diff --git a/Snakefile b/Snakefile index 5c325699..9d62dfe2 100644 --- a/Snakefile +++ b/Snakefile @@ -226,7 +226,7 @@ rule add_electricity: geth_hydro_capacities='data/geth2015_hydro_capacities.csv', load='resources/load.csv', nuts3_shapes='resources/nuts3_shapes.geojson', - gdp='data/bundle/GDP_PPP_30arcsec_v3.nc', + ua_md_gdp='data/bundle/GDP_PPP_30arcsec_v3_mapped.csv', **{f"profile_{tech}": f"resources/profile_{tech}.nc" for tech in config['renewable']} output: "networks/elec.nc" diff --git a/scripts/add_electricity.py b/scripts/add_electricity.py index 3945c04a..35e2bc98 100755 --- a/scripts/add_electricity.py +++ b/scripts/add_electricity.py @@ -190,7 +190,7 @@ def load_powerplants(ppl_fn): .replace({'carrier': carrier_dict})) -def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.): +def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1.): substation_lv_i = n.buses.index[n.buses['substation_lv']] regions = (gpd.read_file(regions).set_index('name') @@ -198,17 +198,7 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.): opsd_load = (pd.read_csv(load, index_col=0, parse_dates=True) .filter(items=countries)) - #ToDo: adapt time+slices from config etc. (cover all data) - gdp = (xr.open_dataset(gdp) - .sel(time=2015) - .sel(longitude=slice(10,30)) - .sel(latitude=slice(50, 30))) - weightmap = xa.pixel_overlaps(gdp, regions.iloc[0:2]) - aggregated = xa.aggregate(gdp, weightmap) - - print(aggregated.to_dataset().name) - print(aggregated.to_dataset().GDP_per_capita_PPP) - print(martha) + ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={'name': 'str'}).set_index('name') logger.info(f"Load data scaled with scalling factor {scaling}.") opsd_load *= scaling @@ -233,8 +223,8 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.): # regression on the country to continent load data factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n)) if cntry in ['UA', 'MD']: - #generate new factors in this case - print('ToDo: adjust load for UA and MD here') + # overwrite factor because nuts3 provides no data for UA+MD + factors = normed(ua_md_gdp.loc[group.index, "GDP_PPP"].squeeze()) return pd.DataFrame(factors.values * l.values[:,np.newaxis], index=l.index, columns=factors.index) @@ -242,8 +232,6 @@ def attach_load(n, regions, load, nuts3_shapes, gdp, countries, scaling=1.): load = pd.concat([upsample(cntry, group) for cntry, group in regions.geometry.groupby(regions.country)], axis=1) - print(some_error) - n.madd("Load", substation_lv_i, bus=substation_lv_i, p_set=load) @@ -571,7 +559,7 @@ if __name__ == "__main__": ppl = load_powerplants(snakemake.input.powerplants) attach_load(n, snakemake.input.regions, snakemake.input.load, snakemake.input.nuts3_shapes, - snakemake.input.gdp, snakemake.config['countries'], snakemake.config['load']['scaling_factor']) + snakemake.input.ua_md_gdp, snakemake.config['countries'], snakemake.config['load']['scaling_factor']) update_transmission_costs(n, costs, snakemake.config['lines']['length_factor'])