, na_values="n/a")
|
||||
attrs[component] = overrides.combine_first(attrs[component])
|
||||
|
||||
return attrs
|
||||
|
||||
|
||||
# from pypsa-eur/_helpers.py
|
||||
def mock_snakemake(rulename, **wildcards):
|
||||
"""
|
||||
This function is expected to be executed from the 'scripts'-directory of '
|
||||
the snakemake project. It returns a snakemake.script.Snakemake object,
|
||||
based on the Snakefile.
|
||||
|
||||
If a rule has wildcards, you have to specify them in **wildcards.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rulename: str
|
||||
name of the rule for which the snakemake object should be generated
|
||||
**wildcards:
|
||||
keyword arguments fixing the wildcards. Only necessary if wildcards are
|
||||
needed.
|
||||
"""
|
||||
import snakemake as sm
|
||||
import os
|
||||
from pypsa.descriptors import Dict
|
||||
from snakemake.script import Snakemake
|
||||
|
||||
script_dir = Path(__file__).parent.resolve()
|
||||
assert Path.cwd().resolve() == script_dir, \
|
||||
f'mock_snakemake has to be run from the repository scripts directory {script_dir}'
|
||||
os.chdir(script_dir.parent)
|
||||
for p in sm.SNAKEFILE_CHOICES:
|
||||
if os.path.exists(p):
|
||||
snakefile = p
|
||||
break
|
||||
workflow = sm.Workflow(snakefile)
|
||||
workflow.include(snakefile)
|
||||
workflow.global_resources = {}
|
||||
rule = workflow.get_rule(rulename)
|
||||
dag = sm.dag.DAG(workflow, rules=[rule])
|
||||
wc = Dict(wildcards)
|
||||
job = sm.jobs.Job(rule, dag, wc)
|
||||
|
||||
def make_accessable(*ios):
|
||||
for io in ios:
|
||||
for i in range(len(io)):
|
||||
io[i] = os.path.abspath(io[i])
|
||||
|
||||
make_accessable(job.input, job.output, job.log)
|
||||
snakemake = Snakemake(job.input, job.output, job.params, job.wildcards,
|
||||
job.threads, job.resources, job.log,
|
||||
job.dag.workflow.config, job.rule.name, None,)
|
||||
# create log and output dir if not existent
|
||||
for path in list(snakemake.log) + list(snakemake.output):
|
||||
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
os.chdir(script_dir)
|
||||
return snakemake
|
@ -1,41 +1,21 @@
|
||||
|
||||
from six import iteritems
|
||||
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
|
||||
import numpy as np
|
||||
|
||||
import yaml
|
||||
import pypsa
|
||||
|
||||
from vresutils.costdata import annuity
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from prepare_sector_network import generate_periodic_profiles, prepare_costs
|
||||
|
||||
import yaml
|
||||
from prepare_sector_network import prepare_costs
|
||||
from helper import override_component_attrs
|
||||
|
||||
idx = pd.IndexSlice
|
||||
|
||||
opt_name = {"Store": "e", "Line" : "s", "Transformer" : "s"}
|
||||
|
||||
#First tell PyPSA that links can have multiple outputs by
|
||||
#overriding the component_attrs. This can be done for
|
||||
#as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
|
||||
|
||||
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
|
||||
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
|
||||
override_component_attrs["StorageUnit"].loc["p_dispatch"] = ["series","MW",0.,"Storage discharging.","Output"]
|
||||
override_component_attrs["StorageUnit"].loc["p_store"] = ["series","MW",0.,"Storage charging.","Output"]
|
||||
|
||||
|
||||
opt_name = {
|
||||
"Store": "e",
|
||||
"Line": "s",
|
||||
"Transformer": "s"
|
||||
}
|
||||
|
||||
|
||||
def assign_carriers(n):
|
||||
@ -45,18 +25,16 @@ def assign_carriers(n):
|
||||
|
||||
def assign_locations(n):
|
||||
for c in n.iterate_components(n.one_port_components|n.branch_components):
|
||||
|
||||
ifind = pd.Series(c.df.index.str.find(" ",start=4),c.df.index)
|
||||
|
||||
for i in ifind.unique():
|
||||
names = ifind.index[ifind == i]
|
||||
|
||||
if i == -1:
|
||||
c.df.loc[names,'location'] = ""
|
||||
c.df.loc[names, 'location'] = ""
|
||||
else:
|
||||
c.df.loc[names,'location'] = names.str[:i]
|
||||
c.df.loc[names, 'location'] = names.str[:i]
|
||||
|
||||
def calculate_nodal_cfs(n,label,nodal_cfs):
|
||||
|
||||
def calculate_nodal_cfs(n, label, nodal_cfs):
|
||||
#Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components((n.branch_components^{"Line","Transformer"})|n.controllable_one_port_components^{"Load","StorageUnit"}):
|
||||
capacities_c = c.df.groupby(["location","carrier"])[opt_name.get(c.name,"p") + "_nom_opt"].sum()
|
||||
@ -71,21 +49,18 @@ def calculate_nodal_cfs(n,label,nodal_cfs):
|
||||
sys.exit()
|
||||
|
||||
c.df["p"] = p
|
||||
p_c = c.df.groupby(["location","carrier"])["p"].sum()
|
||||
p_c = c.df.groupby(["location", "carrier"])["p"].sum()
|
||||
|
||||
cf_c = p_c/capacities_c
|
||||
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name,) + t for t in cf_c.index.to_list()])
|
||||
nodal_cfs = nodal_cfs.reindex(index|nodal_cfs.index)
|
||||
nodal_cfs = nodal_cfs.reindex(index.union(nodal_cfs.index))
|
||||
nodal_cfs.loc[index,label] = cf_c.values
|
||||
|
||||
return nodal_cfs
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def calculate_cfs(n,label,cfs):
|
||||
def calculate_cfs(n, label, cfs):
|
||||
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load","StorageUnit"}):
|
||||
capacities_c = c.df[opt_name.get(c.name,"p") + "_nom_opt"].groupby(c.df.carrier).sum()
|
||||
@ -103,50 +78,48 @@ def calculate_cfs(n,label,cfs):
|
||||
|
||||
cf_c = pd.concat([cf_c], keys=[c.list_name])
|
||||
|
||||
cfs = cfs.reindex(cf_c.index|cfs.index)
|
||||
cfs = cfs.reindex(cf_c.index.union(cfs.index))
|
||||
|
||||
cfs.loc[cf_c.index,label] = cf_c
|
||||
|
||||
return cfs
|
||||
|
||||
|
||||
|
||||
|
||||
def calculate_nodal_costs(n,label,nodal_costs):
|
||||
def calculate_nodal_costs(n, label, nodal_costs):
|
||||
#Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
||||
c.df["capital_costs"] = c.df.capital_cost*c.df[opt_name.get(c.name,"p") + "_nom_opt"]
|
||||
capital_costs = c.df.groupby(["location","carrier"])["capital_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name,"capital") + t for t in capital_costs.index.to_list()])
|
||||
nodal_costs = nodal_costs.reindex(index|nodal_costs.index)
|
||||
c.df["capital_costs"] = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
|
||||
capital_costs = c.df.groupby(["location", "carrier"])["capital_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name, "capital") + t for t in capital_costs.index.to_list()])
|
||||
nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
|
||||
nodal_costs.loc[index,label] = capital_costs.values
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings,axis=0).sum()
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
elif c.name == "Line":
|
||||
continue
|
||||
elif c.name == "StorageUnit":
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings,axis=0)
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
p_all[p_all < 0.] = 0.
|
||||
p = p_all.sum()
|
||||
else:
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings,axis=0).sum()
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
|
||||
#correct sequestration cost
|
||||
if c.name == "Store":
|
||||
items = c.df.index[(c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.)]
|
||||
c.df.loc[items,"marginal_cost"] = -20.
|
||||
c.df.loc[items, "marginal_cost"] = -20.
|
||||
|
||||
c.df["marginal_costs"] = p*c.df.marginal_cost
|
||||
marginal_costs = c.df.groupby(["location","carrier"])["marginal_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name,"marginal") + t for t in marginal_costs.index.to_list()])
|
||||
nodal_costs = nodal_costs.reindex(index|nodal_costs.index)
|
||||
nodal_costs.loc[index,label] = marginal_costs.values
|
||||
marginal_costs = c.df.groupby(["location", "carrier"])["marginal_costs"].sum()
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name, "marginal") + t for t in marginal_costs.index.to_list()])
|
||||
nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
|
||||
nodal_costs.loc[index, label] = marginal_costs.values
|
||||
|
||||
return nodal_costs
|
||||
|
||||
|
||||
def calculate_costs(n,label,costs):
|
||||
def calculate_costs(n, label, costs):
|
||||
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
||||
capital_costs = c.df.capital_cost*c.df[opt_name.get(c.name,"p") + "_nom_opt"]
|
||||
@ -155,25 +128,25 @@ def calculate_costs(n,label,costs):
|
||||
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=["capital"])
|
||||
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=[c.list_name])
|
||||
|
||||
costs = costs.reindex(capital_costs_grouped.index|costs.index)
|
||||
costs = costs.reindex(capital_costs_grouped.index.union(costs.index))
|
||||
|
||||
costs.loc[capital_costs_grouped.index,label] = capital_costs_grouped
|
||||
costs.loc[capital_costs_grouped.index, label] = capital_costs_grouped
|
||||
|
||||
if c.name == "Link":
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings,axis=0).sum()
|
||||
p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
elif c.name == "Line":
|
||||
continue
|
||||
elif c.name == "StorageUnit":
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings,axis=0)
|
||||
p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
|
||||
p_all[p_all < 0.] = 0.
|
||||
p = p_all.sum()
|
||||
else:
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings,axis=0).sum()
|
||||
p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
|
||||
#correct sequestration cost
|
||||
if c.name == "Store":
|
||||
items = c.df.index[(c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.)]
|
||||
c.df.loc[items,"marginal_cost"] = -20.
|
||||
c.df.loc[items, "marginal_cost"] = -20.
