Remove old data/costs.csv and dependencies on it

This commit is contained in:
Tom Brown 2020-08-20 14:26:39 +02:00
parent 3f5aa60ad2
commit 95e676828a
4 changed files with 12 additions and 263 deletions

View File

@ -185,7 +185,7 @@ rule prepare_sector_network:
biomass_potentials='data/biomass_potentials.csv',
timezone_mappings='data/timezone_mappings.csv',
heat_profile="data/heat_load_profile_BDEW.csv",
costs=config['costs_dir'] + "costs_{planning_horizons}.csv", #"data/costs.csv"
costs=config['costs_dir'] + "costs_{planning_horizons}.csv",
co2_budget="data/co2_budget.csv",
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),
profile_offwind_dc=pypsaeur("resources/profile_offwind-dc.nc"),
@ -242,6 +242,7 @@ rule make_summary:
input:
networks=expand(config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc",
**config['scenario']),
costs=config['costs_dir'] + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]),
#plots=expand(config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{co2_budget_name}_{planning_horizons}.pdf",
# **config['scenario'])
#heat_demand_name='data/heating/daily_heat_demand.h5'

View File

@ -1,251 +0,0 @@
technology,year,parameter,value,unit,source
solar-rooftop,2030,discount rate,0.04,per unit,standard for decentral
onwind,2030,lifetime,25,years,IEA2010
offwind,2030,lifetime,25,years,IEA2010
solar,2030,lifetime,25,years,IEA2010
solar-rooftop,2030,lifetime,25,years,IEA2010
solar-utility,2030,lifetime,25,years,IEA2010
PHS,2030,lifetime,80,years,IEA2010
hydro,2030,lifetime,80,years,IEA2010
ror,2030,lifetime,80,years,IEA2010
OCGT,2030,lifetime,30,years,IEA2010
nuclear,2030,lifetime,45,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,lifetime,30,years,IEA2010
coal,2030,lifetime,40,years,IEA2010
lignite,2030,lifetime,40,years,IEA2010
geothermal,2030,lifetime,40,years,IEA2010
biomass,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,investment,1182,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
offwind,2030,investment,2506,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
solar,2030,investment,600,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
biomass,2030,investment,2209,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,investment,3392,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
coal,2030,investment,1300,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,investment,1500,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
solar-rooftop,2030,investment,725,EUR/kWel,ETIP PV
solar-utility,2030,investment,425,EUR/kWel,ETIP PV
PHS,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,investment,3000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,investment,6000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,investment,800,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,FOM,2.961083,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
offwind,2030,FOM,3.192338,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
solar,2030,FOM,4.166667,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
solar-rooftop,2030,FOM,2,%/year,ETIP PV
solar-utility,2030,FOM,3,%/year,ETIP PV
biomass,2030,FOM,4.526935,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,FOM,2.358491,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
coal,2030,FOM,1.923076,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
oil,2030,FOM,1.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
PHS,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,FOM,2,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,FOM,2.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,FOM,3.75,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,VOM,0.015,EUR/MWhel,RES costs made up to fix curtailment order
offwind,2030,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order
solar,2030,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order
coal,2030,VOM,6,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,VOM,7,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,VOM,4,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,VOM,8,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
gas,2030,fuel,21.6,EUR/MWhth,IEA2011b
uranium,2030,fuel,3,EUR/MWhth,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,fuel,3,EUR/MWhth,IEA2011b
biomass,2030,fuel,7,EUR/MWhth,IEA2011b
coal,2030,fuel,8.4,EUR/MWhth,IEA2011b
lignite,2030,fuel,2.9,EUR/MWhth,IEA2011b
biogas,2030,fuel,59,EUR/MWhth,JRC and Zappa
solid biomass,2030,fuel,25.2,EUR/MWhth,JRC and Zappa
oil,2030,fuel,50,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf
PHS,2030,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,efficiency,0.39,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,efficiency,0.5,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
biomass,2030,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,efficiency,0.239,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,efficiency,0.337,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
gas,2030,CO2 intensity,0.187,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
coal,2030,efficiency,0.464,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,efficiency,0.447,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,efficiency,0.393,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 CT
coal,2030,CO2 intensity,0.354,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
lignite,2030,CO2 intensity,0.4,tCO2/MWhth,German sources
oil,2030,CO2 intensity,0.248,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
geothermal,2030,CO2 intensity,0.026,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
solid biomass,2030,CO2 intensity,0.3,tCO2/MWhth,TODO
electrolysis,2030,investment,350,EUR/kWel,Palzer Thesis
electrolysis,2030,FOM,4,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
electrolysis,2030,lifetime,18,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
electrolysis,2030,efficiency,0.8,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,investment,339,EUR/kWel,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,FOM,3,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,lifetime,20,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,efficiency,0.58,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020
hydrogen storage,2030,investment,11.2,USD/kWh,budischak2013
hydrogen storage,2030,lifetime,20,years,budischak2013
hydrogen underground storage,2030,investment,0.5,EUR/kWh,maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf
hydrogen underground storage,2030,lifetime,40,years,http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf
H2 pipeline,2030,investment,267,EUR/MW/km,Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156
H2 pipeline,2030,lifetime,40,years,TODO
H2 pipeline,2030,FOM,3,%/year,TODO
methanation,2030,investment,1000,EUR/kWH2,Schaber thesis
methanation,2030,lifetime,25,years,Schaber thesis
methanation,2030,FOM,3,%/year,Schaber thesis
methanation,2030,efficiency,0.8,per unit,Palzer and Schaber thesis
helmeth,2030,investment,2000,EUR/kW,no source
helmeth,2030,lifetime,25,years,no source
helmeth,2030,FOM,3,%/year,no source
helmeth,2030,efficiency,0.8,per unit,HELMETH press release
SMR,2030,investment,540.56,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16
SMR,2030,lifetime,25,years,TODO
SMR,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
SMR,2030,efficiency,0.74,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
SMR CCS,2030,investment,1032,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16; CCS costed at 300 EUR/tCO2/a
SMR CCS,2030,lifetime,25,years,TODO
SMR CCS,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
SMR CCS,2030,efficiency,0.67,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; CCS uses 10% of gas
industry CCS,2030,investment,300,EUR/tCO2/a,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
industry CCS,2030,FOM,2,%/year,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
industry CCS,2030,lifetime,25,years,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
industry CCS,2030,efficiency,0.9,per unit,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
Fischer-Tropsch,2030,investment,677.6,EUR/kWH2,Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6)
Fischer-Tropsch,2030,lifetime,30,years,doi:10.3390/su9020306
Fischer-Tropsch,2030,FOM,3,%/year,doi:10.3390/su9020306
Fischer-Tropsch,2030,efficiency,0.8,per unit,TODO
DAC,2030,investment,250,EUR/(tCO2/a),Fasihi doi:10.3390/su9020306/Climeworks
DAC,2030,lifetime,30,years,Fasihi
DAC,2030,FOM,4,%/year,Fasihi
battery inverter,2030,investment,411,USD/kWel,budischak2013
battery inverter,2030,lifetime,20,years,budischak2013
battery inverter,2030,efficiency,0.81,per unit,budischak2013; Lund and Kempton (2008) https://doi.org/10.1016/j.enpol.2008.06.007
battery inverter,2030,FOM,3,%/year,budischak2013
battery storage,2030,investment,192,USD/kWh,budischak2013
battery storage,2030,lifetime,15,years,budischak2013
decentral air-sourced heat pump,2030,investment,1050,EUR/kWth,HP; Palzer thesis
decentral air-sourced heat pump,2030,lifetime,20,years,HP; Palzer thesis
decentral air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
decentral air-sourced heat pump,2030,efficiency,3,per unit,default for costs
decentral air-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
