distribute electricity demand in ua and md based on GDP data
This commit is contained in:
parent
025dd35878
commit
d2af983378
@ -226,7 +226,7 @@ rule add_electricity:
|
|||||||
geth_hydro_capacities='data/geth2015_hydro_capacities.csv',
|
geth_hydro_capacities='data/geth2015_hydro_capacities.csv',
|
||||||
load='resources/load.csv',
|
load='resources/load.csv',
|
||||||
nuts3_shapes='resources/nuts3_shapes.geojson',
|
nuts3_shapes='resources/nuts3_shapes.geojson',
|
||||||
gdp='data/bundle/GDP_PPP_30arcsec_v3.nc',
|
ua_md_gdp='data/bundle/GDP_PPP_30arcsec_v3_mapped.csv',
|
||||||
**{f"profile_{tech}": f"resources/profile_{tech}.nc"
|
**{f"profile_{tech}": f"resources/profile_{tech}.nc"
|
||||||
for tech in config['renewable']}
|
for tech in config['renewable']}
|
||||||
output: "networks/elec.nc"
|
output: "networks/elec.nc"
|
||||||
|
@ -190,7 +190,7 @@ def load_powerplants(ppl_fn):
|
|||||||
.replace({'carrier': carrier_dict}))
|
.replace({'carrier': carrier_dict}))
|
||||||
|
|
||||||
|
|
||||||
def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.):
|
def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1.):
|
||||||
|
|
||||||
substation_lv_i = n.buses.index[n.buses['substation_lv']]
|
substation_lv_i = n.buses.index[n.buses['substation_lv']]
|
||||||
regions = (gpd.read_file(regions).set_index('name')
|
regions = (gpd.read_file(regions).set_index('name')
|
||||||
@ -198,17 +198,7 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.):
|
|||||||
opsd_load = (pd.read_csv(load, index_col=0, parse_dates=True)
|
opsd_load = (pd.read_csv(load, index_col=0, parse_dates=True)
|
||||||
.filter(items=countries))
|
.filter(items=countries))
|
||||||
|
|
||||||
#ToDo: adapt time+slices from config etc. (cover all data)
|
ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={'name': 'str'}).set_index('name')
|
||||||
gdp = (xr.open_dataset(gdp)
|
|
||||||
.sel(time=2015)
|
|
||||||
.sel(longitude=slice(10,30))
|
|
||||||
.sel(latitude=slice(50, 30)))
|
|
||||||
weightmap = xa.pixel_overlaps(gdp, regions.iloc[0:2])
|
|
||||||
aggregated = xa.aggregate(gdp, weightmap)
|
|
||||||
|
|
||||||
print(aggregated.to_dataset().name)
|
|
||||||
print(aggregated.to_dataset().GDP_per_capita_PPP)
|
|
||||||
print(martha)
|
|
||||||
|
|
||||||
logger.info(f"Load data scaled with scalling factor {scaling}.")
|
logger.info(f"Load data scaled with scalling factor {scaling}.")
|
||||||
opsd_load *= scaling
|
opsd_load *= scaling
|
||||||
@ -233,8 +223,8 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.):
|
|||||||
# regression on the country to continent load data
|
# regression on the country to continent load data
|
||||||
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
|
factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n))
|
||||||
if cntry in ['UA', 'MD']:
|
if cntry in ['UA', 'MD']:
|
||||||
#generate new factors in this case
|
# overwrite factor because nuts3 provides no data for UA+MD
|
||||||
print('ToDo: adjust load for UA and MD here')
|
factors = normed(ua_md_gdp.loc[group.index, "GDP_PPP"].squeeze())
|
||||||
|
|
||||||
return pd.DataFrame(factors.values * l.values[:,np.newaxis],
|
return pd.DataFrame(factors.values * l.values[:,np.newaxis],
|
||||||
index=l.index, columns=factors.index)
|
index=l.index, columns=factors.index)
|
||||||
@ -242,8 +232,6 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.):
|
|||||||
load = pd.concat([upsample(cntry, group) for cntry, group
|
load = pd.concat([upsample(cntry, group) for cntry, group
|
||||||
in regions.geometry.groupby(regions.country)], axis=1)
|
in regions.geometry.groupby(regions.country)], axis=1)
|
||||||
|
|
||||||
print(some_error)
|
|
||||||
|
|
||||||
n.madd("Load", substation_lv_i, bus=substation_lv_i, p_set=load)
|
n.madd("Load", substation_lv_i, bus=substation_lv_i, p_set=load)
|
||||||
|
|
||||||
|
|
||||||
@ -571,7 +559,7 @@ if __name__ == "__main__":
|
|||||||
ppl = load_powerplants(snakemake.input.powerplants)
|
ppl = load_powerplants(snakemake.input.powerplants)
|
||||||
|
|
||||||
attach_load(n, snakemake.input.regions, snakemake.input.load, snakemake.input.nuts3_shapes,
|
attach_load(n, snakemake.input.regions, snakemake.input.load, snakemake.input.nuts3_shapes,
|
||||||
snakemake.input.gdp, snakemake.config['countries'], snakemake.config['load']['scaling_factor'])
|
snakemake.input.ua_md_gdp, snakemake.config['countries'], snakemake.config['load']['scaling_factor'])
|
||||||
|
|
||||||
update_transmission_costs(n, costs, snakemake.config['lines']['length_factor'])
|
update_transmission_costs(n, costs, snakemake.config['lines']['length_factor'])
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user