|
||||
|
||||
marginal_costs = p*c.df.marginal_cost
|
||||
|
||||
@ -182,53 +155,63 @@ def calculate_costs(n,label,costs):
|
||||
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=["marginal"])
|
||||
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=[c.list_name])
|
||||
|
||||
costs = costs.reindex(marginal_costs_grouped.index|costs.index)
|
||||
costs = costs.reindex(marginal_costs_grouped.index.union(costs.index))
|
||||
|
||||
costs.loc[marginal_costs_grouped.index,label] = marginal_costs_grouped
|
||||
|
||||
#add back in costs of links if there is a line volume limit
|
||||
if label[1] != "opt":
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'fixed']*n.links.length + costs_db.at['HVDC inverter pair', 'fixed'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "fixed"]*(n.lines.length*n.lines.s_nom_opt).sum()
|
||||
else:
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'fixed']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
|
||||
|
||||
#add back in all hydro
|
||||
#costs.loc[("storage_units","capital","hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro","p_nom"].sum()
|
||||
#costs.loc[("storage_units","capital","PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS","p_nom"].sum()
|
||||
#costs.loc[("generators","capital","ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror","p_nom"].sum()
|
||||
# add back in all hydro
|
||||
#costs.loc[("storage_units", "capital", "hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro", "p_nom"].sum()
|
||||
#costs.loc[("storage_units", "capital", "PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS", "p_nom"].sum()
|
||||
#costs.loc[("generators", "capital", "ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror", "p_nom"].sum()
|
||||
|
||||
return costs
|
||||
|
||||
|
||||
def calculate_nodal_capacities(n,label,nodal_capacities):
|
||||
def calculate_cumulative_cost():
|
||||
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
||||
|
||||
cumulative_cost = pd.DataFrame(index = df["costs"].sum().index,
|
||||
columns=pd.Series(data=np.arange(0,0.1, 0.01), name='social discount rate'))
|
||||
|
||||
#discount cost and express them in money value of planning_horizons[0]
|
||||
for r in cumulative_cost.columns:
|
||||
cumulative_cost[r]=[df["costs"].sum()[index]/((1+r)**(index[-1]-planning_horizons[0])) for index in cumulative_cost.index]
|
||||
|
||||
#integrate cost throughout the transition path
|
||||
for r in cumulative_cost.columns:
|
||||
for cluster in cumulative_cost.index.get_level_values(level=0).unique():
|
||||
for lv in cumulative_cost.index.get_level_values(level=1).unique():
|
||||
for sector_opts in cumulative_cost.index.get_level_values(level=2).unique():
|
||||
cumulative_cost.loc[(cluster, lv, sector_opts, 'cumulative cost'),r] = np.trapz(cumulative_cost.loc[idx[cluster, lv, sector_opts,planning_horizons],r].values, x=planning_horizons)
|
||||
|
||||
return cumulative_cost
|
||||
|
||||
|
||||
def calculate_nodal_capacities(n, label, nodal_capacities):
|
||||
#Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
||||
nodal_capacities_c = c.df.groupby(["location","carrier"])[opt_name.get(c.name,"p") + "_nom_opt"].sum()
|
||||
index = pd.MultiIndex.from_tuples([(c.list_name,) + t for t in nodal_capacities_c.index.to_list()])
|
||||
nodal_capacities = nodal_capacities.reindex(index|nodal_capacities.index)
|
||||
nodal_capacities = nodal_capacities.reindex(index.union(nodal_capacities.index))
|
||||
nodal_capacities.loc[index,label] = nodal_capacities_c.values
|
||||
|
||||
return nodal_capacities
|
||||
|
||||
|
||||
|
||||
|
||||
def calculate_capacities(n,label,capacities):
|
||||
def calculate_capacities(n, label, capacities):
|
||||
|
||||
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
|
||||
capacities_grouped = c.df[opt_name.get(c.name,"p") + "_nom_opt"].groupby(c.df.carrier).sum()
|
||||
capacities_grouped = pd.concat([capacities_grouped], keys=[c.list_name])
|
||||
|
||||
capacities = capacities.reindex(capacities_grouped.index|capacities.index)
|
||||
capacities = capacities.reindex(capacities_grouped.index.union(capacities.index))
|
||||
|
||||
capacities.loc[capacities_grouped.index,label] = capacities_grouped
|
||||
capacities.loc[capacities_grouped.index, label] = capacities_grouped
|
||||
|
||||
return capacities
|
||||
|
||||
|
||||
def calculate_curtailment(n,label,curtailment):
|
||||
def calculate_curtailment(n, label, curtailment):
|
||||
|
||||
avail = n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt).sum().groupby(n.generators.carrier).sum()
|
||||
used = n.generators_t.p.sum().groupby(n.generators.carrier).sum()
|
||||
@ -237,31 +220,32 @@ def calculate_curtailment(n,label,curtailment):
|
||||
|
||||
return curtailment
|
||||
|
||||
def calculate_energy(n,label,energy):
|
||||
|
||||
def calculate_energy(n, label, energy):
|
||||
|
||||
for c in n.iterate_components(n.one_port_components|n.branch_components):
|
||||
|
||||
if c.name in n.one_port_components:
|
||||
c_energies = c.pnl.p.multiply(n.snapshot_weightings,axis=0).sum().multiply(c.df.sign).groupby(c.df.carrier).sum()
|
||||
c_energies = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum().multiply(c.df.sign).groupby(c.df.carrier).sum()
|
||||
else:
|
||||
c_energies = pd.Series(0.,c.df.carrier.unique())
|
||||
c_energies = pd.Series(0., c.df.carrier.unique())
|
||||
for port in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
totals = c.pnl["p"+port].multiply(n.snapshot_weightings,axis=0).sum()
|
||||
totals = c.pnl["p" + port].multiply(n.snapshot_weightings.generators, axis=0).sum()
|
||||
#remove values where bus is missing (bug in nomopyomo)
|
||||
no_bus = c.df.index[c.df["bus"+port] == ""]
|
||||
totals.loc[no_bus] = n.component_attrs[c.name].loc["p"+port,"default"]
|
||||
no_bus = c.df.index[c.df["bus" + port] == ""]
|
||||
totals.loc[no_bus] = n.component_attrs[c.name].loc["p" + port, "default"]
|
||||
c_energies -= totals.groupby(c.df.carrier).sum()
|
||||
|
||||
c_energies = pd.concat([c_energies], keys=[c.list_name])
|
||||
|
||||
energy = energy.reindex(c_energies.index|energy.index)
|
||||
energy = energy.reindex(c_energies.index.union(energy.index))
|
||||
|
||||
energy.loc[c_energies.index,label] = c_energies
|
||||
energy.loc[c_energies.index, label] = c_energies
|
||||
|
||||
return energy
|
||||
|
||||
|
||||
def calculate_supply(n,label,supply):
|
||||
def calculate_supply(n, label, supply):
|
||||
"""calculate the max dispatch of each component at the buses aggregated by carrier"""
|
||||
|
||||
bus_carriers = n.buses.carrier.unique()
|
||||
@ -272,16 +256,16 @@ def calculate_supply(n,label,supply):
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
|
||||
items = c.df.index[c.df.bus.map(bus_map)]
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = c.pnl.p[items].max().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'carrier']).sum()
|
||||
s = c.pnl.p[items].max().multiply(c.df.loc[items, 'sign']).groupby(c.df.loc[items, 'carrier']).sum()
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply = supply.reindex(s.index|supply.index)
|
||||
supply = supply.reindex(s.index.union(supply.index))
|
||||
supply.loc[s.index,label] = s
|
||||
|
||||
|
||||
@ -289,23 +273,23 @@ def calculate_supply(n,label,supply):
|
||||
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map,na_action=False)]
|
||||
items = c.df.index[c.df["bus" + end].map(bus_map, na_action=False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
#lots of sign compensation for direction and to do maximums
|
||||
s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items,'carrier']).sum()
|
||||
s.index = s.index+end
|
||||
s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items, 'carrier']).sum()
|
||||
s.index = s.index + end
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply = supply.reindex(s.index|supply.index)
|
||||
supply.loc[s.index,label] = s
|
||||
supply = supply.reindex(s.index.union(supply.index))
|
||||
supply.loc[s.index, label] = s
|
||||
|
||||
return supply
|
||||
|
||||
def calculate_supply_energy(n,label,supply_energy):
|
||||
def calculate_supply_energy(n, label, supply_energy):
|
||||
"""calculate the total energy supply/consuption of each component at the buses aggregated by carrier"""
|
||||
|
||||
|
||||
@ -317,61 +301,70 @@ def calculate_supply_energy(n,label,supply_energy):
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
|
||||
items = c.df.index[c.df.bus.map(bus_map)]
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = c.pnl.p[items].multiply(n.snapshot_weightings,axis=0).sum().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'carrier']).sum()
|
||||
s = c.pnl.p[items].multiply(n.snapshot_weightings.generators,axis=0).sum().multiply(c.df.loc[items, 'sign']).groupby(c.df.loc[items, 'carrier']).sum()
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply_energy = supply_energy.reindex(s.index|supply_energy.index)
|
||||
supply_energy.loc[s.index,label] = s
|
||||
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
|
||||
supply_energy.loc[s.index, label] = s
|
||||
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map,na_action=False)]
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map, na_action=False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = (-1)*c.pnl["p"+end][items].multiply(n.snapshot_weightings,axis=0).sum().groupby(c.df.loc[items,'carrier']).sum()
|
||||
s.index = s.index+end
|
||||
s = (-1)*c.pnl["p"+end][items].multiply(n.snapshot_weightings.generators,axis=0).sum().groupby(c.df.loc[items, 'carrier']).sum()
|
||||
s.index = s.index + end
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[i])
|
||||
|
||||
supply_energy = supply_energy.reindex(s.index|supply_energy.index)
|
||||
|
||||
supply_energy.loc[s.index,label] = s
|
||||
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
|
||||
|
||||
supply_energy.loc[s.index, label] = s
|
||||
|
||||
return supply_energy
|
||||
|
||||
def calculate_metrics(n,label,metrics):
|
||||
|
||||
metrics = metrics.reindex(pd.Index(["line_volume","line_volume_limit","line_volume_AC","line_volume_DC","line_volume_shadow","co2_shadow"])|metrics.index)
|
||||
def calculate_metrics(n, label, metrics):
|
||||
|
||||
metrics.at["line_volume_DC",label] = (n.links.length*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
metrics.at["line_volume_AC",label] = (n.lines.length*n.lines.s_nom_opt).sum()
|
||||
metrics.at["line_volume",label] = metrics.loc[["line_volume_AC","line_volume_DC"],label].sum()
|
||||
metrics_list = [
|
||||
"line_volume",
|
||||
"line_volume_limit",
|
||||
"line_volume_AC",
|
||||
"line_volume_DC",
|
||||
"line_volume_shadow",
|
||||
"co2_shadow"
|
||||
]
|
||||
|
||||
if hasattr(n,"line_volume_limit"):
|
||||
metrics.at["line_volume_limit",label] = n.line_volume_limit
|
||||
metrics.at["line_volume_shadow",label] = n.line_volume_limit_dual
|
||||
metrics = metrics.reindex(pd.Index(metrics_list).union(metrics.index))
|
||||
|
||||
metrics.at["line_volume_DC",label] = (n.links.length * n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
metrics.at["line_volume_AC",label] = (n.lines.length * n.lines.s_nom_opt).sum()
|
||||
metrics.at["line_volume",label] = metrics.loc[["line_volume_AC", "line_volume_DC"], label].sum()
|
||||
|
||||
if hasattr(n, "line_volume_limit"):
|
||||
metrics.at["line_volume_limit", label] = n.line_volume_limit
|
||||
metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual
|
||||
|
||||
if "CO2Limit" in n.global_constraints.index:
|
||||
metrics.at["co2_shadow",label] = n.global_constraints.at["CO2Limit","mu"]
|
||||
metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"]
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def calculate_prices(n,label,prices):
|
||||
def calculate_prices(n, label, prices):
|
||||
|
||||
prices = prices.reindex(prices.index|n.buses.carrier.unique())
|
||||
prices = prices.reindex(prices.index.union(n.buses.carrier.unique()))
|
||||
|
||||
#WARNING: this is time-averaged, see weighted_prices for load-weighted average
|
||||
prices[label] = n.buses_t.marginal_price.mean().groupby(n.buses.carrier).mean()
|
||||
@ -379,20 +372,26 @@ def calculate_prices(n,label,prices):
|
||||
return prices
|
||||
|
||||
|
||||
|
||||
def calculate_weighted_prices(n,label,weighted_prices):
|
||||
def calculate_weighted_prices(n, label, weighted_prices):
|
||||
# Warning: doesn't include storage units as loads
|
||||
|
||||
weighted_prices = weighted_prices.reindex(pd.Index([
|
||||
"electricity",
|
||||
"heat",
|
||||
"space heat",
|
||||
"urban heat",
|
||||
"space urban heat",
|
||||
"gas",
|
||||
"H2"
|
||||
]))
|
||||
|
||||
weighted_prices = weighted_prices.reindex(pd.Index(["electricity","heat","space heat","urban heat","space urban heat","gas","H2"]))
|
||||
|
||||
link_loads = {"electricity" : ["heat pump", "resistive heater", "battery charger", "H2 Electrolysis"],
|
||||
"heat" : ["water tanks charger"],
|
||||
"urban heat" : ["water tanks charger"],
|
||||
"space heat" : [],
|
||||
"space urban heat" : [],
|
||||
"gas" : ["OCGT","gas boiler","CHP electric","CHP heat"],
|
||||
"H2" : ["Sabatier", "H2 Fuel Cell"]}
|
||||
link_loads = {"electricity": ["heat pump", "resistive heater", "battery charger", "H2 Electrolysis"],
|
||||
"heat": ["water tanks charger"],
|
||||
"urban heat": ["water tanks charger"],
|
||||
"space heat": [],
|
||||
"space urban heat": [],
|
||||
"gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"],
|
||||
"H2": ["Sabatier", "H2 Fuel Cell"]}
|
||||
|
||||
for carrier in link_loads:
|
||||
|
||||
@ -408,14 +407,13 @@ def calculate_weighted_prices(n,label,weighted_prices):
|
||||
if buses.empty:
|
||||
continue
|
||||
|
||||
if carrier in ["H2","gas"]:
|
||||
load = pd.DataFrame(index=n.snapshots,columns=buses,data=0.)