decentral ground-sourced heat pump,2030,investment,1400,EUR/kWth,Palzer thesis
decentral ground-sourced heat pump,2030,lifetime,20,years,Palzer thesis
decentral ground-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
decentral ground-sourced heat pump,2030,efficiency,4,per unit,default for costs
decentral ground-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
central air-sourced heat pump,2030,investment,700,EUR/kWth,Palzer thesis
central air-sourced heat pump,2030,lifetime,20,years,Palzer thesis
central air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
central air-sourced heat pump,2030,efficiency,3,per unit,default for costs
retrofitting I,2030,discount rate,0.04,per unit,Palzer thesis
retrofitting I,2030,lifetime,50,years,Palzer thesis
retrofitting I,2030,FOM,1,%/year,Palzer thesis
retrofitting I,2030,investment,50,EUR/m2/fraction reduction,Palzer thesis
retrofitting II,2030,discount rate,0.04,per unit,Palzer thesis
retrofitting II,2030,lifetime,50,years,Palzer thesis
retrofitting II,2030,FOM,1,%/year,Palzer thesis
retrofitting II,2030,investment,250,EUR/m2/fraction reduction,Palzer thesis
water tank charger,2030,efficiency,0.9,per unit,HP
water tank discharger,2030,efficiency,0.9,per unit,HP
decentral water tank storage,2030,investment,860,EUR/m3,IWES Interaktion
decentral water tank storage,2030,FOM,1,%/year,HP
decentral water tank storage,2030,lifetime,20,years,HP
decentral water tank storage,2030,discount rate,0.04,per unit,Palzer thesis
central water tank storage,2030,investment,30,EUR/m3,IWES Interaktion
central water tank storage,2030,FOM,1,%/year,HP
central water tank storage,2030,lifetime,40,years,HP
decentral resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
decentral resistive heater,2030,lifetime,20,years,Schaber thesis
decentral resistive heater,2030,FOM,2,%/year,Schaber thesis
decentral resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
decentral resistive heater,2030,discount rate,0.04,per unit,Palzer thesis
central resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
central resistive heater,2030,lifetime,20,years,Schaber thesis
central resistive heater,2030,FOM,2,%/year,Schaber thesis
central resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
decentral gas boiler,2030,investment,175,EUR/kWhth,Palzer thesis
decentral gas boiler,2030,lifetime,20,years,Palzer thesis
decentral gas boiler,2030,FOM,2,%/year,Palzer thesis
decentral gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
decentral gas boiler,2030,discount rate,0.04,per unit,Palzer thesis
central gas boiler,2030,investment,63,EUR/kWhth,Palzer thesis
central gas boiler,2030,lifetime,22,years,Palzer thesis
central gas boiler,2030,FOM,1,%/year,Palzer thesis
central gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
decentral CHP,2030,lifetime,25,years,HP
decentral CHP,2030,investment,1400,EUR/kWel,HP
decentral CHP,2030,FOM,3,%/year,HP
decentral CHP,2030,discount rate,0.04,per unit,Palzer thesis
central gas CHP,2030,lifetime,30,years,DEA
central gas CHP,2030,investment,1300,EUR/kWel,DEA
central gas CHP,2030,FOM,3,%/year,DEA
central gas CHP,2030,efficiency,0.45,per unit,DEA (condensation mode)
central gas CHP,2030,c_b,0.7,per unit,DEA (backpressure ratio)
central gas CHP,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat)
central gas CHP,2030,p_nom_ratio,1.,per unit,
central gas CHP,2030,VOM,0.82,EUR/MWh,DEA
central gas CHP CCS,2030,lifetime,30,years,DEA
central gas CHP CCS,2030,investment,1900,EUR/kWel,DEA + DIW extra for CCS on gas plant
central gas CHP CCS,2030,FOM,3,%/year,DEA
central gas CHP CCS,2030,efficiency,0.405,per unit,DEA (condensation mode + efficiency loss due to capture)
central gas CHP CCS,2030,c_b,0.7,per unit,DEA (backpressure ratio)
central gas CHP CCS,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat)
central gas CHP CCS,2030,p_nom_ratio,1.,per unit,
central gas CHP CCS,2030,VOM,0.82,EUR/MWh,DEA
central solid biomass CHP,2030,lifetime,40,years,DEA for wood pellets CHP
central solid biomass CHP,2030,investment,1990,EUR/kWel,DEA for wood pellets CHP
central solid biomass CHP,2030,FOM,3,%/year,DEA for wood pellets CHP
central solid biomass CHP,2030,efficiency,0.52,per unit,DEA for wood pellets CHP (condensation mode)
central solid biomass CHP,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio)
central solid biomass CHP,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat)
central solid biomass CHP,2030,p_nom_ratio,1.,per unit,
central solid biomass CHP,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP
central solid biomass CHP CCS,2030,lifetime,40,years,DEA for wood pellets CHP
central solid biomass CHP CCS,2030,investment,2590,EUR/kWel,DEA for wood pellets CHP + DIW extra for CCS on gas plant
central solid biomass CHP CCS,2030,FOM,3,%/year,DEA for wood pellets CHP
central solid biomass CHP CCS,2030,efficiency,0.468,per unit,DEA for wood pellets CHP (condensation mode + efficiency loss due to capture)
central solid biomass CHP CCS,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio)
central solid biomass CHP CCS,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat)
central solid biomass CHP CCS,2030,p_nom_ratio,1.,per unit,
central solid biomass CHP CCS,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP
micro CHP,2030,lifetime,20,years,DEA for PEMFC with methane (for unit consuming 2kW CH4)
micro CHP,2030,investment,4500,EUR/kWCH4,DEA for PEMFC with methane (for unit consuming 2kW CH4)
micro CHP,2030,FOM,6,%/year,DEA for PEMFC with methane (for unit consuming 2kW CH4)
micro CHP,2030,efficiency,0.351,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4)
micro CHP,2030,efficiency-heat,0.609,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4)
decentral solar thermal,2030,discount rate,0.04,per unit,Palzer thesis
decentral solar thermal,2030,FOM,1.3,%/year,HP
decentral solar thermal,2030,investment,270000,EUR/1000m2,HP
decentral solar thermal,2030,lifetime,20,years,HP
central solar thermal,2030,FOM,1.4,%/year,HP
central solar thermal,2030,investment,140000,EUR/1000m2,HP
central solar thermal,2030,lifetime,20,years,HP
HVAC overhead,2030,investment,400,EUR/MW/km,Hagspiel
HVAC overhead,2030,lifetime,40,years,Hagspiel
HVAC overhead,2030,FOM,2,%/year,Hagspiel
HVDC overhead,2030,investment,400,EUR/MW/km,Hagspiel
HVDC overhead,2030,lifetime,40,years,Hagspiel
HVDC overhead,2030,FOM,2,%/year,Hagspiel
HVDC submarine,2030,investment,2000,EUR/MW/km,Own analysis of European submarine HVDC projects since 2000
HVDC submarine,2030,lifetime,40,years,Hagspiel
HVDC submarine,2030,FOM,2,%/year,Hagspiel
HVDC inverter pair,2030,investment,150000,EUR/MW,Hagspiel
HVDC inverter pair,2030,lifetime,40,years,Hagspiel
HVDC inverter pair,2030,FOM,2,%/year,Hagspiel
electricity distribution grid,2030,investment,500,EUR/kW,TODO
electricity distribution grid,2030,lifetime,40,years,TODO
electricity distribution grid,2030,FOM,2,%/year,TODO
electricity grid connection,2030,investment,140,EUR/kW,DEA
electricity grid connection,2030,lifetime,40,years,TODO
electricity grid connection,2030,FOM,2,%/year,TODO
decentral oil boiler,2030,investment,156.0140915953699,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung)
decentral oil boiler,2030,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
decentral oil boiler,2030,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
decentral oil boiler,2030,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
1 technology year parameter value unit source
2 solar-rooftop 2030 discount rate 0.04 per unit standard for decentral
3 onwind 2030 lifetime 25 years IEA2010
4 offwind 2030 lifetime 25 years IEA2010
5 solar 2030 lifetime 25 years IEA2010
6 solar-rooftop 2030 lifetime 25 years IEA2010
7 solar-utility 2030 lifetime 25 years IEA2010
8 PHS 2030 lifetime 80 years IEA2010
9 hydro 2030 lifetime 80 years IEA2010
10 ror 2030 lifetime 80 years IEA2010
11 OCGT 2030 lifetime 30 years IEA2010
12 nuclear 2030 lifetime 45 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
13 CCGT 2030 lifetime 30 years IEA2010
14 coal 2030 lifetime 40 years IEA2010
15 lignite 2030 lifetime 40 years IEA2010
16 geothermal 2030 lifetime 40 years IEA2010
17 biomass 2030 lifetime 30 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
18 oil 2030 lifetime 30 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
19 onwind 2030 investment 1182 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
20 offwind 2030 investment 2506 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
21 solar 2030 investment 600 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
22 biomass 2030 investment 2209 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
23 geothermal 2030 investment 3392 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
24 coal 2030 investment 1300 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
25 lignite 2030 investment 1500 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
26 solar-rooftop 2030 investment 725 EUR/kWel ETIP PV
27 solar-utility 2030 investment 425 EUR/kWel ETIP PV
28 PHS 2030 investment 2000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
29 hydro 2030 investment 2000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
