Remove old data/costs.csv and dependencies on it
This commit is contained in:
parent
3f5aa60ad2
commit
95e676828a
@ -185,7 +185,7 @@ rule prepare_sector_network:
|
||||
biomass_potentials='data/biomass_potentials.csv',
|
||||
timezone_mappings='data/timezone_mappings.csv',
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv", #"data/costs.csv"
|
||||
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
|
||||
co2_budget="data/co2_budget.csv",
|
||||
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
|
||||
profile_offwind_dc=pypsaeur("resources/profile_offwind-dc.nc"),
|
||||
@ -242,6 +242,7 @@ rule make_summary:
|
||||
input:
|
||||
networks=expand(config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
|
||||
**config['scenario']),
|
||||
costs=config['costs_dir'] + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
|
||||
#plots=expand(config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{co2_budget_name}_{planning_horizons}.pdf",
|
||||
# **config['scenario'])
|
||||
#heat_demand_name='data/heating/daily_heat_demand.h5'
|
||||
|
251
data/costs.csv
251
data/costs.csv
@ -1,251 +0,0 @@
|
||||
technology,year,parameter,value,unit,source
|
||||
solar-rooftop,2030,discount rate,0.04,per unit,standard for decentral
|
||||
onwind,2030,lifetime,25,years,IEA2010
|
||||
offwind,2030,lifetime,25,years,IEA2010
|
||||
solar,2030,lifetime,25,years,IEA2010
|
||||
solar-rooftop,2030,lifetime,25,years,IEA2010
|
||||
solar-utility,2030,lifetime,25,years,IEA2010
|
||||
PHS,2030,lifetime,80,years,IEA2010
|
||||
hydro,2030,lifetime,80,years,IEA2010
|
||||
ror,2030,lifetime,80,years,IEA2010
|
||||
OCGT,2030,lifetime,30,years,IEA2010
|
||||
nuclear,2030,lifetime,45,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
CCGT,2030,lifetime,30,years,IEA2010
|
||||
coal,2030,lifetime,40,years,IEA2010
|
||||
lignite,2030,lifetime,40,years,IEA2010
|
||||
geothermal,2030,lifetime,40,years,IEA2010
|
||||
biomass,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
oil,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
onwind,2030,investment,1182,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
offwind,2030,investment,2506,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
solar,2030,investment,600,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
biomass,2030,investment,2209,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
geothermal,2030,investment,3392,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
coal,2030,investment,1300,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
|
||||
lignite,2030,investment,1500,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
solar-rooftop,2030,investment,725,EUR/kWel,ETIP PV
|
||||
solar-utility,2030,investment,425,EUR/kWel,ETIP PV
|
||||
PHS,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
hydro,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
ror,2030,investment,3000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
OCGT,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
nuclear,2030,investment,6000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
CCGT,2030,investment,800,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
oil,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
onwind,2030,FOM,2.961083,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
offwind,2030,FOM,3.192338,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
solar,2030,FOM,4.166667,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
solar-rooftop,2030,FOM,2,%/year,ETIP PV
|
||||
solar-utility,2030,FOM,3,%/year,ETIP PV
|
||||
biomass,2030,FOM,4.526935,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
geothermal,2030,FOM,2.358491,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
coal,2030,FOM,1.923076,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
|
||||
lignite,2030,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
|
||||
oil,2030,FOM,1.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
PHS,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
hydro,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
ror,2030,FOM,2,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
CCGT,2030,FOM,2.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
OCGT,2030,FOM,3.75,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