|
||||
if carrier in ["H2", "gas"]:
|
||||
load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.)
|
||||
elif carrier[:5] == "space":
|
||||
load = heat_demand_df[buses.str[:2]].rename(columns=lambda i: str(i)+suffix)
|
||||
else:
|
||||
load = n.loads_t.p_set[buses]
|
||||
|
||||
|
||||
for tech in link_loads[carrier]:
|
||||
|
||||
names = n.links.index[n.links.index.to_series().str[-len(tech):] == tech]
|
||||
@ -423,24 +421,22 @@ def calculate_weighted_prices(n,label,weighted_prices):
|
||||
if names.empty:
|
||||
continue
|
||||
|
||||
load += n.links_t.p0[names].groupby(n.links.loc[names,"bus0"],axis=1).sum()
|
||||
load += n.links_t.p0[names].groupby(n.links.loc[names, "bus0"],axis=1).sum()
|
||||
|
||||
#Add H2 Store when charging
|
||||
# Add H2 Store when charging
|
||||
#if carrier == "H2":
|
||||
# stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store","bus"],axis=1).sum(axis=1)
|
||||
# stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store", "bus"],axis=1).sum(axis=1)
|
||||
# stores[stores > 0.] = 0.
|
||||
# load += -stores
|
||||
|
||||
weighted_prices.loc[carrier,label] = (load*n.buses_t.marginal_price[buses]).sum().sum()/load.sum().sum()
|
||||
weighted_prices.loc[carrier,label] = (load * n.buses_t.marginal_price[buses]).sum().sum() / load.sum().sum()
|
||||
|
||||
if carrier[:5] == "space":
|
||||
print(load*n.buses_t.marginal_price[buses])
|
||||
print(load * n.buses_t.marginal_price[buses])
|
||||
|
||||
return weighted_prices
|
||||
|
||||
|
||||
|
||||
|
||||
def calculate_market_values(n, label, market_values):
|
||||
# Warning: doesn't include storage units
|
||||
|
||||
@ -450,41 +446,40 @@ def calculate_market_values(n, label, market_values):
|
||||
|
||||
## First do market value of generators ##
|
||||
|
||||
generators = n.generators.index[n.buses.loc[n.generators.bus,"carrier"] == carrier]
|
||||
generators = n.generators.index[n.buses.loc[n.generators.bus, "carrier"] == carrier]
|
||||
|
||||
techs = n.generators.loc[generators,"carrier"].value_counts().index
|
||||
techs = n.generators.loc[generators, "carrier"].value_counts().index
|
||||
|
||||
market_values = market_values.reindex(market_values.index | techs)
|
||||
market_values = market_values.reindex(market_values.index.union(techs))
|
||||
|
||||
|
||||
for tech in techs:
|
||||
gens = generators[n.generators.loc[generators,"carrier"] == tech]
|
||||
gens = generators[n.generators.loc[generators, "carrier"] == tech]
|
||||
|
||||
dispatch = n.generators_t.p[gens].groupby(n.generators.loc[gens,"bus"],axis=1).sum().reindex(columns=buses,fill_value=0.)
|
||||
dispatch = n.generators_t.p[gens].groupby(n.generators.loc[gens, "bus"], axis=1).sum().reindex(columns=buses, fill_value=0.)
|
||||
|
||||
revenue = dispatch*n.buses_t.marginal_price[buses]
|
||||
|
||||
market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum()
|
||||
revenue = dispatch * n.buses_t.marginal_price[buses]
|
||||
|
||||
market_values.at[tech,label] = revenue.sum().sum() / dispatch.sum().sum()
|
||||
|
||||
|
||||
## Now do market value of links ##
|
||||
|
||||
for i in ["0","1"]:
|
||||
all_links = n.links.index[n.buses.loc[n.links["bus"+i],"carrier"] == carrier]
|
||||
for i in ["0", "1"]:
|
||||
all_links = n.links.index[n.buses.loc[n.links["bus"+i], "carrier"] == carrier]
|
||||
|
||||
techs = n.links.loc[all_links,"carrier"].value_counts().index
|
||||
techs = n.links.loc[all_links, "carrier"].value_counts().index
|
||||
|
||||
market_values = market_values.reindex(market_values.index | techs)
|
||||
market_values = market_values.reindex(market_values.index.union(techs))
|
||||
|
||||
for tech in techs:
|
||||
links = all_links[n.links.loc[all_links,"carrier"] == tech]
|
||||
links = all_links[n.links.loc[all_links, "carrier"] == tech]
|
||||
|
||||
dispatch = n.links_t["p"+i][links].groupby(n.links.loc[links,"bus"+i],axis=1).sum().reindex(columns=buses,fill_value=0.)
|
||||
dispatch = n.links_t["p"+i][links].groupby(n.links.loc[links, "bus"+i], axis=1).sum().reindex(columns=buses, fill_value=0.)
|
||||
|
||||
revenue = dispatch*n.buses_t.marginal_price[buses]
|
||||
revenue = dispatch * n.buses_t.marginal_price[buses]
|
||||
|
||||
market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum()
|
||||
market_values.at[tech,label] = revenue.sum().sum() / dispatch.sum().sum()
|
||||
|
||||
return market_values
|
||||
|
||||
@ -492,17 +487,17 @@ def calculate_market_values(n, label, market_values):
|
||||
def calculate_price_statistics(n, label, price_statistics):
|
||||
|
||||
|
||||
price_statistics = price_statistics.reindex(price_statistics.index|pd.Index(["zero_hours","mean","standard_deviation"]))
|
||||
price_statistics = price_statistics.reindex(price_statistics.index.union(pd.Index(["zero_hours", "mean", "standard_deviation"])))
|
||||
|
||||
buses = n.buses.index[n.buses.carrier == "AC"]
|
||||
|
||||
threshold = 0.1 #higher than phoney marginal_cost of wind/solar
|
||||
threshold = 0.1 # higher than phoney marginal_cost of wind/solar
|
||||
|
||||
df = pd.DataFrame(data=0.,columns=buses,index=n.snapshots)
|
||||
df = pd.DataFrame(data=0., columns=buses, index=n.snapshots)
|
||||
|
||||
df[n.buses_t.marginal_price[buses] < threshold] = 1.
