Allow storing FT fuels, cost for FT conversion, fossil FT fuels

Also include raw data/costs.csv
This commit is contained in:
Tom Brown 2019-04-30 12:05:36 +02:00
parent 952534c5c9
commit 82a057791e
4 changed files with 228 additions and 11 deletions

7
.gitignore vendored
View File

@ -10,10 +10,15 @@ gurobi.log
/benchmarks /benchmarks
/logs /logs
/notebooks /notebooks
/data /data/timezone_mappings.csv
/data/urban_percent.csv
/data/links_p_nom.csv /data/links_p_nom.csv
/data/*totals.csv /data/*totals.csv
/data/*Jensen.csv
/data/biomass*
/data/emobility/ /data/emobility/
/data/eea*
/data/jrc*
/data/heating/ /data/heating/
/data/eurostat* /data/eurostat*
/data/odyssee/ /data/odyssee/

View File

@ -2,15 +2,15 @@ logging_level: INFO
results_dir: 'results/' results_dir: 'results/'
summary_dir: results summary_dir: results
run: '190418-test-rebase' run: '190430-ft-improve'
scenario: scenario:
sectors: [E] # ,E+EV,E+BEV,E+BEV+V2G] # [ E+EV, E+BEV, E+BEV+V2G ] sectors: [E] # ,E+EV,E+BEV,E+BEV+V2G] # [ E+EV, E+BEV, E+BEV+V2G ]
simpl: [''] simpl: ['']
lv: [1.0,1.25]#[1.0, 1.125, 1.25, 1.5, 2.0, opt]# or opt lv: [1.0]#[1.0, 1.125, 1.25, 1.5, 2.0, opt]# or opt
clusters: [128] #[90, 128, 181] #[45, 64, 90, 128, 181, 256] #, 362] # (2**np.r_[5.5:9:.5]).astype(int) minimum is 37 clusters: [128] #[90, 128, 181] #[45, 64, 90, 128, 181, 256] #, 362] # (2**np.r_[5.5:9:.5]).astype(int) minimum is 37
opts: [''] #for pypsa-eur opts: [''] #for pypsa-eur
sector_opts: [Co2L0-3H-T-H-B-I,Co2L0-3H-T-H-B-I-onwind0,Co2L0p1-3H-T-H-B-I,Co2L0-3H-T-H-B-I-onwind0-solar2-offwind2]#,Co2L0p05-3H-T-H-B-I,Co2L0p10-3H-T-H-B-I,Co2L0p20-3H-T-H-B-I,Co2L0p30-3H-T-H-B-I,Co2L0p50-3H-T-H-B-I]#[Co2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0-3H-T-H,Co2L0p20-3H-T-H] #Co2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0p20-3H-T-HCo2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0p30-3H-T-H,Co2L0p50-3H-T-H] #Co2L-3H,Co2L-3H-T,, LC-FL, LC-T, Ep-T, Co2L-T] sector_opts: [Co2L0-3H-T-H-B-I,Co2L0-3H-T-H-B-I-onwind0,Co2L0p1-3H-T-H-B-I,Co2L0-3H-T-H-B-I-onwind0-solar2-offwind2,Co2L0-3H-T-H-B-I-onwind0-solar3-offwind0]#,Co2L0p05-3H-T-H-B-I,Co2L0p10-3H-T-H-B-I,Co2L0p20-3H-T-H-B-I,Co2L0p30-3H-T-H-B-I,Co2L0p50-3H-T-H-B-I]#[Co2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0-3H-T-H,Co2L0p20-3H-T-H] #Co2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0p20-3H-T-HCo2L-3H-T-H,Co2L0p10-3H-T-H,Co2L0p30-3H-T-H,Co2L0p50-3H-T-H] #Co2L-3H,Co2L-3H-T,, LC-FL, LC-T, Ep-T, Co2L-T]
# Co2L will give default (5%); Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions # Co2L will give default (5%); Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions

190
data/costs.csv Normal file
View File

@ -0,0 +1,190 @@
technology,year,parameter,value,unit,source
solar-rooftop,2030,discount rate,0.04,per unit,standard for decentral
onwind,2030,lifetime,25,years,IEA2010
offwind,2030,lifetime,25,years,IEA2010
solar,2030,lifetime,25,years,IEA2010
solar-rooftop,2030,lifetime,25,years,IEA2010
solar-utility,2030,lifetime,25,years,IEA2010
PHS,2030,lifetime,80,years,IEA2010
hydro,2030,lifetime,80,years,IEA2010
ror,2030,lifetime,80,years,IEA2010
OCGT,2030,lifetime,30,years,IEA2010
nuclear,2030,lifetime,45,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,lifetime,30,years,IEA2010
coal,2030,lifetime,40,years,IEA2010
lignite,2030,lifetime,40,years,IEA2010
geothermal,2030,lifetime,40,years,IEA2010
biomass,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,investment,1182,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
offwind,2030,investment,2506,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
solar,2030,investment,600,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
biomass,2030,investment,2209,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,investment,3392,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
coal,2030,investment,1300,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,investment,1500,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
solar-rooftop,2030,investment,725,EUR/kWel,ETIP PV
solar-utility,2030,investment,425,EUR/kWel,ETIP PV
PHS,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,investment,3000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,investment,6000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,investment,800,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,FOM,2.961083,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
offwind,2030,FOM,3.192338,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
solar,2030,FOM,4.166667,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
solar-rooftop,2030,FOM,2,%/year,ETIP PV
solar-utility,2030,FOM,3,%/year,ETIP PV
biomass,2030,FOM,4.526935,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,FOM,2.358491,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
coal,2030,FOM,1.923076,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
oil,2030,FOM,1.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
PHS,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,FOM,2,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,FOM,2.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,FOM,3.75,%/year,DIW DataDoc http://hdl.handle.net/10419/80348
onwind,2030,VOM,0.015,EUR/MWhel,RES costs made up to fix curtailment order
offwind,2030,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order
solar,2030,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order
coal,2030,VOM,6,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,VOM,7,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,VOM,4,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,VOM,8,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
gas,2030,fuel,21.6,EUR/MWhth,IEA2011b
uranium,2030,fuel,3,EUR/MWhth,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,fuel,3,EUR/MWhth,IEA2011b
biomass,2030,fuel,7,EUR/MWhth,IEA2011b
coal,2030,fuel,8.4,EUR/MWhth,IEA2011b
lignite,2030,fuel,2.9,EUR/MWhth,IEA2011b
biogas,2030,fuel,59,EUR/MWhth,JRC and Zappa
solid biomass,2030,fuel,25.2,EUR/MWhth,JRC and Zappa
oil,2030,fuel,50,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf
PHS,2030,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
hydro,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
ror,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
OCGT,2030,efficiency,0.39,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
CCGT,2030,efficiency,0.5,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
biomass,2030,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
geothermal,2030,efficiency,0.239,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
nuclear,2030,efficiency,0.337,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
gas,2030,CO2 intensity,0.187,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
coal,2030,efficiency,0.464,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
