From 95e676828ad087a778399c1921d4b2929ef5c6f3 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Thu, 20 Aug 2020 14:26:39 +0200 Subject: [PATCH] Remove old data/costs.csv and dependencies on it --- Snakefile | 3 +- data/costs.csv | 251 ------------------------------ scripts/make_summary.py | 20 +-- scripts/prepare_sector_network.py | 1 - 4 files changed, 12 insertions(+), 263 deletions(-) delete mode 100644 data/costs.csv diff --git a/Snakefile b/Snakefile index 5d2e7ba7..4a175059 100644 --- a/Snakefile +++ b/Snakefile @@ -185,7 +185,7 @@ rule prepare_sector_network: biomass_potentials='data/biomass_potentials.csv', timezone_mappings='data/timezone_mappings.csv', heat_profile="data/heat_load_profile_BDEW.csv", - costs=config['costs_dir'] + "costs_{planning_horizons}.csv", #"data/costs.csv" + costs=config['costs_dir'] + "costs_{planning_horizons}.csv", co2_budget="data/co2_budget.csv", profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"), profile_offwind_dc=pypsaeur("resources/profile_offwind-dc.nc"), @@ -242,6 +242,7 @@ rule make_summary: input: networks=expand(config['results_dir'] + config['run'] + "/postnetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{co2_budget_name}_{planning_horizons}.nc", **config['scenario']), + costs=config['costs_dir'] + "costs_{}.csv".format(config['scenario']['planning_horizons'][0]), #plots=expand(config['results_dir'] + config['run'] + "/maps/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}-costs-all_{co2_budget_name}_{planning_horizons}.pdf", # **config['scenario']) #heat_demand_name='data/heating/daily_heat_demand.h5' diff --git a/data/costs.csv b/data/costs.csv deleted file mode 100644 index 79eb17f1..00000000 --- a/data/costs.csv +++ /dev/null @@ -1,251 +0,0 @@ -technology,year,parameter,value,unit,source -solar-rooftop,2030,discount rate,0.04,per unit,standard for decentral -onwind,2030,lifetime,25,years,IEA2010 -offwind,2030,lifetime,25,years,IEA2010 -solar,2030,lifetime,25,years,IEA2010 -solar-rooftop,2030,lifetime,25,years,IEA2010 -solar-utility,2030,lifetime,25,years,IEA2010 -PHS,2030,lifetime,80,years,IEA2010 -hydro,2030,lifetime,80,years,IEA2010 -ror,2030,lifetime,80,years,IEA2010 -OCGT,2030,lifetime,30,years,IEA2010 -nuclear,2030,lifetime,45,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,lifetime,30,years,IEA2010 -coal,2030,lifetime,40,years,IEA2010 -lignite,2030,lifetime,40,years,IEA2010 -geothermal,2030,lifetime,40,years,IEA2010 -biomass,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,investment,1182,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -offwind,2030,investment,2506,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -solar,2030,investment,600,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -biomass,2030,investment,2209,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,investment,3392,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -coal,2030,investment,1300,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,investment,1500,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -solar-rooftop,2030,investment,725,EUR/kWel,ETIP PV -solar-utility,2030,investment,425,EUR/kWel,ETIP PV -PHS,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,investment,3000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,investment,6000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,investment,800,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,FOM,2.961083,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -offwind,2030,FOM,3.192338,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -solar,2030,FOM,4.166667,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -solar-rooftop,2030,FOM,2,%/year,ETIP PV -solar-utility,2030,FOM,3,%/year,ETIP PV -biomass,2030,FOM,4.526935,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,FOM,2.358491,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -coal,2030,FOM,1.923076,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -oil,2030,FOM,1.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -PHS,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,FOM,2,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,FOM,2.