|
||||
|
||||
price_statistics.at["zero_hours", label] = df.sum().sum()/(df.shape[0]*df.shape[1])
|
||||
price_statistics.at["zero_hours", label] = df.sum().sum() / (df.shape[0] * df.shape[1])
|
||||
|
||||
price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].unstack().mean()
|
||||
|
||||
@ -511,38 +506,41 @@ def calculate_price_statistics(n, label, price_statistics):
|
||||
return price_statistics
|
||||
|
||||
|
||||
outputs = ["nodal_costs",
|
||||
"nodal_capacities",
|
||||
"nodal_cfs",
|
||||
"cfs",
|
||||
"costs",
|
||||
"capacities",
|
||||
"curtailment",
|
||||
"energy",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"price_statistics",
|
||||
"market_values",
|
||||
"metrics",
|
||||
]
|
||||
|
||||
def make_summaries(networks_dict):
|
||||
|
||||
columns = pd.MultiIndex.from_tuples(networks_dict.keys(),names=["cluster","lv","opt", "co2_budget_name","planning_horizon"])
|
||||
outputs = [
|
||||
"nodal_costs",
|
||||
"nodal_capacities",
|
||||
"nodal_cfs",
|
||||
"cfs",
|
||||
"costs",
|
||||
"capacities",
|
||||
"curtailment",
|
||||
"energy",
|
||||
"supply",
|
||||
"supply_energy",
|
||||
"prices",
|
||||
"weighted_prices",
|
||||
"price_statistics",
|
||||
"market_values",
|
||||
"metrics",
|
||||
]
|
||||
|
||||
columns = pd.MultiIndex.from_tuples(
|
||||
networks_dict.keys(),
|
||||
names=["cluster", "lv", "opt", "planning_horizon"]
|
||||
)
|
||||
|
||||
df = {}
|
||||
|
||||
for output in outputs:
|
||||
df[output] = pd.DataFrame(columns=columns,dtype=float)
|
||||
df[output] = pd.DataFrame(columns=columns, dtype=float)
|
||||
|
||||
for label, filename in iteritems(networks_dict):
|
||||
for label, filename in networks_dict.items():
|
||||
print(label, filename)
|
||||
|
||||
n = pypsa.Network(filename,
|
||||
override_component_attrs=override_component_attrs)
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(filename, override_component_attrs=overrides)
|
||||
|
||||
assign_carriers(n)
|
||||
assign_locations(n)
|
||||
@ -554,58 +552,46 @@ def make_summaries(networks_dict):
|
||||
|
||||
|
||||
def to_csv(df):
|
||||
|
||||
for key in df:
|
||||
df[key].to_csv(snakemake.output[key])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
|
||||
#overwrite some options
|
||||
snakemake.config["run"] = "test"
|
||||
snakemake.config["scenario"]["lv"] = [1.0]
|
||||
snakemake.config["scenario"]["sector_opts"] = ["Co2L0-168H-T-H-B-I-solar3-dist1"]
|
||||
snakemake.config["planning_horizons"] = ['2020', '2030', '2040', '2050']
|
||||
snakemake.input = Dict()
|
||||
snakemake.input['heat_demand_name'] = 'data/heating/daily_heat_demand.h5'
|
||||
snakemake.output = Dict()
|
||||
for item in outputs:
|
||||
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
|
||||
|
||||
networks_dict = {(cluster,lv,opt+sector_opt, co2_budget_name, planning_horizon) :
|
||||
snakemake.config['results_dir'] + snakemake.config['run'] + '/postnetworks/elec_s{simpl}_{cluster}_lv{lv}_{opt}_{sector_opt}_{co2_budget_name}_{planning_horizon}.nc'\
|
||||
.format(simpl=simpl,
|
||||
cluster=cluster,
|
||||
opt=opt,
|
||||
lv=lv,
|
||||
sector_opt=sector_opt,
|
||||
co2_budget_name=co2_budget_name,
|
||||
planning_horizon=planning_horizon)\
|
||||
for simpl in snakemake.config['scenario']['simpl'] \
|
||||
for cluster in snakemake.config['scenario']['clusters'] \
|
||||
for opt in snakemake.config['scenario']['opts'] \
|
||||
for sector_opt in snakemake.config['scenario']['sector_opts'] \
|
||||
for lv in snakemake.config['scenario']['lv'] \
|
||||
for co2_budget_name in snakemake.config['scenario']['co2_budget_name'] \
|
||||
for planning_horizon in snakemake.config['scenario']['planning_horizons']}
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('make_summary')
|
||||
|
||||
networks_dict = {
|
||||
(cluster, lv, opt+sector_opt, planning_horizon) :
|
||||
snakemake.config['results_dir'] + snakemake.config['run'] + f'/postnetworks/elec_s{simpl}_{cluster}_lv{lv}_{opt}_{sector_opt}_{planning_horizon}.nc' \
|
||||
for simpl in snakemake.config['scenario']['simpl'] \
|
||||
for cluster in snakemake.config['scenario']['clusters'] \
|
||||
for opt in snakemake.config['scenario']['opts'] \
|
||||
for sector_opt in snakemake.config['scenario']['sector_opts'] \
|
||||
for lv in snakemake.config['scenario']['lv'] \
|
||||
for planning_horizon in snakemake.config['scenario']['planning_horizons']
|
||||
}
|
||||
|
||||
print(networks_dict)
|
||||
|
||||
Nyears = 1
|
||||
costs_db = prepare_costs(snakemake.input.costs,
|
||||
snakemake.config['costs']['USD2013_to_EUR2013'],
|
||||
snakemake.config['costs']['discountrate'],
|
||||
Nyears)
|
||||
|
||||
costs_db = prepare_costs(
|
||||
snakemake.input.costs,
|
||||
snakemake.config['costs']['USD2013_to_EUR2013'],
|
||||
snakemake.config['costs']['discountrate'],
|
||||
Nyears,
|
||||
snakemake.config['costs']['lifetime']
|
||||
)
|
||||
|
||||
df = make_summaries(networks_dict)
|
||||
|
||||
df["metrics"].loc["total costs"] = df["costs"].sum()
|
||||
|
||||
to_csv(df)
|
||||
|
||||
if snakemake.config["foresight"]=='myopic':
|
||||
cumulative_cost=calculate_cumulative_cost()
|
||||
cumulative_cost.to_csv(snakemake.config['summary_dir'] + '/' + snakemake.config['run'] + '/csvs/cumulative_cost.csv')
|
||||
|
||||
|
||||
|
@ -1,44 +1,20 @@
|
||||
import pypsa
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import cartopy.crs as ccrs
|
||||
|
||||
from matplotlib.legend_handler import HandlerPatch
|
||||
from matplotlib.patches import Circle, Ellipse
|
||||
|
||||
from make_summary import assign_carriers
|
||||
from plot_summary import rename_techs, preferred_order
|
||||
import numpy as np
|
||||
import pypsa
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from helper import override_component_attrs
|
||||
|
||||
# allow plotting without Xwindows
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
plt.style.use('ggplot')
|
||||
|
||||
|
||||
# from sector/scripts/paper_graphics-co2_sweep.py
|
||||
|
||||
|
||||
override_component_attrs = pypsa.descriptors.Dict(
|
||||
{k: v.copy() for k, v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs["Link"].loc["bus2"] = [
|
||||
"string", np.nan, np.nan, "2nd bus", "Input (optional)"]
|
||||
override_component_attrs["Link"].loc["bus3"] = [
|
||||
"string", np.nan, np.nan, "3rd bus", "Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency2"] = [
|
||||
"static or series", "per unit", 1., "2nd bus efficiency", "Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency3"] = [
|
||||
"static or series", "per unit", 1., "3rd bus efficiency", "Input (optional)"]
|
||||
override_component_attrs["Link"].loc["p2"] = [
|
||||
"series", "MW", 0., "2nd bus output", "Output"]
|
||||
override_component_attrs["Link"].loc["p3"] = [
|
||||
"series", "MW", 0., "3rd bus output", "Output"]
|
||||
override_component_attrs["StorageUnit"].loc["p_dispatch"] = [
|
||||
"series", "MW", 0., "Storage discharging.", "Output"]
|
||||
override_component_attrs["StorageUnit"].loc["p_store"] = [
|
||||
"series", "MW", 0., "Storage charging.", "Output"]
|
||||
|
||||
|
||||
|
||||
# ----------------- PLOT HELPERS ---------------------------------------------
|
||||
def rename_techs_tyndp(tech):
|
||||
tech = rename_techs(tech)
|
||||
if "heat pump" in tech or "resistive heater" in tech:
|
||||
@ -61,8 +37,7 @@ def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False):
|
||||
fig = ax.get_figure()
|
||||
|
||||
def axes2pt():
|
||||
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[
|
||||
0] * (72. / fig.dpi)
|
||||
return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * (72. / fig.dpi)
|
||||
|
||||
ellipses = []
|
||||
if not dont_resize_actively:
|
||||
@ -90,20 +65,14 @@ def make_legend_circles_for(sizes, scale=1.0, **kw):
|
||||
|
||||
def assign_location(n):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
|
||||
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
||||
|
||||
for i in ifind.value_counts().index:
|
||||
# these have already been assigned defaults
|
||||
if i == -1:
|
||||
continue
|
||||
|
||||
if i == -1: continue
|
||||
names = ifind.index[ifind == i]
|
||||
|
||||
c.df.loc[names, 'location'] = names.str[:i]
|
||||
|
||||
|
||||
# ----------------- PLOT FUNCTIONS --------------------------------------------
|
||||
def plot_map(network, components=["links", "stores", "storage_units", "generators"],
|
||||
bus_size_factor=1.7e10, transmission=False):
|
||||
|
||||
@ -126,11 +95,12 @@ def plot_map(network, components=["links", "stores", "storage_units", "generator
|
||||
costs = pd.concat([costs, costs_c], axis=1)
|
||||
|
||||
print(comp, costs)
|
||||
|
||||
costs = costs.groupby(costs.columns, axis=1).sum()
|
||||
|
||||
costs.drop(list(costs.columns[(costs == 0.).all()]), axis=1, inplace=True)
|
||||
|
||||
new_columns = ((preferred_order & costs.columns)
|
||||
new_columns = (preferred_order.intersection(costs.columns)
|
||||
.append(costs.columns.difference(preferred_order)))
|
||||
costs = costs[new_columns]
|
||||
|
||||
@ -147,7 +117,7 @@ def plot_map(network, components=["links", "stores", "storage_units", "generator
|
||||
n.links.carrier != "B2B")], inplace=True)
|
||||
|
||||
# drop non-bus
|
||||
to_drop = costs.index.levels[0] ^ n.buses.index
|
||||
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
|
||||
if len(to_drop) != 0:
|
||||
print("dropping non-buses", to_drop)
|
||||
costs.drop(to_drop, level=0, inplace=True, axis=0)
|
||||
@ -193,24 +163,34 @@ def plot_map(network, components=["links", "stores", "storage_units", "generator
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(bus_sizes=costs / bus_size_factor,
|
||||
bus_colors=snakemake.config['plotting']['tech_colors'],
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax, boundaries=(-10, 30, 34, 70),
|
||||
color_geomap={'ocean': 'lightblue', 'land': "palegoldenrod"})
|
||||
n.plot(
|
||||
bus_sizes=costs / bus_size_factor,
|
||||
bus_colors=snakemake.config['plotting']['tech_colors'],
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax, **map_opts
|
||||
)
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[5e9, 1e9], scale=bus_size_factor, facecolor="gray")
|
||||
[5e9, 1e9],
|
||||
scale=bus_size_factor,
|
||||
facecolor="gray"
|
||||
)
|
||||
|
||||
labels = ["{} bEUR/a".format(s) for s in (5, 1)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='System cost',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
|
||||
l2 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
frameon=False,
|
||||
title='System cost',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
||||
)
|
||||
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
@ -221,16 +201,23 @@ def plot_map(network, components=["links", "stores", "storage_units", "generator
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title=title)
|
||||
l1_1 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.22, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1.5,
|
||||
title=title
|
||||
)
|
||||
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map, transparent=True,
|
||||
bbox_inches="tight")
|
||||
fig.savefig(
|
||||
snakemake.output.map,
|
||||
transparent=True,
|
||||
bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_h2_map(network):
|
||||
@ -253,7 +240,7 @@ def plot_h2_map(network):
|
||||
|
||||
elec = n.links.index[n.links.carrier == "H2 Electrolysis"]
|
||||
|
||||
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby(n.links.loc[elec,"bus0"]).sum() / bus_size_factor
|
||||
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() / bus_size_factor
|
||||
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
bus_sizes.index = pd.MultiIndex.from_product(
|
||||
@ -271,26 +258,38 @@ def plot_h2_map(network):
|
||||
|
||||
print(n.links[["bus0", "bus1"]])
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(7, 6),
|
||||
subplot_kw={"projection": ccrs.PlateCarree()}
|
||||
)
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(bus_sizes=bus_sizes,
|
||||
bus_colors={"electrolysis": bus_color},
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
n.plot(
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors={"electrolysis": bus_color},
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, **map_opts
|
||||
)
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[50000, 10000], scale=bus_size_factor, facecolor=bus_color)
|
||||
[50000, 10000],
|
||||
scale=bus_size_factor,
|
||||
facecolor=bus_color
|
||||
)
|
||||
|
||||
labels = ["{} GW".format(s) for s in (50, 10)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='Electrolyzer capacity',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
|
||||
l2 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
frameon=False,
|
||||
title='Electrolyzer capacity',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
||||
)
|
||||
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
@ -300,15 +299,24 @@ def plot_h2_map(network):
|
||||
handles.append(plt.Line2D([0], [0], color=link_color,
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='H2 pipeline capacity')
|
||||
|
||||
l1_1 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.28, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1.5,
|
||||
title='H2 pipeline capacity'
|
||||
)
|
||||
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map.replace("-costs-all","-h2_network"), transparent=True,
|
||||
bbox_inches="tight")
|
||||
fig.savefig(
|
||||
snakemake.output.map.replace("-costs-all","-h2_network"),
|
||||
transparent=True,
|
||||
bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_map_without(network):
|
||||
@ -319,12 +327,13 @@ def plot_map_without(network):
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(7, 6),
|
||||
subplot_kw={"projection": ccrs.PlateCarree()}
|
||||
)
|
||||
|
||||
# PDF has minimum width, so set these to zero
|
||||
line_lower_threshold = 0.
