pypsa-eur/scripts/build_industrial_energy_demand_per_country_today.py
Fabian Neumann 1fc1d2a17d
Revision complete (#139)
* ammonia_production: minor cleaning and move into __main__ (#106)

* biomass_potentials: code cleaning and automatic country index inferral (#107)

* Revision: build energy totals (#111)

* blacken

* energy_totals: preliminaries

* energy_totals: update build_swiss

* energy_totals: update build_eurostat

* energy_totals: update build_idees

* energy_totals: update build_energy_totals

* energy_totals: update build_eea_co2

* energy_totals: update build_eurostat_co2

* energy_totals: update build_co2_totals

* energy_totals: update build_transport_data

* energy_totals: add tqdm progressbar to idees

* energy_totals: adjust __main__ section

* energy_totals: handle inputs via Snakefile and config

* energy_totals: handle data and emissions year via config

* energy_totals: fix reading in eurostat for different years

* energy_totals: fix erroneous drop duplicates
This caused problems for waste management in HU and SI

* energy_totals: make scope selection of CO2 or GHG a config option

* Revision: build industrial production per country (#114)

* industry-ppc: format

* industry-ppc: rewrite for performance

* industry-ppc: move reference year to config

* industry-ppct: tidy up and format (#115)

* remove stale industry demand rules (#116)

* industry-epc: rewrite for performance (#117)

* Revision: industrial distribution key (#118)

* industry-distribution: first tidying

* industry-distribution: first tidying

* industry-distribution: fix syntax

* Revision: industrial energy demand per node today (#119)

* industry-epn: minor code cleaning

* industry-epn: remove accidental artifact

* industry-epn: remove accidental artifact II

* industry-ppn: code cleaning (#120)

* minor code cleaning (#121)

* Revision: industry sector ratios (#122)

* sector-ratios: basic reformatting

* sector-ratios: add new read_excel function that filters year already

* sector-ratios: rename jrc to idees

* sector-ratios: rename conv_factor to toe_to_MWh

* sector-ratios: modularise into functions

* Move overriding of component attributes to function and into data (#123)

* move overriding of component attributes to central function and store in separate folder

* fix return of helper.override_component_attrs

* prepare: fix accidental syntax error

* override_component_attrs: bugfix that aligns with pypsa components

* Revision: build population layout (#108)

* population_layouts: move inside __main__ and blacken

* population_layouts: misc code cleaning and multiprocessing

* population_layouts: fix fill_values assignment of urban fractions

* population_layouts: bugfig for UK-GB naming ambiguity

* population_layouts: sort countries alphabetically for better overview

* config: change path to atlite cutout

* Revision: build clustered population layouts (#112)

* population_layouts: move inside __main__ and blacken

* population_layouts: misc code cleaning and multiprocessing

* population_layouts: fix fill_values assignment of urban fractions

* population_layouts: bugfig for UK-GB naming ambiguity

* population_layouts: sort countries alphabetically for better overview

* cl_pop_layout: blacken

* cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning

* cl_pop_layout: add fraction column which is repeatedly calculated downstream

* Revision: build various heating-related time series (#113)

* population_layouts: move inside __main__ and blacken

* population_layouts: misc code cleaning and multiprocessing

* population_layouts: fix fill_values assignment of urban fractions

* population_layouts: bugfig for UK-GB naming ambiguity

* population_layouts: sort countries alphabetically for better overview

* cl_pop_layout: blacken

* cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning

* gitignore: add .vscode

* heating_profiles: update to new atlite and move into __main__

* heating_profiles: remove extra cutout

* heating_profiles: load regions with .buffer(0) and remove clean_invalid_geometries

* heating_profiles: load regions with .buffer(0) before squeeze()

* heating_profiles: account for transpose of dataarray

* heating_profiles: account for transpose of dataarray in add_exiting_baseyear

* Reduce verbosity of Snakefile (2) (#128)

* tidy Snakefile light

* Snakefile: fix indents

* Snakefile: add missing RDIR

* tidy config by removing quotes and expanding lists (#109)

* bugfix: reorder squeeze() and buffer()

* plot/summary: cosmetic changes including: (#131)

- matplotlibrc for default style and backend
- remove unused config options
- option to configure geomap colors
- option to configure geomap bounds