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,FOM,3.75,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,VOM,0.015,EUR/MWhel,RES costs made up to fix curtailment order -offwind,2030,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order -solar,2030,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order -coal,2030,VOM,6,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,VOM,7,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,VOM,4,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,VOM,8,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -gas,2030,fuel,21.6,EUR/MWhth,IEA2011b -uranium,2030,fuel,3,EUR/MWhth,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,fuel,3,EUR/MWhth,IEA2011b -biomass,2030,fuel,7,EUR/MWhth,IEA2011b -coal,2030,fuel,8.4,EUR/MWhth,IEA2011b -lignite,2030,fuel,2.9,EUR/MWhth,IEA2011b -biogas,2030,fuel,59,EUR/MWhth,JRC and Zappa -solid biomass,2030,fuel,25.2,EUR/MWhth,JRC and Zappa -oil,2030,fuel,50,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf -PHS,2030,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,efficiency,0.39,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,efficiency,0.5,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -biomass,2030,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,efficiency,0.239,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,efficiency,0.337,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -gas,2030,CO2 intensity,0.187,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -coal,2030,efficiency,0.464,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,efficiency,0.447,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,efficiency,0.393,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 CT -coal,2030,CO2 intensity,0.354,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -lignite,2030,CO2 intensity,0.4,tCO2/MWhth,German sources -oil,2030,CO2 intensity,0.248,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -geothermal,2030,CO2 intensity,0.026,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -solid biomass,2030,CO2 intensity,0.3,tCO2/MWhth,TODO -electrolysis,2030,investment,350,EUR/kWel,Palzer Thesis -electrolysis,2030,FOM,4,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -electrolysis,2030,lifetime,18,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -electrolysis,2030,efficiency,0.8,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,investment,339,EUR/kWel,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,FOM,3,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,lifetime,20,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,efficiency,0.58,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020 -hydrogen storage,2030,investment,11.2,USD/kWh,budischak2013 -hydrogen storage,2030,lifetime,20,years,budischak2013 -hydrogen underground storage,2030,investment,0.5,EUR/kWh,maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf -hydrogen underground storage,2030,lifetime,40,years,http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf -H2 pipeline,2030,investment,267,EUR/MW/km,Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156 -H2 pipeline,2030,lifetime,40,years,TODO -H2 pipeline,2030,FOM,3,%/year,TODO -methanation,2030,investment,1000,EUR/kWH2,Schaber thesis -methanation,2030,lifetime,25,years,Schaber thesis -methanation,2030,FOM,3,%/year,Schaber thesis -methanation,2030,efficiency,0.8,per unit,Palzer and Schaber thesis -helmeth,2030,investment,2000,EUR/kW,no source -helmeth,2030,lifetime,25,years,no source -helmeth,2030,FOM,3,%/year,no source -helmeth,2030,efficiency,0.8,per unit,HELMETH press release -SMR,2030,investment,540.56,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16 -SMR,2030,lifetime,25,years,TODO -SMR,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 -SMR,2030,efficiency,0.74,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 -SMR CCS,2030,investment,1032,EUR/kWCH4,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; GBP 466 exchange 1.16; CCS costed at 300 EUR/tCO2/a -SMR CCS,2030,lifetime,25,years,TODO -SMR CCS,2030,FOM,5.4,%/year,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030 -SMR CCS,2030,efficiency,0.67,per unit,https://www.gov.uk/government/publications/hydrogen-supply-chain-evidence-base; slide 42 assumption for 2030; CCS uses 10% of gas -industry CCS,2030,investment,300,EUR/tCO2/a,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 -industry CCS,2030,FOM,2,%/year,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 -industry CCS,2030,lifetime,25,years,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 -industry CCS,2030,efficiency,0.9,per unit,Saygin et al 2013 https://doi.org/10.1016/j.ijggc.2013.05.032 -Fischer-Tropsch,2030,investment,677.6,EUR/kWH2,Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6) -Fischer-Tropsch,2030,lifetime,30,years,doi:10.3390/su9020306 -Fischer-Tropsch,2030,FOM,3,%/year,doi:10.3390/su9020306 -Fischer-Tropsch,2030,efficiency,0.8,per unit,TODO -DAC,2030,investment,250,EUR/(tCO2/a),Fasihi doi:10.3390/su9020306/Climeworks -DAC,2030,lifetime,30,years,Fasihi -DAC,2030,FOM,4,%/year,Fasihi -battery inverter,2030,investment,411,USD/kWel,budischak2013 -battery inverter,2030,lifetime,20,years,budischak2013 -battery inverter,2030,efficiency,0.81,per unit,budischak2013; Lund and Kempton (2008) https://doi.org/10.1016/j.enpol.2008.06.007 -battery inverter,2030,FOM,3,%/year,budischak2013 -battery storage,2030,investment,192,USD/kWh,budischak2013 -battery storage,2030,lifetime,15,years,budischak2013 -decentral air-sourced heat pump,2030,investment,1050,EUR/kWth,HP; Palzer thesis -decentral air-sourced heat pump,2030,lifetime,20,years,HP; Palzer thesis -decentral air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -decentral air-sourced heat pump,2030,efficiency,3,per unit,default for costs -decentral air-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis -decentral ground-sourced heat pump,2030,investment,1400,EUR/kWth,Palzer thesis -decentral ground-sourced heat pump,2030,lifetime,20,years,Palzer thesis -decentral ground-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -decentral ground-sourced heat pump,2030,efficiency,4,per unit,default for costs -decentral ground-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis -central air-sourced heat pump,2030,investment,700,EUR/kWth,Palzer thesis -central air-sourced heat pump,2030,lifetime,20,years,Palzer thesis -central air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -central air-sourced heat pump,2030,efficiency,3,per unit,default for costs -retrofitting I,2030,discount rate,0.04,per unit,Palzer thesis -retrofitting I,2030,lifetime,50,years,Palzer thesis -retrofitting I,2030,FOM,1,%/year,Palzer thesis -retrofitting I,2030,investment,50,EUR/m2/fraction reduction,Palzer thesis -retrofitting II,2030,discount rate,0.04,per unit,Palzer thesis -retrofitting II,2030,lifetime,50,years,Palzer thesis -retrofitting II,2030,FOM,1,%/year,Palzer thesis -retrofitting II,2030,investment,250,EUR/m2/fraction reduction,Palzer thesis -water tank charger,2030,efficiency,0.9,per unit,HP -water tank discharger,2030,efficiency,0.9,per unit,HP -decentral water tank storage,2030,investment,860,EUR/m3,IWES Interaktion -decentral water tank storage,2030,FOM,1,%/year,HP -decentral water tank storage,2030,lifetime,20,years,HP -decentral water tank storage,2030,discount rate,0.04,per unit,Palzer thesis -central water tank storage,2030,investment,30,EUR/m3,IWES Interaktion -central water tank storage,2030,FOM,1,%/year,HP -central water tank storage,2030,lifetime,40,years,HP -decentral resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis -decentral resistive heater,2030,lifetime,20,years,Schaber thesis -decentral resistive heater,2030,FOM,2,%/year,Schaber thesis -decentral resistive heater,2030,efficiency,0.9,per unit,Schaber thesis -decentral resistive heater,2030,discount rate,0.04,per unit,Palzer thesis -central resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis -central resistive heater,2030,lifetime,20,years,Schaber thesis -central resistive heater,2030,FOM,2,%/year,Schaber