|
||||
line_lower_threshold = 200.
|
||||
line_upper_threshold = 1e4
|
||||
linewidth_factor = 2e3
|
||||
ac_color = "gray"
|
||||
@ -333,8 +342,8 @@ def plot_map_without(network):
|
||||
# hack because impossible to drop buses...
|
||||
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
|
||||
|
||||
n.links.drop(n.links.index[(n.links.carrier != "DC") & (
|
||||
n.links.carrier != "B2B")], inplace=True)
|
||||
to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")]
|
||||
n.links.drop(to_drop, inplace=True)
|
||||
|
||||
if snakemake.wildcards["lv"] == "1.0":
|
||||
line_widths = n.lines.s_nom
|
||||
@ -343,19 +352,20 @@ def plot_map_without(network):
|
||||
line_widths = n.lines.s_nom_min
|
||||
link_widths = n.links.p_nom_min
|
||||
|
||||
line_widths[line_widths < line_upper_threshold] = 0.
|
||||
link_widths[link_widths < line_upper_threshold] = 0.
|
||||
line_widths[line_widths < line_lower_threshold] = 0.
|
||||
link_widths[link_widths < line_lower_threshold] = 0.
|
||||
|
||||
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
|
||||
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
|
||||
|
||||
n.plot(bus_sizes=10,
|
||||
bus_colors="k",
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
n.plot(
|
||||
bus_colors="k",
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax, **map_opts
|
||||
)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
@ -366,12 +376,16 @@ def plot_map_without(network):
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.05, 1.01),
|
||||
framealpha=1,
|
||||
frameon=False,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='Today\'s transmission')
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.today, transparent=True, bbox_inches="tight")
|
||||
fig.savefig(
|
||||
snakemake.output.today,
|
||||
transparent=True,
|
||||
bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_series(network, carrier="AC", name="test"):
|
||||
@ -463,7 +477,7 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
"battery storage",
|
||||
"hot water storage"])
|
||||
|
||||
new_columns = ((preferred_order & supply.columns)
|
||||
new_columns = (preferred_order.intersection(supply.columns)
|
||||
.append(supply.columns.difference(preferred_order)))
|
||||
|
||||
supply = supply.groupby(supply.columns, axis=1).sum()
|
||||
@ -488,7 +502,7 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
new_handles.append(handles[i])
|
||||
new_labels.append(labels[i])
|
||||
|
||||
ax.legend(new_handles, new_labels, ncol=3, loc="upper left")
|
||||
ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False)
|
||||
ax.set_xlim([start, stop])
|
||||
ax.set_ylim([-1300, 1900])
|
||||
ax.grid(True)
|
||||
@ -502,41 +516,28 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
transparent=True)
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.config['run'] = "retro_vs_noretro"
|
||||
snakemake.wildcards = {"lv": "1.0"} # lv1.0, lv1.25, lvopt
|
||||
name = "elec_s_48_lv{}__Co2L0-3H-T-H-B".format(snakemake.wildcards["lv"])
|
||||
suffix = "_retro_tes"
|
||||
name = name + suffix
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict(
|
||||
map=(snakemake.config['results_dir'] + snakemake.config['run']
|
||||
+ "/maps/{}".format(name)),
|
||||
today=(snakemake.config['results_dir'] + snakemake.config['run']
|
||||
+ "/maps/{}.pdf".format(name)))
|
||||
snakemake.input.scenario = "lv" + snakemake.wildcards["lv"]
|
||||
# snakemake.config["run"] = "bio_costs"
|
||||
path = snakemake.config['results_dir'] + snakemake.config['run']
|
||||
snakemake.input.network = (path +
|
||||
"/postnetworks/{}.nc"
|
||||
.format(name))
|
||||
snakemake.output.network = (path +
|
||||
"/maps/{}"
|
||||
.format(name))
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'plot_network',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2050,
|
||||
)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network,
|
||||
override_component_attrs=override_component_attrs)
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
plot_map(n, components=["generators", "links", "stores", "storage_units"],
|
||||
bus_size_factor=1.5e10, transmission=False)
|
||||
map_opts = snakemake.config['plotting']['map']
|
||||
|
||||
plot_map(n,
|
||||
components=["generators", "links", "stores", "storage_units"],
|
||||
bus_size_factor=1.5e10,
|
||||
transmission=False
|
||||
)
|
||||
|
||||
plot_h2_map(n)
|
||||
plot_map_without(n)
|
||||
|
@ -1,43 +1,60 @@
|
||||
|
||||
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
#allow plotting without Xwindows
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
plt.style.use('ggplot')
|
||||
|
||||
|
||||
from prepare_sector_network import co2_emissions_year
|
||||
|
||||
#consolidate and rename
|
||||
def rename_techs(label):
|
||||
|
||||
prefix_to_remove = ["residential ","services ","urban ","rural ","central ","decentral "]
|
||||
prefix_to_remove = [
|
||||
"residential ",
|
||||
"services ",
|
||||
"urban ",
|
||||
"rural ",
|
||||
"central ",
|
||||
"decentral "
|
||||
]
|
||||
|
||||
rename_if_contains = ["CHP","gas boiler","biogas","solar thermal","air heat pump","ground heat pump","resistive heater","Fischer-Tropsch"]
|
||||
rename_if_contains = [
|
||||
"CHP",
|
||||
"gas boiler",
|
||||
"biogas",
|
||||
"solar thermal",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
"resistive heater",
|
||||
"Fischer-Tropsch"
|
||||
]
|
||||
|
||||
rename_if_contains_dict = {"water tanks" : "hot water storage",
|
||||
"retrofitting" : "building retrofitting",
|
||||
"H2" : "hydrogen storage",
|
||||
"battery" : "battery storage",
|
||||
"CCS" : "CCS"}
|
||||
rename_if_contains_dict = {
|
||||
"water tanks": "hot water storage",
|
||||
"retrofitting": "building retrofitting",
|
||||
"H2": "hydrogen storage",
|
||||
"battery": "battery storage",
|
||||
"CC": "CC"
|
||||
}
|
||||
|
||||
rename = {"solar" : "solar PV",
|
||||
"Sabatier" : "methanation",
|
||||
"offwind" : "offshore wind",
|
||||
"offwind-ac" : "offshore wind (AC)",
|
||||
"offwind-dc" : "offshore wind (DC)",
|
||||
"onwind" : "onshore wind",
|
||||
"ror" : "hydroelectricity",
|
||||
"hydro" : "hydroelectricity",
|
||||
"PHS" : "hydroelectricity",
|
||||
"co2 Store" : "DAC",
|
||||
"co2 stored" : "CO2 sequestration",
|
||||
"AC" : "transmission lines",
|
||||
"DC" : "transmission lines",
|
||||
"B2B" : "transmission lines"}
|
||||
rename = {
|
||||
"solar": "solar PV",
|
||||
"Sabatier": "methanation",
|
||||
"offwind": "offshore wind",
|
||||
"offwind-ac": "offshore wind (AC)",
|
||||
"offwind-dc": "offshore wind (DC)",
|
||||
"onwind": "onshore wind",
|
||||
"ror": "hydroelectricity",
|
||||
"hydro": "hydroelectricity",
|
||||
"PHS": "hydroelectricity",
|
||||
"co2 Store": "DAC",
|
||||
"co2 stored": "CO2 sequestration",
|
||||
"AC": "transmission lines",
|
||||
"DC": "transmission lines",
|
||||
"B2B": "transmission lines"
|
||||
}
|
||||
|
||||
for ptr in prefix_to_remove:
|
||||
if label[:len(ptr)] == ptr:
|
||||
@ -57,18 +74,56 @@ def rename_techs(label):
|
||||
return label
|
||||
|
||||
|
||||
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","solid biomass","biogas","onshore wind","offshore wind","offshore wind (AC)","offshore wind (DC)","solar PV","solar thermal","solar","building retrofitting","ground heat pump","air heat pump","heat pump","resistive heater","power-to-heat","gas-to-power/heat","CHP","OCGT","gas boiler","gas","natural gas","helmeth","methanation","hydrogen storage","power-to-gas","power-to-liquid","battery storage","hot water storage","CO2 sequestration"])
|
||||
preferred_order = pd.Index([
|
||||
"transmission lines",
|
||||
"hydroelectricity",
|
||||
"hydro reservoir",
|
||||
"run of river",
|
||||
"pumped hydro storage",
|
||||
"solid biomass",
|
||||
"biogas",
|
||||
"onshore wind",
|
||||
"offshore wind",
|
||||
"offshore wind (AC)",
|
||||
"offshore wind (DC)",
|
||||
"solar PV",
|
||||
"solar thermal",
|
||||
"solar",
|
||||
"building retrofitting",
|
||||
"ground heat pump",
|
||||
"air heat pump",
|
||||
"heat pump",
|
||||
"resistive heater",
|
||||
"power-to-heat",
|
||||
"gas-to-power/heat",
|
||||
"CHP",
|
||||
"OCGT",
|
||||
"gas boiler",
|
||||
"gas",
|
||||
"natural gas",
|
||||
"helmeth",
|
||||
"methanation",
|
||||
"hydrogen storage",
|
||||
"power-to-gas",
|
||||
"power-to-liquid",
|
||||
"battery storage",
|
||||
"hot water storage",
|
||||
"CO2 sequestration"
|
||||
])
|
||||
|
||||
def plot_costs():
|
||||
|
||||
|
||||
cost_df = pd.read_csv(snakemake.input.costs,index_col=list(range(3)),header=list(range(n_header)))
|
||||
|
||||
cost_df = pd.read_csv(
|
||||
snakemake.input.costs,
|
||||
index_col=list(range(3)),
|
||||
header=list(range(n_header))
|
||||
)
|
||||
|
||||
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
|
||||
|
||||
#convert to billions
|
||||
df = df/1e9
|
||||
df = df / 1e9
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
@ -82,15 +137,18 @@ def plot_costs():
|
||||
|
||||
print(df.sum())
|
||||
|
||||
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
||||
new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order))
|
||||
|
||||
new_columns = df.sum().sort_values().index
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12,8))
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
|
||||
fig, ax = plt.subplots(figsize=(12,8))
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index]
|
||||
)
|
||||
|
||||
handles,labels = ax.get_legend_handles_labels()
|
||||
|
||||
@ -103,24 +161,25 @@ def plot_costs():
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
ax.grid(axis="y")
|
||||
ax.grid(axis='x')
|
||||
|
||||
ax.legend(handles,labels,ncol=4,loc="upper left")
|
||||
ax.legend(handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1,1], frameon=False)
|
||||
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
fig.savefig(snakemake.output.costs,transparent=True)
|
||||
fig.savefig(snakemake.output.costs, bbox_inches='tight')
|
||||
|
||||
|
||||
def plot_energy():
|
||||
|
||||
energy_df = pd.read_csv(snakemake.input.energy,index_col=list(range(2)),header=list(range(n_header)))
|
||||
energy_df = pd.read_csv(
|
||||
snakemake.input.energy,
|
||||
index_col=list(range(2)),
|
||||
header=list(range(n_header))
|
||||
)
|
||||
|
||||