* solve: align with pypsa-eur using ilopf (#129)

* tidy myopic code scripts (#132)

* use mock_snakemake from pypsa-eur (#133)

* Snakefile: add benchmark files to each rule

* Snakefile: only run build_retro_cost if endogenously optimised

* Snakefile: remove old {network} wildcard constraints

* WIP: Revision: prepare_sector_network (#124)

* population_layouts: move inside __main__ and blacken

* population_layouts: misc code cleaning and multiprocessing

* population_layouts: fix fill_values assignment of urban fractions

* population_layouts: bugfig for UK-GB naming ambiguity

* population_layouts: sort countries alphabetically for better overview

* cl_pop_layout: blacken

* cl_pop_layout: turn GeoDataFrame into GeoSeries + code cleaning

* move overriding of component attributes to central function and store in separate folder

* prepare: sort imports and remove six dependency

* prepare: remove add_emission_prices

* prepare: remove unused set_line_s_max_pu
This is a function from prepare_network

* prepare: remove unused set_line_volume_limit
This is a PyPSA-Eur function from prepare_network

* prepare: tidy add_co2limit

* remove six dependency

* prepare: tidy code first batch

* prepare: extend override_component_attrs to avoid hacky madd

* prepare: remove hacky madd() for individual components

* prepare: tidy shift function

* prepare: nodes and countries from n.buses not pop_layout

* prepare: tidy loading of pop_layout

* prepare: fix prepare_costs function

* prepare: optimise loading of traffic data

* prepare: move localizer into generate_periodic profiles

* prepare: some formatting of transport data

* prepare: eliminate some code duplication

* prepare: fix remove_h2_network
- only try to remove EU H2 store if it exists
- remove readding nodal Stores because they are never removed

* prepare: move cost adjustment to own function

* prepare: fix a syntax error

* prepare: add investment_year to get() assuming global variable

* prepare: move co2_totals out of prepare_data()

* Snakefile: remove unused prepare_sector_network inputs

* prepare: move limit p/s_nom of lines/links into function

* prepare: tidy add_co2limit file handling

* Snakefile: fix tabs

* override_component_attrs: add n/a defaults

* README: Add network picture to make scope clear

* README: Fix date of preprint (was too optimistic...)