onwind,2030,VOM,0.015,EUR/MWhel,RES costs made up to fix curtailment order
|
||||
offwind,2030,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order
|
||||
solar,2030,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order
|
||||
coal,2030,VOM,6,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
|
||||
lignite,2030,VOM,7,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
CCGT,2030,VOM,4,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
OCGT,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
nuclear,2030,VOM,8,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
gas,2030,fuel,21.6,EUR/MWhth,IEA2011b
|
||||
uranium,2030,fuel,3,EUR/MWhth,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
oil,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
nuclear,2030,fuel,3,EUR/MWhth,IEA2011b
|
||||
biomass,2030,fuel,7,EUR/MWhth,IEA2011b
|
||||
coal,2030,fuel,8.4,EUR/MWhth,IEA2011b
|
||||
lignite,2030,fuel,2.9,EUR/MWhth,IEA2011b
|
||||
biogas,2030,fuel,59,EUR/MWhth,JRC and Zappa
|
||||
solid biomass,2030,fuel,25.2,EUR/MWhth,JRC and Zappa
|
||||
oil,2030,fuel,50,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf
|
||||
PHS,2030,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
hydro,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
ror,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
OCGT,2030,efficiency,0.39,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
CCGT,2030,efficiency,0.5,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
biomass,2030,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
geothermal,2030,efficiency,0.239,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
nuclear,2030,efficiency,0.337,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
gas,2030,CO2 intensity,0.187,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
|
||||
coal,2030,efficiency,0.464,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
|
||||
lignite,2030,efficiency,0.447,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
|
||||
oil,2030,efficiency,0.393,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 CT
|
||||
coal,2030,CO2 intensity,0.354,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
|
||||
lignite,2030,CO2 intensity,0.4,tCO2/MWhth,German sources
|
||||
oil,2030,CO2 intensity,0.248,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
|
||||
geothermal,2030,CO2 intensity,0.026,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
|
||||
solid biomass,2030,CO2 intensity,0.3,tCO2/MWhth,TODO
|
||||
electrolysis,2030,investment,350,EUR/kWel,Palzer Thesis
|
||||
electrolysis,2030,FOM,4,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
electrolysis,2030,lifetime,18,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
electrolysis,2030,efficiency,0.8,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
fuel cell,2030,investment,339,EUR/kWel,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
fuel cell,2030,FOM,3,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
fuel cell,2030,lifetime,20,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
|
||||
fuel cell,2030,efficiency,0.58,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020
|
||||
hydrogen storage,2030,investment,11.2,USD/kWh,budischak2013
|
||||
hydrogen storage,2030,lifetime,20,years,budischak2013
|
||||
hydrogen underground storage,2030,investment,0.5,EUR/kWh,maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf
|
||||
hydrogen underground storage,2030,lifetime,40,years,http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf
|
||||
H2 pipeline,2030,investment,267,EUR/MW/km,Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156
|
||||
H2 pipeline,2030,lifetime,40,years,TODO
|
||||
H2 pipeline,2030,FOM,3,%/year,TODO
|
||||
methanation,2030,investment,1000,EUR/kWH2,Schaber thesis
|
||||
methanation,2030,lifetime,25,years,Schaber thesis
|
||||
methanation,2030,FOM,3,%/year,Schaber thesis
|
||||
methanation,2030,efficiency,0.8,per unit,Palzer and Schaber thesis
|
||||
helmeth,2030,investment,2000,EUR/kW,no source
|
||||
helmeth,2030,lifetime,25,years,no source
|
||||
helmeth,2030,FOM,3,%/year,no source
|
||||
helmeth,2030,efficiency,0.8,per unit,HELMETH press release
|
||||
SMR,2030,investment,540.56,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16
|
||||
SMR,2030,lifetime,25,years,TODO
|
||||
SMR,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