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
|
||||
|
||||
#convert MWh to TWh
|
||||
df = df/1e6
|
||||
df = df / 1e6
|
||||
|
||||
df = df.groupby(df.index.map(rename_techs)).sum()
|
||||
|
||||
@ -136,56 +195,60 @@ def plot_energy():
|
||||
|
||||
print(df)
|
||||
|
||||
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
||||
new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order))
|
||||
|
||||
new_columns = df.columns.sort_values()
|
||||
#new_columns = df.sum().sort_values().index
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12,8))
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12,8))
|
||||
|
||||
print(df.loc[new_index,new_columns])
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
|
||||
print(df.loc[new_index, new_columns])
|
||||
|
||||
df.loc[new_index, new_columns].T.plot(
|
||||
kind="bar",
|
||||
ax=ax,
|
||||
stacked=True,
|
||||
color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index]
|
||||
)
|
||||
|
||||
handles,labels = ax.get_legend_handles_labels()
|
||||
|
||||
handles.reverse()
|
||||
labels.reverse()
|
||||
|
||||
ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']])
|
||||
ax.set_ylim([snakemake.config['plotting']['energy_min'], snakemake.config['plotting']['energy_max']])
|
||||
|
||||
ax.set_ylabel("Energy [TWh/a]")
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
ax.grid(axis="y")
|
||||
ax.grid(axis="x")
|
||||
|
||||
ax.legend(handles,labels,ncol=4,loc="upper left")
|
||||
ax.legend(handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False)
|
||||
|
||||
|
||||
fig.tight_layout()
|
||||
|
||||
fig.savefig(snakemake.output.energy,transparent=True)
|
||||
fig.savefig(snakemake.output.energy, bbox_inches='tight')
|
||||
|
||||
|
||||
|
||||
def plot_balances():
|
||||
|
||||
co2_carriers = ["co2","co2 stored","process emissions"]
|
||||
co2_carriers = ["co2", "co2 stored", "process emissions"]
|
||||
|
||||
balances_df = pd.read_csv(snakemake.input.balances,index_col=list(range(3)),header=list(range(n_header)))
|
||||
balances_df = pd.read_csv(
|
||||
snakemake.input.balances,
|
||||
index_col=list(range(3)),
|
||||
header=list(range(n_header))
|
||||
)
|
||||
|
||||
balances = {i.replace(" ","_") : [i] for i in balances_df.index.levels[0]}
|
||||
balances["energy"] = balances_df.index.levels[0]^co2_carriers
|
||||
balances = {i.replace(" ","_"): [i] for i in balances_df.index.levels[0]}
|
||||
balances["energy"] = [i for i in balances_df.index.levels[0] if i not in co2_carriers]
|
||||
|
||||
for k,v in balances.items():
|
||||
for k, v in balances.items():
|
||||
|
||||
df = balances_df.loc[v]
|
||||
df = df.groupby(df.index.get_level_values(2)).sum()
|
||||
|
||||
#convert MWh to TWh
|
||||
df = df/1e6
|
||||
df = df / 1e6
|
||||
|
||||
#remove trailing link ports
|
||||
df.index = [i[:-1] if ((i != "co2") and (i[-1:] in ["0","1","2","3"])) else i for i in df.index]
|
||||
@ -205,13 +268,11 @@ def plot_balances():
|
||||
if df.empty:
|
||||
continue
|
||||
|
||||
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
|
||||
new_index = preferred_order.intersection(df.index).append(df.index.difference(preferred_order))
|
||||
|
||||
new_columns = df.columns.sort_values()
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig.set_size_inches((12,8))
|
||||
fig, ax = plt.subplots(figsize=(12,8))
|
||||
|
||||
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
|
||||
|
||||
@ -228,37 +289,162 @@ def plot_balances():
|
||||
|
||||
ax.set_xlabel("")
|
||||
|
||||
ax.grid(axis="y")
|
||||
ax.grid(axis="x")
|
||||
|
||||
ax.legend(handles,labels,ncol=4,loc="upper left")
|
||||
ax.legend(handles, labels, ncol=1, loc="upper left", bbox_to_anchor=[1, 1], frameon=False)
|
||||
|
||||
|
||||
fig.tight_layout()
|
||||
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf", bbox_inches='tight')
|
||||
|
||||
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf",transparent=True)
|
||||
|
||||
def historical_emissions(cts):
|
||||
"""
|
||||
read historical emissions to add them to the carbon budget plot
|
||||
"""
|
||||
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
|
||||
#downloaded 201228 (modified by EEA last on 201221)
|
||||
fn = "data/eea/UNFCCC_v23.csv"
|
||||
df = pd.read_csv(fn, encoding="latin-1")
|
||||
df.loc[df["Year"] == "1985-1987","Year"] = 1986
|
||||
df["Year"] = df["Year"].astype(int)
|
||||
df = df.set_index(['Year', 'Sector_name', 'Country_code', 'Pollutant_name']).sort_index()
|
||||
|
||||
e = pd.Series()
|
||||
e["electricity"] = '1.A.1.a - Public Electricity and Heat Production'
|
||||
e['residential non-elec'] = '1.A.4.b - Residential'
|
||||
e['services non-elec'] = '1.A.4.a - Commercial/Institutional'
|
||||
e['rail non-elec'] = "1.A.3.c - Railways"
|
||||
e["road non-elec"] = '1.A.3.b - Road Transportation'
|
||||
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
|
||||
e['international navigation'] = '1.D.1.b - International Navigation'
|
||||
e["domestic aviation"] = '1.A.3.a - Domestic Aviation'
|
||||
e["international aviation"] = '1.D.1.a - International Aviation'
|
||||
e['total energy'] = '1 - Energy'
|
||||
e['industrial processes'] = '2 - Industrial Processes and Product Use'
|
||||
e['agriculture'] = '3 - Agriculture'
|
||||
e['LULUCF'] = '4 - Land Use, Land-Use Change and Forestry'
|
||||
e['waste management'] = '5 - Waste management'
|
||||
e['other'] = '6 - Other Sector'
|
||||
e['indirect'] = 'ind_CO2 - Indirect CO2'
|
||||
e["total wL"] = "Total (with LULUCF)"
|
||||
e["total woL"] = "Total (without LULUCF)"
|
||||
|
||||
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
|
||||
cts
|
||||
if "GB" in cts:
|
||||
cts.remove("GB")
|
||||
cts.append("UK")
|
||||
|
||||
year = np.arange(1990,2018).tolist()
|
||||
|
||||
idx = pd.IndexSlice
|
||||
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
|
||||
|
||||
co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2
|
||||
|
||||
co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec',
|
||||
'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation',
|
||||
'international navigation']].sum()
|
||||
|
||||
emissions = co2_totals.loc["electricity"]
|
||||
if "T" in opts:
|
||||
emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum()
|
||||
if "H" in opts:
|
||||
emissions += co2_totals.loc[[i+ " non-elec" for i in ["residential","services"]]].sum()
|
||||
if "I" in opts:
|
||||
emissions += co2_totals.loc[["industrial non-elec","industrial processes",
|
||||
"domestic aviation","international aviation",
|
||||
"domestic navigation","international navigation"]].sum()
|
||||
return emissions
|
||||
|
||||
|
||||
|
||||
def plot_carbon_budget_distribution():
|
||||
"""
|
||||
Plot historical carbon emissions in the EU and decarbonization path
|
||||
"""
|
||||
|
||||
import matplotlib.gridspec as gridspec
|
||||
import seaborn as sns; sns.set()
|
||||
sns.set_style('ticks')
|
||||
plt.style.use('seaborn-ticks')
|
||||
plt.rcParams['xtick.direction'] = 'in'
|
||||
plt.rcParams['ytick.direction'] = 'in'
|
||||
plt.rcParams['xtick.labelsize'] = 20
|
||||
plt.rcParams['ytick.labelsize'] = 20
|
||||
|
||||
plt.figure(figsize=(10, 7))
|
||||
gs1 = gridspec.GridSpec(1, 1)
|
||||
ax1 = plt.subplot(gs1[0,0])
|
||||
ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22)
|
||||
ax1.set_ylim([0,5])
|
||||
ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1])
|
||||
|
||||
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
|
||||
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
|
||||
cts=countries.index.to_list()
|
||||
e_1990 = co2_emissions_year(cts, opts, year=1990)
|
||||
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
|
||||
index_col=0)
|
||||
|
||||
|
||||
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
|
||||
color='dodgerblue', label=None)
|
||||
|
||||
emissions = historical_emissions(cts)
|
||||
|
||||
ax1.plot(emissions, color='black', linewidth=3, label=None)
|
||||
|
||||
#plot commited and uder-discussion targets
|
||||
#(notice that historical emissions include all countries in the
|
||||
# network, but targets refer to EU)
|
||||
ax1.plot([2020],[0.8*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2030],[0.45*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='white',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2030],[0.6*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black')
|
||||
|
||||
ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]],
|
||||
color='gray', linewidth=2, marker='_', alpha=0.5)
|
||||
|
||||
ax1.plot([2050],[0.01*emissions[1990]],
|
||||
marker='*', markersize=12, markerfacecolor='white',
|
||||
linewidth=0, markeredgecolor='black',
|
||||
label='EU under-discussion target', zorder=10,
|
||||
clip_on=False)
|
||||
|
||||
ax1.plot([2050],[0.125*emissions[1990]],'ro',
|
||||
marker='*', markersize=12, markerfacecolor='black',
|
||||
markeredgecolor='black', label='EU commited target')
|
||||
|
||||
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
|
||||
facecolor='white', frameon=True)
|
||||
|
||||
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
|
||||
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils import Dict
|
||||
import yaml
|
||||
snakemake = Dict()
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
snakemake.input = Dict()
|
||||
snakemake.output = Dict()
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('plot_summary')
|
||||
|
||||
n_header = 4
|
||||
|
||||
for item in ["costs", "energy"]:
|
||||
snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
|
||||
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item)
|
||||
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/test/csvs/supply_energy.csv'
|
||||
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/test/graphs/balances-energy.csv'
|
||||
|
||||
n_header = 5
|
||||
plot_costs()
|
||||
|
||||
plot_energy()
|
||||
|
||||
plot_balances()
|
||||
|
||||
for sector_opts in snakemake.config['scenario']['sector_opts']:
|
||||
opts=sector_opts.split('-')
|
||||
for o in opts:
|
||||
if "cb" in o:
|
||||
plot_carbon_budget_distribution()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,52 +1,35 @@
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
import gc
|
||||
import os
|
||||
"""Solve network."""