30 ror 2030 investment 3000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
31 OCGT 2030 investment 400 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
32 nuclear 2030 investment 6000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
33 CCGT 2030 investment 800 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
34 oil 2030 investment 400 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
35 onwind 2030 FOM 2.961083 %/year DIW DataDoc http://hdl.handle.net/10419/80348
36 offwind 2030 FOM 3.192338 %/year DIW DataDoc http://hdl.handle.net/10419/80348
37 solar 2030 FOM 4.166667 %/year DIW DataDoc http://hdl.handle.net/10419/80348
38 solar-rooftop 2030 FOM 2 %/year ETIP PV
39 solar-utility 2030 FOM 3 %/year ETIP PV
40 biomass 2030 FOM 4.526935 %/year DIW DataDoc http://hdl.handle.net/10419/80348
41 geothermal 2030 FOM 2.358491 %/year DIW DataDoc http://hdl.handle.net/10419/80348
42 coal 2030 FOM 1.923076 %/year DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
43 lignite 2030 FOM 2.0 %/year DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
44 oil 2030 FOM 1.5 %/year DIW DataDoc http://hdl.handle.net/10419/80348
45 PHS 2030 FOM 1 %/year DIW DataDoc http://hdl.handle.net/10419/80348
46 hydro 2030 FOM 1 %/year DIW DataDoc http://hdl.handle.net/10419/80348
47 ror 2030 FOM 2 %/year DIW DataDoc http://hdl.handle.net/10419/80348
48 CCGT 2030 FOM 2.5 %/year DIW DataDoc http://hdl.handle.net/10419/80348
49 OCGT 2030 FOM 3.75 %/year DIW DataDoc http://hdl.handle.net/10419/80348
50 onwind 2030 VOM 0.015 EUR/MWhel RES costs made up to fix curtailment order
51 offwind 2030 VOM 0.02 EUR/MWhel RES costs made up to fix curtailment order
52 solar 2030 VOM 0.01 EUR/MWhel RES costs made up to fix curtailment order
53 coal 2030 VOM 6 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
54 lignite 2030 VOM 7 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
55 CCGT 2030 VOM 4 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
56 OCGT 2030 VOM 3 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
57 nuclear 2030 VOM 8 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
58 gas 2030 fuel 21.6 EUR/MWhth IEA2011b
59 uranium 2030 fuel 3 EUR/MWhth DIW DataDoc http://hdl.handle.net/10419/80348
60 oil 2030 VOM 3 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
61 nuclear 2030 fuel 3 EUR/MWhth IEA2011b
62 biomass 2030 fuel 7 EUR/MWhth IEA2011b
63 coal 2030 fuel 8.4 EUR/MWhth IEA2011b
64 lignite 2030 fuel 2.9 EUR/MWhth IEA2011b
65 biogas 2030 fuel 59 EUR/MWhth JRC and Zappa
66 solid biomass 2030 fuel 25.2 EUR/MWhth JRC and Zappa
67 oil 2030 fuel 50 EUR/MWhth IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf
68 PHS 2030 efficiency 0.75 per unit DIW DataDoc http://hdl.handle.net/10419/80348
69 hydro 2030 efficiency 0.9 per unit DIW DataDoc http://hdl.handle.net/10419/80348
70 ror 2030 efficiency 0.9 per unit DIW DataDoc http://hdl.handle.net/10419/80348
71 OCGT 2030 efficiency 0.39 per unit DIW DataDoc http://hdl.handle.net/10419/80348
72 CCGT 2030 efficiency 0.5 per unit DIW DataDoc http://hdl.handle.net/10419/80348
73 biomass 2030 efficiency 0.468 per unit DIW DataDoc http://hdl.handle.net/10419/80348
74 geothermal 2030 efficiency 0.239 per unit DIW DataDoc http://hdl.handle.net/10419/80348
75 nuclear 2030 efficiency 0.337 per unit DIW DataDoc http://hdl.handle.net/10419/80348
76 gas 2030 CO2 intensity 0.187 tCO2/MWhth https://www.eia.gov/environment/emissions/co2_vol_mass.php
77 coal 2030 efficiency 0.464 per unit DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
78 lignite 2030 efficiency 0.447 per unit DIW DataDoc http://hdl.handle.net/10419/80348
79 oil 2030 efficiency 0.393 per unit DIW DataDoc http://hdl.handle.net/10419/80348 CT
80 coal 2030 CO2 intensity 0.354 tCO2/MWhth https://www.eia.gov/environment/emissions/co2_vol_mass.php
81 lignite 2030 CO2 intensity 0.4 tCO2/MWhth German sources
82 oil 2030 CO2 intensity 0.248 tCO2/MWhth https://www.eia.gov/environment/emissions/co2_vol_mass.php
83 geothermal 2030 CO2 intensity 0.026 tCO2/MWhth https://www.eia.gov/environment/emissions/co2_vol_mass.php
84 solid biomass 2030 CO2 intensity 0.3 tCO2/MWhth TODO
85 electrolysis 2030 investment 350 EUR/kWel Palzer Thesis
86 electrolysis 2030 FOM 4 %/year NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
87 electrolysis 2030 lifetime 18 years NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
88 electrolysis 2030 efficiency 0.8 per unit NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
89 fuel cell 2030 investment 339 EUR/kWel NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