|
||||
SMR,2030,efficiency,0.74,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
|
||||
SMR CCS,2030,investment,1032,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16; CCS costed at 300 EUR/tCO2/a
|
||||
SMR CCS,2030,lifetime,25,years,TODO
|
||||
SMR CCS,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
|
||||
SMR CCS,2030,efficiency,0.67,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; CCS uses 10% of gas
|
||||
industry CCS,2030,investment,300,EUR/tCO2/a,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
|
||||
industry CCS,2030,FOM,2,%/year,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
|
||||
industry CCS,2030,lifetime,25,years,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
|
||||
industry CCS,2030,efficiency,0.9,per unit,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
|
||||
Fischer-Tropsch,2030,investment,677.6,EUR/kWH2,Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6)
|
||||
Fischer-Tropsch,2030,lifetime,30,years,doi:10.3390/su9020306
|
||||
Fischer-Tropsch,2030,FOM,3,%/year,doi:10.3390/su9020306
|
||||
Fischer-Tropsch,2030,efficiency,0.8,per unit,TODO
|
||||
DAC,2030,investment,250,EUR/(tCO2/a),Fasihi doi:10.3390/su9020306/Climeworks
|
||||
DAC,2030,lifetime,30,years,Fasihi
|
||||
DAC,2030,FOM,4,%/year,Fasihi
|
||||
battery inverter,2030,investment,411,USD/kWel,budischak2013
|
||||
battery inverter,2030,lifetime,20,years,budischak2013
|
||||
battery inverter,2030,efficiency,0.81,per unit,budischak2013; Lund and Kempton (2008) https://doi.org/10.1016/j.enpol.2008.06.007
|
||||
battery inverter,2030,FOM,3,%/year,budischak2013
|
||||
battery storage,2030,investment,192,USD/kWh,budischak2013
|
||||
battery storage,2030,lifetime,15,years,budischak2013
|
||||
decentral air-sourced heat pump,2030,investment,1050,EUR/kWth,HP; Palzer thesis
|
||||
decentral air-sourced heat pump,2030,lifetime,20,years,HP; Palzer thesis
|
||||
decentral air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
|
||||
decentral air-sourced heat pump,2030,efficiency,3,per unit,default for costs
|
||||
decentral air-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
decentral ground-sourced heat pump,2030,investment,1400,EUR/kWth,Palzer thesis
|
||||
decentral ground-sourced heat pump,2030,lifetime,20,years,Palzer thesis
|
||||
decentral ground-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
|
||||
decentral ground-sourced heat pump,2030,efficiency,4,per unit,default for costs
|
||||
decentral ground-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
central air-sourced heat pump,2030,investment,700,EUR/kWth,Palzer thesis
|
||||
central air-sourced heat pump,2030,lifetime,20,years,Palzer thesis
|
||||
central air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
|
||||
central air-sourced heat pump,2030,efficiency,3,per unit,default for costs
|
||||
retrofitting I,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
retrofitting I,2030,lifetime,50,years,Palzer thesis
|
||||
retrofitting I,2030,FOM,1,%/year,Palzer thesis
|
||||
retrofitting I,2030,investment,50,EUR/m2/fraction reduction,Palzer thesis
|
||||
retrofitting II,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
retrofitting II,2030,lifetime,50,years,Palzer thesis
|
||||
retrofitting II,2030,FOM,1,%/year,Palzer thesis
|
||||
retrofitting II,2030,investment,250,EUR/m2/fraction reduction,Palzer thesis
|
||||
water tank charger,2030,efficiency,0.9,per unit,HP
|
||||
water tank discharger,2030,efficiency,0.9,per unit,HP
|
||||
decentral water tank storage,2030,investment,860,EUR/m3,IWES Interaktion
|
||||
decentral water tank storage,2030,FOM,1,%/year,HP
|
||||
decentral water tank storage,2030,lifetime,20,years,HP
|
||||
decentral water tank storage,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
central water tank storage,2030,investment,30,EUR/m3,IWES Interaktion
|
||||
central water tank storage,2030,FOM,1,%/year,HP
|
||||
central water tank storage,2030,lifetime,40,years,HP
|
||||
decentral resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
|
||||
decentral resistive heater,2030,lifetime,20,years,Schaber thesis
|
||||
decentral resistive heater,2030,FOM,2,%/year,Schaber thesis
|
||||
decentral resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
|
||||