|
||||
|
||||
import pypsa
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pypsa.linopt import get_var, linexpr, define_constraints
|
||||
|
||||
from pypsa.descriptors import free_output_series_dataframes
|
||||
|
||||
# Suppress logging of the slack bus choices
|
||||
pypsa.pf.logger.setLevel(logging.WARNING)
|
||||
from pypsa.linopf import network_lopf, ilopf
|
||||
|
||||
from vresutils.benchmark import memory_logger
|
||||
|
||||
from helper import override_component_attrs
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
pypsa.pf.logger.setLevel(logging.WARNING)
|
||||
|
||||
|
||||
#First tell PyPSA that links can have multiple outputs by
|
||||
#overriding the component_attrs. This can be done for
|
||||
#as many buses as you need with format busi for i = 2,3,4,5,....
|
||||
#See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs
|
||||
def add_land_use_constraint(n):
|
||||
|
||||
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
||||
existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
|
||||
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
||||
n.generators.loc[existing.index, "p_nom_max"] -= existing
|
||||
|
||||
override_component_attrs = pypsa.descriptors.Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()})
|
||||
override_component_attrs["Link"].loc["bus2"] = ["string",np.nan,np.nan,"2nd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["bus3"] = ["string",np.nan,np.nan,"3rd bus","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency2"] = ["static or series","per unit",1.,"2nd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["efficiency3"] = ["static or series","per unit",1.,"3rd bus efficiency","Input (optional)"]
|
||||
override_component_attrs["Link"].loc["p2"] = ["series","MW",0.,"2nd bus output","Output"]
|
||||
override_component_attrs["Link"].loc["p3"] = ["series","MW",0.,"3rd bus output","Output"]
|
||||
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
||||
|
||||
|
||||
|
||||
def patch_pyomo_tmpdir(tmpdir):
|
||||
# PYOMO should write its lp files into tmp here
|
||||
import os
|
||||
if not os.path.isdir(tmpdir):
|
||||
os.mkdir(tmpdir)
|
||||
from pyutilib.services import TempfileManager
|
||||
TempfileManager.tempdir = tmpdir
|
||||
|
||||
def prepare_network(n, solve_opts=None):
|
||||
if solve_opts is None:
|
||||
solve_opts = snakemake.config['solving']['options']
|
||||
|
||||
|
||||
if 'clip_p_max_pu' in solve_opts:
|
||||
for df in (n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow):
|
||||
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
|
||||
@ -70,50 +53,31 @@ def prepare_network(n, solve_opts=None):
|
||||
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
||||
if 'marginal_cost' in t.df:
|
||||
np.random.seed(174)
|
||||
t.df['marginal_cost'] += 1e-2 + 2e-3*(np.random.random(len(t.df)) - 0.5)
|
||||
t.df['marginal_cost'] += 1e-2 + 2e-3 * (np.random.random(len(t.df)) - 0.5)
|
||||
|
||||
for t in n.iterate_components(['Line', 'Link']):
|
||||
np.random.seed(123)
|
||||
t.df['capital_cost'] += (1e-1 + 2e-2*(np.random.random(len(t.df)) - 0.5)) * t.df['length']
|
||||
t.df['capital_cost'] += (1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)) * t.df['length']
|
||||
|
||||
if solve_opts.get('nhours'):
|
||||
nhours = solve_opts['nhours']
|
||||
n.set_snapshots(n.snapshots[:nhours])
|
||||
n.snapshot_weightings[:] = 8760./nhours
|
||||
|
||||
if snakemake.config['foresight']=='myopic':
|
||||
if snakemake.config['foresight'] == 'myopic':
|
||||
add_land_use_constraint(n)
|
||||
|
||||
return n
|
||||
|
||||
def add_opts_constraints(n, opts=None):
|
||||
if opts is None:
|
||||
opts = snakemake.wildcards.opts.split('-')
|
||||
|
||||
if 'BAU' in opts:
|
||||
mincaps = snakemake.config['electricity']['BAU_mincapacities']
|
||||
def bau_mincapacities_rule(model, carrier):
|
||||
gens = n.generators.index[n.generators.p_nom_extendable & (n.generators.carrier == carrier)]
|
||||
return sum(model.generator_p_nom[gen] for gen in gens) >= mincaps[carrier]
|
||||
n.model.bau_mincapacities = pypsa.opt.Constraint(list(mincaps), rule=bau_mincapacities_rule)
|
||||
|
||||
if 'SAFE' in opts:
|
||||
peakdemand = (1. + snakemake.config['electricity']['SAFE_reservemargin']) * n.loads_t.p_set.sum(axis=1).max()
|
||||
conv_techs = snakemake.config['plotting']['conv_techs']
|
||||
exist_conv_caps = n.generators.loc[n.generators.carrier.isin(conv_techs) & ~n.generators.p_nom_extendable, 'p_nom'].sum()
|
||||
ext_gens_i = n.generators.index[n.generators.carrier.isin(conv_techs) & n.generators.p_nom_extendable]
|
||||
n.model.safe_peakdemand = pypsa.opt.Constraint(expr=sum(n.model.generator_p_nom[gen] for gen in ext_gens_i) >= peakdemand - exist_conv_caps)
|
||||
|
||||
def add_eps_storage_constraint(n):
|
||||
if not hasattr(n, 'epsilon'):
|
||||
n.epsilon = 1e-5
|
||||
fix_sus_i = n.storage_units.index[~ n.storage_units.p_nom_extendable]
|
||||
n.model.objective.expr += sum(n.epsilon * n.model.state_of_charge[su, n.snapshots[0]] for su in fix_sus_i)
|
||||
|
||||
def add_battery_constraints(n):
|
||||
|
||||
chargers = n.links.index[n.links.carrier.str.contains("battery charger") & n.links.p_nom_extendable]
|
||||
dischargers = chargers.str.replace("charger","discharger")
|
||||
chargers_b = n.links.carrier.str.contains("battery charger")
|
||||
chargers = n.links.index[chargers_b & n.links.p_nom_extendable]
|
||||
dischargers = chargers.str.replace("charger", "discharger")
|
||||
|
||||
if chargers.empty or ('Link', 'p_nom') not in n.variables.index:
|
||||
return
|
||||
|
||||
link_p_nom = get_var(n, "Link", "p_nom")
|
||||
|
||||
@ -135,44 +99,28 @@ def add_chp_constraints(n):
|
||||
|
||||
electric = n.links.index[electric_bool]
|
||||
heat = n.links.index[heat_bool]
|
||||
|
||||
electric_ext = n.links.index[electric_bool & n.links.p_nom_extendable]
|
||||
heat_ext = n.links.index[heat_bool & n.links.p_nom_extendable]
|
||||
|
||||
electric_fix = n.links.index[electric_bool & ~n.links.p_nom_extendable]
|
||||
heat_fix = n.links.index[heat_bool & ~n.links.p_nom_extendable]
|
||||
|
||||
link_p = get_var(n, "Link", "p")
|
||||
|
||||
if not electric_ext.empty:
|
||||
|
||||
link_p_nom = get_var(n, "Link", "p_nom")
|
||||
|
||||
#ratio of output heat to electricity set by p_nom_ratio
|
||||
lhs = linexpr((n.links.loc[electric_ext,"efficiency"]
|
||||
*n.links.loc[electric_ext,'p_nom_ratio'],
|
||||
lhs = linexpr((n.links.loc[electric_ext, "efficiency"]
|
||||
*n.links.loc[electric_ext, "p_nom_ratio"],
|
||||
link_p_nom[electric_ext]),
|
||||
(-n.links.loc[heat_ext,"efficiency"].values,
|
||||
(-n.links.loc[heat_ext, "efficiency"].values,
|
||||
link_p_nom[heat_ext].values))
|
||||
|
||||
define_constraints(n, lhs, "=", 0, 'chplink', 'fix_p_nom_ratio')
|
||||
|
||||
|
||||
if not electric.empty:
|
||||
|
||||
link_p = get_var(n, "Link", "p")
|
||||
|
||||
#backpressure
|
||||
lhs = linexpr((n.links.loc[electric,'c_b'].values
|
||||
*n.links.loc[heat,"efficiency"],
|
||||
link_p[heat]),
|
||||
(-n.links.loc[electric,"efficiency"].values,
|
||||
link_p[electric].values))
|
||||
|
||||
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
|
||||
|
||||
|
||||
if not electric_ext.empty:
|
||||
|
||||
link_p_nom = get_var(n, "Link", "p_nom")
|
||||
link_p = get_var(n, "Link", "p")
|
||||
|
||||
#top_iso_fuel_line for extendable
|
||||
lhs = linexpr((1,link_p[heat_ext]),
|
||||
(1,link_p[electric_ext].values),
|
||||
@ -180,221 +128,93 @@ def add_chp_constraints(n):
|
||||
|
||||
define_constraints(n, lhs, "<=", 0, 'chplink', 'top_iso_fuel_line_ext')
|
||||
|
||||
|
||||
if not electric_fix.empty:
|
||||
|
||||
link_p = get_var(n, "Link", "p")
|
||||
|
||||
#top_iso_fuel_line for fixed
|
||||
lhs = linexpr((1,link_p[heat_fix]),
|
||||
(1,link_p[electric_fix].values))
|
||||
|
||||
define_constraints(n, lhs, "<=", n.links.loc[electric_fix,"p_nom"].values, 'chplink', 'top_iso_fuel_line_fix')
|
||||
rhs = n.links.loc[electric_fix, "p_nom"].values
|
||||
|
||||
def add_land_use_constraint(n):
|
||||
define_constraints(n, lhs, "<=", rhs, 'chplink', 'top_iso_fuel_line_fix')
|
||||
|
||||
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
||||
existing_capacities = n.generators.loc[n.generators.carrier==carrier,"p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
|
||||
existing_capacities.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
||||
n.generators.loc[existing_capacities.index,"p_nom_max"] -= existing_capacities
|
||||
if not electric.empty:
|
||||
|
||||
#backpressure
|
||||
lhs = linexpr((n.links.loc[electric, "c_b"].values
|
||||
*n.links.loc[heat, "efficiency"],
|
||||
link_p[heat]),
|
||||
(-n.links.loc[electric, "efficiency"].values,
|
||||
link_p[electric].values))
|
||||
|
||||
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
|
||||
|
||||
n.generators.p_nom_max[n.generators.p_nom_max<0]=0.