lignite,2030,efficiency,0.447,per unit,DIW DataDoc http://hdl.handle.net/10419/80348
oil,2030,efficiency,0.393,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 CT
coal,2030,CO2 intensity,0.354,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
lignite,2030,CO2 intensity,0.4,tCO2/MWth,German sources
oil,2030,CO2 intensity,0.248,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
geothermal,2030,CO2 intensity,0.026,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php
solid biomass,2030,CO2 intensity,0.3,tCO2/MWth,TODO
electrolysis,2030,investment,350,EUR/kWel,Palzer Thesis
electrolysis,2030,FOM,4,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
electrolysis,2030,lifetime,18,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
electrolysis,2030,efficiency,0.8,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,investment,339,EUR/kWel,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,FOM,3,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,lifetime,20,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
fuel cell,2030,efficiency,0.58,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020
hydrogen storage,2030,investment,11.2,USD/kWh,budischak2013
hydrogen storage,2030,lifetime,20,years,budischak2013
methanation,2030,investment,1000,EUR/kWH2,Schaber thesis
methanation,2030,lifetime,25,years,Schaber thesis
methanation,2030,FOM,3,%/year,Schaber thesis
methanation,2030,efficiency,0.8,per unit,Palzer and Schaber thesis
helmeth,2030,investment,2000,EUR/kW,no source
helmeth,2030,lifetime,25,years,no source
helmeth,2030,FOM,3,%/year,no source
helmeth,2030,efficiency,0.8,per unit,HELMETH press release
Fischer-Tropsch,2030,investment,677.6,EUR/kWH2,Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6)
Fischer-Tropsch,2030,lifetime,30,years,doi:10.3390/su9020306
Fischer-Tropsch,2030,FOM,3,%/year,doi:10.3390/su9020306
Fischer-Tropsch,2030,efficiency,0.8,per unit,TODO
DAC,2030,investment,250,EUR/(tCO2/a),Fasihi doi:10.3390/su9020306/Climeworks
DAC,2030,lifetime,30,years,Fasihi
DAC,2030,FOM,4,%/year,Fasihi
battery inverter,2030,investment,411,USD/kWel,budischak2013
battery inverter,2030,lifetime,20,years,budischak2013
battery inverter,2030,efficiency,0.81,per unit,budischak2013; Lund and Kempton (2008) http://dx.doi.org/10.1016/j.enpol.2008.06.007
battery inverter,2030,FOM,3,%/year,budischak2013
battery storage,2030,investment,192,USD/kWh,budischak2013
battery storage,2030,lifetime,15,years,budischak2013
decentral air-sourced heat pump,2030,investment,1050,EUR/kWth,HP; Palzer thesis
decentral air-sourced heat pump,2030,lifetime,20,years,HP; Palzer thesis
decentral air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
decentral air-sourced heat pump,2030,efficiency,3,per unit,default for costs
decentral air-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
decentral ground-sourced heat pump,2030,investment,1400,EUR/kWth,Palzer thesis
decentral ground-sourced heat pump,2030,lifetime,20,years,Palzer thesis
decentral ground-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
decentral ground-sourced heat pump,2030,efficiency,4,per unit,default for costs
decentral ground-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis
central air-sourced heat pump,2030,investment,700,EUR/kWth,Palzer thesis
central air-sourced heat pump,2030,lifetime,20,years,Palzer thesis
central air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis
central air-sourced heat pump,2030,efficiency,3,per unit,default for costs
retrofitting I,2030,discount rate,0.04,per unit,Palzer thesis
retrofitting I,2030,lifetime,50,years,Palzer thesis
retrofitting I,2030,FOM,1,%/year,Palzer thesis
retrofitting I,2030,investment,50,EUR/m2/fraction reduction,Palzer thesis
retrofitting II,2030,discount rate,0.04,per unit,Palzer thesis
retrofitting II,2030,lifetime,50,years,Palzer thesis
retrofitting II,2030,FOM,1,%/year,Palzer thesis
retrofitting II,2030,investment,250,EUR/m2/fraction reduction,Palzer thesis
water tank charger,2030,efficiency,0.9,per unit,HP
water tank discharger,2030,efficiency,0.9,per unit,HP
decentral water tank storage,2030,investment,860,EUR/m3,IWES Interaktion
decentral water tank storage,2030,FOM,1,%/year,HP