decentral resistive heater,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
central resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
|
||||
central resistive heater,2030,lifetime,20,years,Schaber thesis
|
||||
central resistive heater,2030,FOM,2,%/year,Schaber thesis
|
||||
central resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
|
||||
decentral gas boiler,2030,investment,175,EUR/kWhth,Palzer thesis
|
||||
decentral gas boiler,2030,lifetime,20,years,Palzer thesis
|
||||
decentral gas boiler,2030,FOM,2,%/year,Palzer thesis
|
||||
decentral gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
|
||||
decentral gas boiler,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
central gas boiler,2030,investment,63,EUR/kWhth,Palzer thesis
|
||||
central gas boiler,2030,lifetime,22,years,Palzer thesis
|
||||
central gas boiler,2030,FOM,1,%/year,Palzer thesis
|
||||
central gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
|
||||
decentral CHP,2030,lifetime,25,years,HP
|
||||
decentral CHP,2030,investment,1400,EUR/kWel,HP
|
||||
decentral CHP,2030,FOM,3,%/year,HP
|
||||
decentral CHP,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
central gas CHP,2030,lifetime,30,years,DEA
|
||||
central gas CHP,2030,investment,1300,EUR/kWel,DEA
|
||||
central gas CHP,2030,FOM,3,%/year,DEA
|
||||
central gas CHP,2030,efficiency,0.45,per unit,DEA (condensation mode)
|
||||
central gas CHP,2030,c_b,0.7,per unit,DEA (backpressure ratio)
|
||||
central gas CHP,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat)
|
||||
central gas CHP,2030,p_nom_ratio,1.,per unit,
|
||||
central gas CHP,2030,VOM,0.82,EUR/MWh,DEA
|
||||
central gas CHP CCS,2030,lifetime,30,years,DEA
|
||||
central gas CHP CCS,2030,investment,1900,EUR/kWel,DEA + DIW extra for CCS on gas plant
|
||||
central gas CHP CCS,2030,FOM,3,%/year,DEA
|
||||
central gas CHP CCS,2030,efficiency,0.405,per unit,DEA (condensation mode + efficiency loss due to capture)
|
||||
central gas CHP CCS,2030,c_b,0.7,per unit,DEA (backpressure ratio)
|
||||
central gas CHP CCS,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat)
|
||||
central gas CHP CCS,2030,p_nom_ratio,1.,per unit,
|
||||
central gas CHP CCS,2030,VOM,0.82,EUR/MWh,DEA
|
||||
central solid biomass CHP,2030,lifetime,40,years,DEA for wood pellets CHP
|
||||
central solid biomass CHP,2030,investment,1990,EUR/kWel,DEA for wood pellets CHP
|
||||
central solid biomass CHP,2030,FOM,3,%/year,DEA for wood pellets CHP
|
||||
central solid biomass CHP,2030,efficiency,0.52,per unit,DEA for wood pellets CHP (condensation mode)
|
||||
central solid biomass CHP,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio)
|
||||
central solid biomass CHP,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat)
|
||||
central solid biomass CHP,2030,p_nom_ratio,1.,per unit,
|
||||
central solid biomass CHP,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP
|
||||
central solid biomass CHP CCS,2030,lifetime,40,years,DEA for wood pellets CHP
|
||||
central solid biomass CHP CCS,2030,investment,2590,EUR/kWel,DEA for wood pellets CHP + DIW extra for CCS on gas plant
|
||||
central solid biomass CHP CCS,2030,FOM,3,%/year,DEA for wood pellets CHP
|
||||
central solid biomass CHP CCS,2030,efficiency,0.468,per unit,DEA for wood pellets CHP (condensation mode + efficiency loss due to capture)
|
||||
central solid biomass CHP CCS,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio)
|
||||
central solid biomass CHP CCS,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat)
|
||||
central solid biomass CHP CCS,2030,p_nom_ratio,1.,per unit,
|
||||
central solid biomass CHP CCS,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP
|
||||
micro CHP,2030,lifetime,20,years,DEA for PEMFC with methane (for unit consuming 2kW CH4)
|
||||
micro CHP,2030,investment,4500,EUR/kWCH4,DEA for PEMFC with methane (for unit consuming 2kW CH4)
|
||||
micro CHP,2030,FOM,6,%/year,DEA for PEMFC with methane (for unit consuming 2kW CH4)
|
||||
micro CHP,2030,efficiency,0.351,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4)
|
||||
micro CHP,2030,efficiency-heat,0.609,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4)
|
||||
decentral solar thermal,2030,discount rate,0.04,per unit,Palzer thesis
|
||||
decentral solar thermal,2030,FOM,1.3,%/year,HP
|
||||