90 fuel cell 2030 FOM 3 %/year NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
91 fuel cell 2030 lifetime 20 years NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
92 fuel cell 2030 efficiency 0.58 per unit NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020
93 hydrogen storage 2030 investment 11.2 USD/kWh budischak2013
94 hydrogen storage 2030 lifetime 20 years budischak2013
95 hydrogen underground storage 2030 investment 0.5 EUR/kWh maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf
96 hydrogen underground storage 2030 lifetime 40 years http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf
97 H2 pipeline 2030 investment 267 EUR/MW/km Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156
98 H2 pipeline 2030 lifetime 40 years TODO
99 H2 pipeline 2030 FOM 3 %/year TODO
100 methanation 2030 investment 1000 EUR/kWH2 Schaber thesis
101 methanation 2030 lifetime 25 years Schaber thesis
102 methanation 2030 FOM 3 %/year Schaber thesis
103 methanation 2030 efficiency 0.8 per unit Palzer and Schaber thesis
104 helmeth 2030 investment 2000 EUR/kW no source
105 helmeth 2030 lifetime 25 years no source
106 helmeth 2030 FOM 3 %/year no source
107 helmeth 2030 efficiency 0.8 per unit HELMETH press release
108 SMR 2030 investment 540.56 EUR/kWCH4 https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16
109 SMR 2030 lifetime 25 years TODO
110 SMR 2030 FOM 5.4 %/year https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
111 SMR 2030 efficiency 0.74 per unit https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
112 SMR CCS 2030 investment 1032 EUR/kWCH4 https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16; CCS costed at 300 EUR/tCO2/a
113 SMR CCS 2030 lifetime 25 years TODO
114 SMR CCS 2030 FOM 5.4 %/year https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030
115 SMR CCS 2030 efficiency 0.67 per unit https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; CCS uses 10% of gas
116 industry CCS 2030 investment 300 EUR/tCO2/a Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
117 industry CCS 2030 FOM 2 %/year Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
118 industry CCS 2030 lifetime 25 years Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
119 industry CCS 2030 efficiency 0.9 per unit Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032
120 Fischer-Tropsch 2030 investment 677.6 EUR/kWH2 Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6)
121 Fischer-Tropsch 2030 lifetime 30 years doi:10.3390/su9020306
122 Fischer-Tropsch 2030 FOM 3 %/year doi:10.3390/su9020306
123 Fischer-Tropsch 2030 efficiency 0.8 per unit TODO
124 DAC 2030 investment 250 EUR/(tCO2/a) Fasihi doi:10.3390/su9020306/Climeworks
125 DAC 2030 lifetime 30 years Fasihi
126 DAC 2030 FOM 4 %/year Fasihi
127 battery inverter 2030 investment 411 USD/kWel budischak2013
128 battery inverter 2030 lifetime 20 years budischak2013
129 battery inverter 2030 efficiency 0.81 per unit budischak2013; Lund and Kempton (2008) https://doi.org/10.1016/j.enpol.2008.06.007
130 battery inverter 2030 FOM 3 %/year budischak2013
131 battery storage 2030 investment 192 USD/kWh budischak2013
132 battery storage 2030 lifetime 15 years budischak2013
133 decentral air-sourced heat pump 2030 investment 1050 EUR/kWth HP; Palzer thesis
134 decentral air-sourced heat pump 2030 lifetime 20 years HP; Palzer thesis
135 decentral air-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
136 decentral air-sourced heat pump 2030 efficiency 3 per unit default for costs
137 decentral air-sourced heat pump 2030 discount rate 0.04 per unit Palzer thesis
138 decentral ground-sourced heat pump 2030 investment 1400 EUR/kWth Palzer thesis
139 decentral ground-sourced heat pump 2030 lifetime 20 years Palzer thesis
140 decentral ground-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
141 decentral ground-sourced heat pump 2030 efficiency 4 per unit default for costs
142 decentral ground-sourced heat pump 2030 discount rate 0.04 per unit Palzer thesis
143 central air-sourced heat pump 2030 investment 700 EUR/kWth Palzer thesis
144 central air-sourced heat pump 2030 lifetime 20 years Palzer thesis
145 central air-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
146 central air-sourced heat pump 2030 efficiency 3 per unit default for costs
147 retrofitting I 2030 discount rate 0.04 per unit Palzer thesis
148 retrofitting I 2030 lifetime 50 years Palzer thesis
149 retrofitting I 2030 FOM 1 %/year Palzer thesis
150 retrofitting I 2030 investment 50 EUR/m2/fraction reduction Palzer thesis
151 retrofitting II 2030 discount rate 0.04 per unit Palzer thesis