|
||||
|
||||
def extra_functionality(n, snapshots):
|
||||
#add_opts_constraints(n, opts)
|
||||
#add_eps_storage_constraint(n)
|
||||
add_chp_constraints(n)
|
||||
add_battery_constraints(n)
|
||||
|
||||
|
||||
def fix_branches(n, lines_s_nom=None, links_p_nom=None):
|
||||
if lines_s_nom is not None and len(lines_s_nom) > 0:
|
||||
n.lines.loc[lines_s_nom.index,"s_nom"] = lines_s_nom.values
|
||||
n.lines.loc[lines_s_nom.index,"s_nom_extendable"] = False
|
||||
if links_p_nom is not None and len(links_p_nom) > 0:
|
||||
n.links.loc[links_p_nom.index,"p_nom"] = links_p_nom.values
|
||||
n.links.loc[links_p_nom.index,"p_nom_extendable"] = False
|
||||
|
||||
def solve_network(n, config=None, solver_log=None, opts=None):
|
||||
if config is None:
|
||||
config = snakemake.config['solving']
|
||||
solve_opts = config['options']
|
||||
|
||||
solver_options = config['solver'].copy()
|
||||
if solver_log is None:
|
||||
solver_log = snakemake.log.solver
|
||||
def solve_network(n, config, opts='', **kwargs):
|
||||
solver_options = config['solving']['solver'].copy()
|
||||
solver_name = solver_options.pop('name')
|
||||
cf_solving = config['solving']['options']
|
||||
track_iterations = cf_solving.get('track_iterations', False)
|
||||
min_iterations = cf_solving.get('min_iterations', 4)
|
||||
max_iterations = cf_solving.get('max_iterations', 6)
|
||||
|
||||
def run_lopf(n, allow_warning_status=False, fix_zero_lines=False, fix_ext_lines=False):
|
||||
free_output_series_dataframes(n)
|
||||
|
||||
if fix_zero_lines:
|
||||
fix_lines_b = (n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable
|
||||
fix_links_b = (n.links.carrier=='DC') & (n.links.p_nom_opt == 0.) & n.links.p_nom_extendable
|
||||
fix_branches(n,
|
||||
lines_s_nom=pd.Series(0., n.lines.index[fix_lines_b]),
|
||||
links_p_nom=pd.Series(0., n.links.index[fix_links_b]))
|
||||
|
||||
if fix_ext_lines:
|
||||
fix_branches(n,
|
||||
lines_s_nom=n.lines.loc[n.lines.s_nom_extendable, 's_nom_opt'],
|
||||
links_p_nom=n.links.loc[(n.links.carrier=='DC') & n.links.p_nom_extendable, 'p_nom_opt'])
|
||||
if "line_volume_constraint" in n.global_constraints.index:
|
||||
n.global_constraints.drop("line_volume_constraint",inplace=True)
|
||||
else:
|
||||
if "line_volume_constraint" not in n.global_constraints.index:
|
||||
line_volume = getattr(n, 'line_volume_limit', None)
|
||||
if line_volume is not None and not np.isinf(line_volume):
|
||||
n.add("GlobalConstraint",
|
||||
"line_volume_constraint",
|
||||
type="transmission_volume_expansion_limit",
|
||||
carrier_attribute="AC,DC",
|
||||
sense="<=",
|
||||
constant=line_volume)
|
||||
|
||||
|
||||
# Firing up solve will increase memory consumption tremendously, so
|
||||
# make sure we freed everything we can
|
||||
gc.collect()
|
||||
|
||||
#from pyomo.opt import ProblemFormat
|
||||
#print("Saving model to MPS")
|
||||
#n.model.write('/home/ka/ka_iai/ka_kc5996/projects/pypsa-eur/128-B-I.mps', format=ProblemFormat.mps)
|
||||
#print("Model is saved to MPS")
|
||||
#sys.exit()
|
||||
|
||||
|
||||
status, termination_condition = n.lopf(pyomo=False,
|
||||
solver_name=solver_name,
|
||||
solver_logfile=solver_log,
|
||||
solver_options=solver_options,
|
||||
extra_functionality=extra_functionality,
|
||||
formulation=solve_opts['formulation'])
|
||||
#extra_postprocessing=extra_postprocessing
|
||||
#keep_files=True
|
||||
#free_memory={'pypsa'}
|
||||
|
||||
assert status == "ok" or allow_warning_status and status == 'warning', \
|
||||
("network_lopf did abort with status={} "
|
||||
"and termination_condition={}"
|
||||
.format(status, termination_condition))
|
||||
|
||||
if not fix_ext_lines and "line_volume_constraint" in n.global_constraints.index:
|
||||
n.line_volume_limit_dual = n.global_constraints.at["line_volume_constraint","mu"]
|
||||
print("line volume limit dual:",n.line_volume_limit_dual)
|
||||
|
||||
return status, termination_condition
|
||||
|
||||
lines_ext_b = n.lines.s_nom_extendable
|
||||
if lines_ext_b.any():
|
||||
# puh: ok, we need to iterate, since there is a relation
|
||||
# between s/p_nom and r, x for branches.
|
||||
msq_threshold = 0.01
|
||||
lines = pd.DataFrame(n.lines[['r', 'x', 'type', 'num_parallel']])
|
||||
|
||||
lines['s_nom'] = (
|
||||
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
|
||||
n.lines.bus0.map(n.buses.v_nom)
|
||||
).where(n.lines.type != '', n.lines['s_nom'])
|
||||
|
||||
lines_ext_typed_b = (n.lines.type != '') & lines_ext_b
|
||||
lines_ext_untyped_b = (n.lines.type == '') & lines_ext_b
|
||||
|
||||
def update_line_parameters(n, zero_lines_below=10, fix_zero_lines=False):
|
||||
if zero_lines_below > 0:
|
||||
n.lines.loc[n.lines.s_nom_opt < zero_lines_below, 's_nom_opt'] = 0.
|
||||
n.links.loc[(n.links.carrier=='DC') & (n.links.p_nom_opt < zero_lines_below), 'p_nom_opt'] = 0.
|
||||
|
||||
if lines_ext_untyped_b.any():
|
||||
for attr in ('r', 'x'):
|
||||
n.lines.loc[lines_ext_untyped_b, attr] = (
|
||||
lines[attr].multiply(lines['s_nom']/n.lines['s_nom_opt'])
|
||||
)
|
||||
|
||||
if lines_ext_typed_b.any():
|
||||
n.lines.loc[lines_ext_typed_b, 'num_parallel'] = (
|
||||
n.lines['s_nom_opt']/lines['s_nom']
|
||||
)
|
||||
logger.debug("lines.num_parallel={}".format(n.lines.loc[lines_ext_typed_b, 'num_parallel']))
|
||||
|
||||
iteration = 1
|
||||
|
||||
lines['s_nom_opt'] = lines['s_nom'] * n.lines['num_parallel'].where(n.lines.type != '', 1.)
|
||||
status, termination_condition = run_lopf(n, allow_warning_status=True)
|
||||
|
||||
def msq_diff(n):
|
||||
lines_err = np.sqrt(((n.lines['s_nom_opt'] - lines['s_nom_opt'])**2).mean())/lines['s_nom_opt'].mean()
|
||||
logger.info("Mean square difference after iteration {} is {}".format(iteration, lines_err))
|
||||
return lines_err
|
||||
|
||||
min_iterations = solve_opts.get('min_iterations', 2)
|
||||
max_iterations = solve_opts.get('max_iterations', 999)
|
||||
|
||||
while msq_diff(n) > msq_threshold or iteration < min_iterations:
|
||||
if iteration >= max_iterations:
|
||||
logger.info("Iteration {} beyond max_iterations {}. Stopping ...".format(iteration, max_iterations))
|
||||
break
|
||||
|
||||
update_line_parameters(n)
|
||||
lines['s_nom_opt'] = n.lines['s_nom_opt']
|
||||
iteration += 1
|
||||
|
||||
status, termination_condition = run_lopf(n, allow_warning_status=True)
|
||||
|
||||
update_line_parameters(n, zero_lines_below=100)
|
||||
|
||||
logger.info("Starting last run with fixed extendable lines")
|
||||
|
||||
# Not really needed, could also be taken out
|
||||
# if 'snakemake' in globals():
|
||||
# fn = os.path.basename(snakemake.output[0])
|
||||
# n.export_to_netcdf('/home/vres/data/jonas/playground/pypsa-eur/' + fn)
|
||||
|
||||
status, termination_condition = run_lopf(n, fix_ext_lines=True)
|
||||
|
||||
# Drop zero lines from network
|
||||
# zero_lines_i = n.lines.index[(n.lines.s_nom_opt == 0.) & n.lines.s_nom_extendable]
|
||||
# if len(zero_lines_i):
|
||||
# n.mremove("Line", zero_lines_i)
|
||||
# zero_links_i = n.links.index[(n.links.p_nom_opt == 0.) & n.links.p_nom_extendable]
|
||||
# if len(zero_links_i):
|
||||
# n.mremove("Link", zero_links_i)
|
||||
|
||||
# add to network for extra_functionality
|
||||
n.config = config
|
||||
n.opts = opts
|
||||
|
||||
if cf_solving.get('skip_iterations', False):
|
||||
network_lopf(n, solver_name=solver_name, solver_options=solver_options,
|
||||
extra_functionality=extra_functionality, **kwargs)
|
||||
else:
|
||||
ilopf(n, solver_name=solver_name, solver_options=solver_options,
|
||||
track_iterations=track_iterations,
|
||||
min_iterations=min_iterations,
|
||||
max_iterations=max_iterations,
|
||||
extra_functionality=extra_functionality, **kwargs)
|
||||
return n
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Detect running outside of snakemake and mock snakemake for testing
|
||||
if 'snakemake' not in globals():
|
||||
from vresutils.snakemake import MockSnakemake, Dict
|
||||
snakemake = MockSnakemake(
|
||||
wildcards=dict(network='elec', simpl='', clusters='39', lv='1.0',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
co2_budget_name='b30b3', planning_horizons='2050'),
|
||||
input=dict(network="pypsa-eur-sec/results/test/prenetworks_brownfield/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc"),
|
||||
output=["results/networks/s{simpl}_{clusters}_lv{lv}_{sector_opts}_{co2_budget_name}_{planning_horizons}-test.nc"],
|
||||
log=dict(gurobi="logs/{network}_s{simpl}_{clusters}_lv{lv}_{sector_opts}_{co2_budget_name}_{planning_horizons}_gurobi-test.log",
|
||||
python="logs/{network}_s{simpl}_{clusters}_lv{lv}_{sector_opts}_{co2_budget_name}_{planning_horizons}_python-test.log")
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'solve_network',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2050,
|
||||
)
|
||||
import yaml
|
||||
with open('config.yaml', encoding='utf8') as f:
|
||||
snakemake.config = yaml.safe_load(f)
|
||||
tmpdir = snakemake.config['solving'].get('tmpdir')
|
||||
if tmpdir is not None:
|
||||
patch_pyomo_tmpdir(tmpdir)
|
||||
|
||||
logging.basicConfig(filename=snakemake.log.python,
|
||||
level=snakemake.config['logging_level'])
|
||||
|
||||
with memory_logger(filename=getattr(snakemake.log, 'memory', None), interval=30.) as mem:
|
||||
tmpdir = snakemake.config['solving'].get('tmpdir')
|
||||
if tmpdir is not None:
|
||||
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
||||
opts = snakemake.wildcards.opts.split('-')
|
||||
solve_opts = snakemake.config['solving']['options']
|
||||
|
||||
n = pypsa.Network(snakemake.input.network,
|
||||
override_component_attrs=override_component_attrs)
|
||||
fn = getattr(snakemake.log, 'memory', None)
|
||||
with memory_logger(filename=fn, interval=30.) as mem:
|
||||
|
||||
n = prepare_network(n)
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
||||
|
||||
n = solve_network(n)
|
||||
n = prepare_network(n, solve_opts)
|
||||
|
||||
n = solve_network(n, config=snakemake.config, opts=opts,
|
||||
solver_dir=tmpdir,
|
||||
solver_logfile=snakemake.log.solver)
|
||||
|
||||
if "lv_limit" in n.global_constraints.index:
|
||||
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]
|
||||
n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"]
|
||||
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user