* prepare: move some more config options to config.yaml

* prepare: runtime bugfixes

* fix benchmark path

* adjust plot ylims

* add unit attribute to bus, correct cement capture efficiency

* bugfix: land usage constrained missed inplace operation

Co-authored-by: Tom Brown <tom@nworbmot.org>

* add release notes

* remove old fix_branches() function

* deps: make geopy optional, remove unused imports

* increase default BarConvTol

* get ready for upcoming PyPSA release

* re-remove ** bug

* amend release notes

Co-authored-by: Tom Brown <tom@nworbmot.org>
2021-07-01 20:09:04 +02:00

166 lines
5.3 KiB
Python

"""Build industrial energy demand per country."""
import pandas as pd
import multiprocessing as mp
from tqdm import tqdm
ktoe_to_twh = 0.011630
# name in JRC-IDEES Energy Balances
sector_sheets = {'Integrated steelworks': 'cisb',
'Electric arc': 'cise',
'Alumina production': 'cnfa',
'Aluminium - primary production': 'cnfp',
'Aluminium - secondary production': 'cnfs',
'Other non-ferrous metals': 'cnfo',
'Basic chemicals': 'cbch',
'Other chemicals': 'coch',
'Pharmaceutical products etc.': 'cpha',
'Basic chemicals feedstock': 'cpch',
'Cement': 'ccem',
'Ceramics & other NMM': 'ccer',
'Glass production': 'cgla',
'Pulp production': 'cpul',
'Paper production': 'cpap',
'Printing and media reproduction': 'cprp',
'Food, beverages and tobacco': 'cfbt',
'Transport Equipment': 'ctre',
'Machinery Equipment': 'cmae',
'Textiles and leather': 'ctel',
'Wood and wood products': 'cwwp',
'Mining and quarrying': 'cmiq',
'Construction': 'ccon',
'Non-specified': 'cnsi',
}
fuels = {'All Products': 'all',
'Solid Fuels': 'solid',
'Total petroleum products (without biofuels)': 'liquid',
'Gases': 'gas',
'Nuclear heat': 'heat',
'Derived heat': 'heat',
'Biomass and Renewable wastes': 'biomass',
'Wastes (non-renewable)': 'waste',
'Electricity': 'electricity'
}
eu28 = ['FR', 'DE', 'GB', 'IT', 'ES', 'PL', 'SE', 'NL', 'BE', 'FI',
'DK', 'PT', 'RO', 'AT', 'BG', 'EE', 'GR', 'LV', 'CZ',
'HU', 'IE', 'SK', 'LT', 'HR', 'LU', 'SI', 'CY', 'MT']
jrc_names = {"GR": "EL", "GB": "UK"}
def industrial_energy_demand_per_country(country):
jrc_dir = snakemake.input.jrc
jrc_country = jrc_names.get(country, country)
fn = f'{jrc_dir}/JRC-IDEES-2015_EnergyBalance_{jrc_country}.xlsx'
sheets = list(sector_sheets.values())
df_dict = pd.read_excel(fn, sheet_name=sheets, index_col=0)
def get_subsector_data(sheet):
df = df_dict[sheet][year].groupby(fuels).sum()
df['other'] = df['all'] - df.loc[df.index != 'all'].sum()
return df
df = pd.concat({sub: get_subsector_data(sheet)
for sub, sheet in sector_sheets.items()}, axis=1)
sel = ['Mining and quarrying', 'Construction', 'Non-specified']
df['Other Industrial Sectors'] = df[sel].sum(axis=1)
df['Basic chemicals'] += df['Basic chemicals feedstock']
df.drop(columns=sel+['Basic chemicals feedstock'], index='all', inplace=True)
df *= ktoe_to_twh
return df
def add_ammonia_energy_demand(demand):
# MtNH3/a
fn = snakemake.input.ammonia_production
ammonia = pd.read_csv(fn, index_col=0)[str(year)] / 1e3
def ammonia_by_fuel(x):
fuels = {'gas': config['MWh_CH4_per_tNH3_SMR'],
'electricity': config['MWh_elec_per_tNH3_SMR']}
return pd.Series({k: x*v for k,v in fuels.items()})
ammonia = ammonia.apply(ammonia_by_fuel).T
demand['Ammonia'] = ammonia.unstack().reindex(index=demand.index, fill_value=0.)
demand['Basic chemicals (without ammonia)'] = demand["Basic chemicals"] - demand["Ammonia"]
demand['Basic chemicals (without ammonia)'].clip(lower=0, inplace=True)
demand.drop(columns='Basic chemicals', inplace=True)
return demand
def add_non_eu28_industrial_energy_demand(demand):
# output in MtMaterial/a
fn = snakemake.input.industrial_production_per_country
production = pd.read_csv(fn, index_col=0) / 1e3
eu28_production = production.loc[eu28].sum()
eu28_energy = demand.groupby(level=1).sum()
eu28_averages = eu28_energy / eu28_production
non_eu28 = production.index.symmetric_difference(eu28)
demand_non_eu28 = pd.concat({k: v * eu28_averages
for k, v in production.loc[non_eu28].iterrows()})
return pd.concat([demand, demand_non_eu28])
def industrial_energy_demand(countries):
nprocesses = snakemake.threads
func = industrial_energy_demand_per_country
tqdm_kwargs = dict(ascii=False, unit=' country', total=len(countries),
desc="Build industrial energy demand")
with mp.Pool(processes=nprocesses) as pool:
demand_l = list(tqdm(pool.imap(func, countries), **tqdm_kwargs))
demand = pd.concat(demand_l, keys=countries)
return demand
if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake('build_industrial_energy_demand_per_country_today')
config = snakemake.config['industry']
year = config.get('reference_year', 2015)
demand = industrial_energy_demand(eu28)
demand = add_ammonia_energy_demand(demand)
demand = add_non_eu28_industrial_energy_demand(demand)
# for format compatibility
demand = demand.stack(dropna=False).unstack(level=[0,2])
# style and annotation
demand.index.name = 'TWh/a'
demand.sort_index(axis=1, inplace=True)
fn = snakemake.output.industrial_energy_demand_per_country_today
demand.to_csv(fn)