152 retrofitting II 2030 lifetime 50 years Palzer thesis
153 retrofitting II 2030 FOM 1 %/year Palzer thesis
154 retrofitting II 2030 investment 250 EUR/m2/fraction reduction Palzer thesis
155 water tank charger 2030 efficiency 0.9 per unit HP
156 water tank discharger 2030 efficiency 0.9 per unit HP
157 decentral water tank storage 2030 investment 860 EUR/m3 IWES Interaktion
158 decentral water tank storage 2030 FOM 1 %/year HP
159 decentral water tank storage 2030 lifetime 20 years HP
160 decentral water tank storage 2030 discount rate 0.04 per unit Palzer thesis
161 central water tank storage 2030 investment 30 EUR/m3 IWES Interaktion
162 central water tank storage 2030 FOM 1 %/year HP
163 central water tank storage 2030 lifetime 40 years HP
164 decentral resistive heater 2030 investment 100 EUR/kWhth Schaber thesis
165 decentral resistive heater 2030 lifetime 20 years Schaber thesis
166 decentral resistive heater 2030 FOM 2 %/year Schaber thesis
167 decentral resistive heater 2030 efficiency 0.9 per unit Schaber thesis
168 decentral resistive heater 2030 discount rate 0.04 per unit Palzer thesis
169 central resistive heater 2030 investment 100 EUR/kWhth Schaber thesis
170 central resistive heater 2030 lifetime 20 years Schaber thesis
171 central resistive heater 2030 FOM 2 %/year Schaber thesis
172 central resistive heater 2030 efficiency 0.9 per unit Schaber thesis
173 decentral gas boiler 2030 investment 175 EUR/kWhth Palzer thesis
174 decentral gas boiler 2030 lifetime 20 years Palzer thesis
175 decentral gas boiler 2030 FOM 2 %/year Palzer thesis
176 decentral gas boiler 2030 efficiency 0.9 per unit Palzer thesis
177 decentral gas boiler 2030 discount rate 0.04 per unit Palzer thesis
178 central gas boiler 2030 investment 63 EUR/kWhth Palzer thesis
179 central gas boiler 2030 lifetime 22 years Palzer thesis
180 central gas boiler 2030 FOM 1 %/year Palzer thesis
181 central gas boiler 2030 efficiency 0.9 per unit Palzer thesis
182 decentral CHP 2030 lifetime 25 years HP
183 decentral CHP 2030 investment 1400 EUR/kWel HP
184 decentral CHP 2030 FOM 3 %/year HP
185 decentral CHP 2030 discount rate 0.04 per unit Palzer thesis
186 central gas CHP 2030 lifetime 30 years DEA
187 central gas CHP 2030 investment 1300 EUR/kWel DEA
188 central gas CHP 2030 FOM 3 %/year DEA
189 central gas CHP 2030 efficiency 0.45 per unit DEA (condensation mode)
190 central gas CHP 2030 c_b 0.7 per unit DEA (backpressure ratio)
191 central gas CHP 2030 c_v 0.17 per unit DEA (loss of fuel for additional heat)
192 central gas CHP 2030 p_nom_ratio 1. per unit
193 central gas CHP 2030 VOM 0.82 EUR/MWh DEA
194 central gas CHP CCS 2030 lifetime 30 years DEA
195 central gas CHP CCS 2030 investment 1900 EUR/kWel DEA + DIW extra for CCS on gas plant
196 central gas CHP CCS 2030 FOM 3 %/year DEA
197 central gas CHP CCS 2030 efficiency 0.405 per unit DEA (condensation mode + efficiency loss due to capture)
198 central gas CHP CCS 2030 c_b 0.7 per unit DEA (backpressure ratio)
199 central gas CHP CCS 2030 c_v 0.17 per unit DEA (loss of fuel for additional heat)
200 central gas CHP CCS 2030 p_nom_ratio 1. per unit
201 central gas CHP CCS 2030 VOM 0.82 EUR/MWh DEA
202 central solid biomass CHP 2030 lifetime 40 years DEA for wood pellets CHP
203 central solid biomass CHP 2030 investment 1990 EUR/kWel DEA for wood pellets CHP
204 central solid biomass CHP 2030 FOM 3 %/year DEA for wood pellets CHP
205 central solid biomass CHP 2030 efficiency 0.52 per unit DEA for wood pellets CHP (condensation mode)
206 central solid biomass CHP 2030 c_b 1.01 per unit DEA for wood pellets CHP (backpressure ratio)
207 central solid biomass CHP 2030 c_v 0.15 per unit DEA for wood pellets CHP (loss of fuel for additional heat)
208 central solid biomass CHP 2030 p_nom_ratio 1. per unit
209 central solid biomass CHP 2030 VOM 2.2 EUR/MWh DEA for wood pellets CHP
210 central solid biomass CHP CCS 2030 lifetime 40 years DEA for wood pellets CHP
211 central solid biomass CHP CCS 2030 investment 2590 EUR/kWel DEA for wood pellets CHP + DIW extra for CCS on gas plant
212 central solid biomass CHP CCS 2030 FOM 3 %/year DEA for wood pellets CHP
213 central solid biomass CHP CCS 2030 efficiency 0.468 per unit DEA for wood pellets CHP (condensation mode + efficiency loss due to capture)
214 central solid biomass CHP CCS 2030 c_b 1.01 per unit DEA for wood pellets CHP (backpressure ratio)
215 central solid biomass CHP CCS 2030 c_v 0.15 per unit DEA for wood pellets CHP (loss of fuel for additional heat)
216 central solid biomass CHP CCS 2030 p_nom_ratio 1. per unit