decentral solar thermal,2030,investment,270000,EUR/1000m2,HP
|
||||
decentral solar thermal,2030,lifetime,20,years,HP
|
||||
central solar thermal,2030,FOM,1.4,%/year,HP
|
||||
central solar thermal,2030,investment,140000,EUR/1000m2,HP
|
||||
central solar thermal,2030,lifetime,20,years,HP
|
||||
HVAC overhead,2030,investment,400,EUR/MW/km,Hagspiel
|
||||
HVAC overhead,2030,lifetime,40,years,Hagspiel
|
||||
HVAC overhead,2030,FOM,2,%/year,Hagspiel
|
||||
HVDC overhead,2030,investment,400,EUR/MW/km,Hagspiel
|
||||
HVDC overhead,2030,lifetime,40,years,Hagspiel
|
||||
HVDC overhead,2030,FOM,2,%/year,Hagspiel
|
||||
HVDC submarine,2030,investment,2000,EUR/MW/km,Own analysis of European submarine HVDC projects since 2000
|
||||
HVDC submarine,2030,lifetime,40,years,Hagspiel
|
||||
HVDC submarine,2030,FOM,2,%/year,Hagspiel
|
||||
HVDC inverter pair,2030,investment,150000,EUR/MW,Hagspiel
|
||||
HVDC inverter pair,2030,lifetime,40,years,Hagspiel
|
||||
HVDC inverter pair,2030,FOM,2,%/year,Hagspiel
|
||||
electricity distribution grid,2030,investment,500,EUR/kW,TODO
|
||||
electricity distribution grid,2030,lifetime,40,years,TODO
|
||||
electricity distribution grid,2030,FOM,2,%/year,TODO
|
||||
electricity grid connection,2030,investment,140,EUR/kW,DEA
|
||||
electricity grid connection,2030,lifetime,40,years,TODO
|
||||
electricity grid connection,2030,FOM,2,%/year,TODO
|
||||
decentral oil boiler,2030,investment,156.0140915953699,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung)
|
||||
decentral oil boiler,2030,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
|
||||
decentral oil boiler,2030,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
|
||||
decentral oil boiler,2030,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
|
|
@ -3,8 +3,6 @@ from six import iteritems
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("../pypsa-eur/scripts")
|
||||
|
||||
import pandas as pd
|
||||
|
||||
import numpy as np
|
||||
@ -13,9 +11,7 @@ import pypsa
|
||||
|
||||
from vresutils.costdata import annuity
|
||||
|
||||
from prepare_sector_network import generate_periodic_profiles
|
||||
|
||||
from add_electricity import load_costs
|
||||
from prepare_sector_network import generate_periodic_profiles, prepare_costs
|
||||
|
||||
import yaml
|
||||
|
||||
@ -192,10 +188,10 @@ def calculate_costs(n,label,costs):
|
||||
|
||||
#add back in costs of links if there is a line volume limit
|
||||
if label[1] != "opt":
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'capital_cost']*n.links.length + costs_db.at['HVDC inverter pair', 'capital_cost'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "capital_cost"]*(n.lines.length*n.lines.s_nom_opt).sum()
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'fixed']*n.links.length + costs_db.at['HVDC inverter pair', 'fixed'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "fixed"]*(n.lines.length*n.lines.s_nom_opt).sum()
|
||||
else:
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'capital_cost']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'fixed']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
|
||||
|
||||
|
||||
#add back in all hydro
|
||||
@ -599,10 +595,14 @@ if __name__ == "__main__":
|
||||
for lv in snakemake.config['scenario']['lv'] \
|
||||
for co2_budget_name in snakemake.config['scenario']['co2_budget_name'] \
|
||||
for planning_horizon in snakemake.config['scenario']['planning_horizons']}
|
||||
|
||||
|
||||
print(networks_dict)
|
||||
|
||||
costs_db = load_costs(Nyears=1.,tech_costs="data/costs.csv",config=snakemake.config["costs"],elec_config=snakemake.config['electricity'])
|
||||
Nyears = 1
|
||||
costs_db = prepare_costs(snakemake.input.costs,
|
||||
snakemake.config['costs']['USD2013_to_EUR2013'],
|
||||
snakemake.config['costs']['discountrate'],
|
||||
Nyears)
|
||||
|
||||
df = make_summaries(networks_dict)
|
||||
|
||||
|
@ -531,7 +531,6 @@ def prepare_data(network):
|
||||
def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears):
|
||||
|
||||
#set all asset costs and other parameters
|
||||
#costs = pd.read_csv(snakemake.input.costs,index_col=list(range(3))).sort_index()
|
||||
costs = pd.read_csv(cost_file,index_col=list(range(2))).sort_index()
|
||||
|
||||
#correct units to MW and EUR
|
||||
|
Loading…
Reference in New Issue
Block a user