thesis -central resistive heater,2030,efficiency,0.9,per unit,Schaber thesis -decentral gas boiler,2030,investment,175,EUR/kWhth,Palzer thesis -decentral gas boiler,2030,lifetime,20,years,Palzer thesis -decentral gas boiler,2030,FOM,2,%/year,Palzer thesis -decentral gas boiler,2030,efficiency,0.9,per unit,Palzer thesis -decentral gas boiler,2030,discount rate,0.04,per unit,Palzer thesis -central gas boiler,2030,investment,63,EUR/kWhth,Palzer thesis -central gas boiler,2030,lifetime,22,years,Palzer thesis -central gas boiler,2030,FOM,1,%/year,Palzer thesis -central gas boiler,2030,efficiency,0.9,per unit,Palzer thesis -decentral CHP,2030,lifetime,25,years,HP -decentral CHP,2030,investment,1400,EUR/kWel,HP -decentral CHP,2030,FOM,3,%/year,HP -decentral CHP,2030,discount rate,0.04,per unit,Palzer thesis -central gas CHP,2030,lifetime,30,years,DEA -central gas CHP,2030,investment,1300,EUR/kWel,DEA -central gas CHP,2030,FOM,3,%/year,DEA -central gas CHP,2030,efficiency,0.45,per unit,DEA (condensation mode) -central gas CHP,2030,c_b,0.7,per unit,DEA (backpressure ratio) -central gas CHP,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat) -central gas CHP,2030,p_nom_ratio,1.,per unit, -central gas CHP,2030,VOM,0.82,EUR/MWh,DEA -central gas CHP CCS,2030,lifetime,30,years,DEA -central gas CHP CCS,2030,investment,1900,EUR/kWel,DEA + DIW extra for CCS on gas plant -central gas CHP CCS,2030,FOM,3,%/year,DEA -central gas CHP CCS,2030,efficiency,0.405,per unit,DEA (condensation mode + efficiency loss due to capture) -central gas CHP CCS,2030,c_b,0.7,per unit,DEA (backpressure ratio) -central gas CHP CCS,2030,c_v,0.17,per unit,DEA (loss of fuel for additional heat) -central gas CHP CCS,2030,p_nom_ratio,1.,per unit, -central gas CHP CCS,2030,VOM,0.82,EUR/MWh,DEA -central solid biomass CHP,2030,lifetime,40,years,DEA for wood pellets CHP -central solid biomass CHP,2030,investment,1990,EUR/kWel,DEA for wood pellets CHP -central solid biomass CHP,2030,FOM,3,%/year,DEA for wood pellets CHP -central solid biomass CHP,2030,efficiency,0.52,per unit,DEA for wood pellets CHP (condensation mode) -central solid biomass CHP,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio) -central solid biomass CHP,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat) -central solid biomass CHP,2030,p_nom_ratio,1.,per unit, -central solid biomass CHP,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP -central solid biomass CHP CCS,2030,lifetime,40,years,DEA for wood pellets CHP -central solid biomass CHP CCS,2030,investment,2590,EUR/kWel,DEA for wood pellets CHP + DIW extra for CCS on gas plant -central solid biomass CHP CCS,2030,FOM,3,%/year,DEA for wood pellets CHP -central solid biomass CHP CCS,2030,efficiency,0.468,per unit,DEA for wood pellets CHP (condensation mode + efficiency loss due to capture) -central solid biomass CHP CCS,2030,c_b,1.01,per unit,DEA for wood pellets CHP (backpressure ratio) -central solid biomass CHP CCS,2030,c_v,0.15,per unit,DEA for wood pellets CHP (loss of fuel for additional heat) -central solid biomass CHP CCS,2030,p_nom_ratio,1.,per unit, -central solid biomass CHP CCS,2030,VOM,2.2,EUR/MWh,DEA for wood pellets CHP -micro CHP,2030,lifetime,20,years,DEA for PEMFC with methane (for unit consuming 2kW CH4) -micro CHP,2030,investment,4500,EUR/kWCH4,DEA for PEMFC with methane (for unit consuming 2kW CH4) -micro CHP,2030,FOM,6,%/year,DEA for PEMFC with methane (for unit consuming 2kW CH4) -micro CHP,2030,efficiency,0.351,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4) -micro CHP,2030,efficiency-heat,0.609,per unit,DEA for PEMFC with methane (for unit consuming 2kW CH4) -decentral solar thermal,2030,discount rate,0.04,per unit,Palzer thesis -decentral solar thermal,2030,FOM,1.3,%/year,HP -decentral solar thermal,2030,investment,270000,EUR/1000m2,HP -decentral solar thermal,2030,lifetime,20,years,HP -central solar thermal,2030,FOM,1.4,%/year,HP -central solar thermal,2030,investment,140000,EUR/1000m2,HP -central solar thermal,2030,lifetime,20,years,HP -HVAC overhead,2030,investment,400,EUR/MW/km,Hagspiel -HVAC overhead,2030,lifetime,40,years,Hagspiel -HVAC overhead,2030,FOM,2,%/year,Hagspiel -HVDC overhead,2030,investment,400,EUR/MW/km,Hagspiel -HVDC overhead,2030,lifetime,40,years,Hagspiel -HVDC overhead,2030,FOM,2,%/year,Hagspiel -HVDC submarine,2030,investment,2000,EUR/MW/km,Own analysis of European submarine HVDC projects since 2000 -HVDC submarine,2030,lifetime,40,years,Hagspiel -HVDC submarine,2030,FOM,2,%/year,Hagspiel -HVDC inverter pair,2030,investment,150000,EUR/MW,Hagspiel -HVDC inverter pair,2030,lifetime,40,years,Hagspiel -HVDC inverter pair,2030,FOM,2,%/year,Hagspiel -electricity distribution grid,2030,investment,500,EUR/kW,TODO -electricity distribution grid,2030,lifetime,40,years,TODO -electricity distribution grid,2030,FOM,2,%/year,TODO -electricity grid connection,2030,investment,140,EUR/kW,DEA -electricity grid connection,2030,lifetime,40,years,TODO -electricity grid connection,2030,FOM,2,%/year,TODO -decentral oil boiler,2030,investment,156.0140915953699,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung) -decentral oil boiler,2030,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) -decentral oil boiler,2030,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) -decentral oil boiler,2030,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) diff --git a/scripts/make_summary.py b/scripts/make_summary.py index 5f10f12d..d24064c2 100755 --- a/scripts/make_summary.py +++ b/scripts/make_summary.py @@ -3,8 +3,6 @@ from six import iteritems import sys -sys.path.append("../pypsa-eur/scripts") - import pandas as pd import numpy as np @@ -13,9 +11,7 @@ import pypsa from vresutils.costdata import annuity -from prepare_sector_network import generate_periodic_profiles - -from add_electricity import load_costs +from prepare_sector_network import generate_periodic_profiles, prepare_costs import yaml @@ -192,10 +188,10 @@ def calculate_costs(n,label,costs): #add back in costs of links if there is a line volume limit if label[1] != "opt": - costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'capital_cost']*n.links.length + costs_db.at['HVDC inverter pair', 'capital_cost'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum() - costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "capital_cost"]*(n.lines.length*n.lines.s_nom_opt).sum() + costs.loc[("links-added","capital","transmission lines"),label] = ((costs_db.at['HVDC overhead', 'fixed']*n.links.length + costs_db.at['HVDC inverter pair', 'fixed'])*n.links.p_nom_opt)[n.links.carrier == "DC"].sum() + costs.loc[("lines-added","capital","transmission lines"),label] = costs_db.at["HVAC overhead", "fixed"]*(n.lines.length*n.lines.s_nom_opt).sum() else: - costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'capital_cost']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum() + costs.loc[("links-added","capital","transmission lines"),label] = (costs_db.at['HVDC inverter pair', 'fixed']*n.links.p_nom_opt)[n.links.carrier == "DC"].sum() #add back in all hydro @@ -599,10 +595,14 @@ if __name__ == "__main__": for lv in snakemake.config['scenario']['lv'] \ for co2_budget_name in snakemake.config['scenario']['co2_budget_name'] \ for planning_horizon in snakemake.config['scenario']['planning_horizons']} - + print(networks_dict) - costs_db = load_costs(Nyears=1.,tech_costs="data/costs.csv",config=snakemake.config["costs"],elec_config=snakemake.config['electricity']) + Nyears = 1 + costs_db = prepare_costs(snakemake.input.costs, + snakemake.config['costs']['USD2013_to_EUR2013'], + snakemake.config['costs']['discountrate'], + Nyears) df = make_summaries(networks_dict) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index a7d13a90..93198c4b 100644 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -531,7 +531,6 @@ def prepare_data(network): def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears): #set all asset costs and other parameters - #costs = pd.read_csv(snakemake.input.costs,index_col=list(range(3))).sort_index() costs = pd.read_csv(cost_file,index_col=list(range(2))).sort_index() #correct units to MW and EUR