217 central solid biomass CHP CCS 2030 VOM 2.2 EUR/MWh DEA for wood pellets CHP
218 micro CHP 2030 lifetime 20 years DEA for PEMFC with methane (for unit consuming 2kW CH4)
219 micro CHP 2030 investment 4500 EUR/kWCH4 DEA for PEMFC with methane (for unit consuming 2kW CH4)
220 micro CHP 2030 FOM 6 %/year DEA for PEMFC with methane (for unit consuming 2kW CH4)
221 micro CHP 2030 efficiency 0.351 per unit DEA for PEMFC with methane (for unit consuming 2kW CH4)
222 micro CHP 2030 efficiency-heat 0.609 per unit DEA for PEMFC with methane (for unit consuming 2kW CH4)
223 decentral solar thermal 2030 discount rate 0.04 per unit Palzer thesis
224 decentral solar thermal 2030 FOM 1.3 %/year HP
225 decentral solar thermal 2030 investment 270000 EUR/1000m2 HP
226 decentral solar thermal 2030 lifetime 20 years HP
227 central solar thermal 2030 FOM 1.4 %/year HP
228 central solar thermal 2030 investment 140000 EUR/1000m2 HP
229 central solar thermal 2030 lifetime 20 years HP
230 HVAC overhead 2030 investment 400 EUR/MW/km Hagspiel
231 HVAC overhead 2030 lifetime 40 years Hagspiel
232 HVAC overhead 2030 FOM 2 %/year Hagspiel
233 HVDC overhead 2030 investment 400 EUR/MW/km Hagspiel
234 HVDC overhead 2030 lifetime 40 years Hagspiel
235 HVDC overhead 2030 FOM 2 %/year Hagspiel
236 HVDC submarine 2030 investment 2000 EUR/MW/km Own analysis of European submarine HVDC projects since 2000
237 HVDC submarine 2030 lifetime 40 years Hagspiel
238 HVDC submarine 2030 FOM 2 %/year Hagspiel
239 HVDC inverter pair 2030 investment 150000 EUR/MW Hagspiel
240 HVDC inverter pair 2030 lifetime 40 years Hagspiel
241 HVDC inverter pair 2030 FOM 2 %/year Hagspiel
242 electricity distribution grid 2030 investment 500 EUR/kW TODO
243 electricity distribution grid 2030 lifetime 40 years TODO
244 electricity distribution grid 2030 FOM 2 %/year TODO
245 electricity grid connection 2030 investment 140 EUR/kW DEA
246 electricity grid connection 2030 lifetime 40 years TODO
247 electricity grid connection 2030 FOM 2 %/year TODO
248 decentral oil boiler 2030 investment 156.0140915953699 EUR/kWth Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung)
249 decentral oil boiler 2030 lifetime 20.0 years Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
250 decentral oil boiler 2030 FOM 2.0 %/year Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)
251 decentral oil boiler 2030 efficiency 0.9 per unit Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf)

View File

@ -3,8 +3,6 @@ from six import iteritems
import sys
sys.path.append("../pypsa-eur/scripts")
import pandas as pd
import numpy as np
@ -13,9 +11,7 @@ import pypsa
from vresutils.costdata import annuity
from prepare_sector_network import generate_periodic_profiles
from add_electricity import load_costs
from prepare_sector_network import generate_periodic_profiles, prepare_costs
import yaml
@ -192,10 +188,10 @@ def calculate_costs(n,label,costs):
#add back in costs of links if there is a line volume limit
if label[1] != "opt":
costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'capital_cost']*n.links.length + costs_db.at['HVDC inverter pair', 'capital_cost'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "capital_cost"]*(n.lines.length*n.lines.s_nom_opt).sum()
costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'fixed']*n.links.length + costs_db.at['HVDC inverter pair', 'fixed'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "fixed"]*(n.lines.length*n.lines.s_nom_opt).sum()
else:
costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'capital_cost']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'fixed']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
#add back in all hydro
@ -599,10 +595,14 @@ if __name__ == "__main__":
for lv in snakemake.config['scenario']['lv'] \
for co2_budget_name in snakemake.config['scenario']['co2_budget_name'] \
for planning_horizon in snakemake.config['scenario']['planning_horizons']}
print(networks_dict)
costs_db = load_costs(Nyears=1.,tech_costs="data/costs.csv",config=snakemake.config["costs"],elec_config=snakemake.config['electricity'])
Nyears = 1
costs_db = prepare_costs(snakemake.input.costs,
snakemake.config['costs']['USD2013_to_EUR2013'],
snakemake.config['costs']['discountrate'],
Nyears)
df = make_summaries(networks_dict)

View File

@ -531,7 +531,6 @@ def prepare_data(network):
def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears):
#set all asset costs and other parameters
#costs = pd.read_csv(snakemake.input.costs,index_col=list(range(3))).sort_index()
costs = pd.read_csv(cost_file,index_col=list(range(2))).sort_index()
#correct units to MW and EUR