decentral water tank storage,2030,lifetime,20,years,HP
decentral water tank storage,2030,discount rate,0.04,per unit,Palzer thesis
central water tank storage,2030,investment,30,EUR/m3,IWES Interaktion
central water tank storage,2030,FOM,1,%/year,HP
central water tank storage,2030,lifetime,40,years,HP
decentral resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
decentral resistive heater,2030,lifetime,20,years,Schaber thesis
decentral resistive heater,2030,FOM,2,%/year,Schaber thesis
decentral resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
decentral resistive heater,2030,discount rate,0.04,per unit,Palzer thesis
central resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis
central resistive heater,2030,lifetime,20,years,Schaber thesis
central resistive heater,2030,FOM,2,%/year,Schaber thesis
central resistive heater,2030,efficiency,0.9,per unit,Schaber thesis
decentral gas boiler,2030,investment,175,EUR/kWhth,Palzer thesis
decentral gas boiler,2030,lifetime,20,years,Palzer thesis
decentral gas boiler,2030,FOM,2,%/year,Palzer thesis
decentral gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
decentral gas boiler,2030,discount rate,0.04,per unit,Palzer thesis
central gas boiler,2030,investment,63,EUR/kWhth,Palzer thesis
central gas boiler,2030,lifetime,22,years,Palzer thesis
central gas boiler,2030,FOM,1,%/year,Palzer thesis
central gas boiler,2030,efficiency,0.9,per unit,Palzer thesis
decentral CHP,2030,lifetime,25,years,HP
decentral CHP,2030,investment,1400,EUR/kWel,HP
decentral CHP,2030,FOM,3,%/year,HP
decentral CHP,2030,discount rate,0.04,per unit,Palzer thesis
central CHP,2030,lifetime,25,years,HP
central CHP,2030,investment,650,EUR/kWel,HP
central CHP,2030,FOM,3,%/year,HP
decentral solar thermal,2030,discount rate,0.04,per unit,Palzer thesis
decentral solar thermal,2030,FOM,1.3,%/year,HP
decentral solar thermal,2030,investment,270000,EUR/1000m2,HP
decentral solar thermal,2030,lifetime,20,years,HP
central solar thermal,2030,FOM,1.4,%/year,HP
central solar thermal,2030,investment,140000,EUR/1000m2,HP
central solar thermal,2030,lifetime,20,years,HP
HVAC overhead,2030,investment,400,EUR/MW/km,Hagspiel
HVAC overhead,2030,lifetime,40,years,Hagspiel
HVAC overhead,2030,FOM,2,%/year,Hagspiel
HVDC overhead,2030,investment,400,EUR/MW/km,Hagspiel
HVDC overhead,2030,lifetime,40,years,Hagspiel
HVDC overhead,2030,FOM,2,%/year,Hagspiel
HVDC submarine,2030,investment,2000,EUR/MW/km,Own analysis of European submarine HVDC projects since 2000
HVDC submarine,2030,lifetime,40,years,Hagspiel
HVDC submarine,2030,FOM,2,%/year,Hagspiel
HVDC inverter pair,2030,investment,150000,EUR/MW,Hagspiel
HVDC inverter pair,2030,lifetime,40,years,Hagspiel
HVDC inverter pair,2030,FOM,2,%/year,Hagspiel
1 technology year parameter value unit source
2 solar-rooftop 2030 discount rate 0.04 per unit standard for decentral
3 onwind 2030 lifetime 25 years IEA2010
4 offwind 2030 lifetime 25 years IEA2010
5 solar 2030 lifetime 25 years IEA2010
6 solar-rooftop 2030 lifetime 25 years IEA2010
7 solar-utility 2030 lifetime 25 years IEA2010
8 PHS 2030 lifetime 80 years IEA2010
9 hydro 2030 lifetime 80 years IEA2010
10 ror 2030 lifetime 80 years IEA2010
11 OCGT 2030 lifetime 30 years IEA2010
12 nuclear 2030 lifetime 45 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
13 CCGT 2030 lifetime 30 years IEA2010
14 coal 2030 lifetime 40 years IEA2010
15 lignite 2030 lifetime 40 years IEA2010
16 geothermal 2030 lifetime 40 years IEA2010
17 biomass 2030 lifetime 30 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
18 oil 2030 lifetime 30 years ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348
19 onwind 2030 investment 1182 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
20 offwind 2030 investment 2506 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
21 solar 2030 investment 600 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
22 biomass 2030 investment 2209 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
23 geothermal 2030 investment 3392 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
24 coal 2030 investment 1300 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
25 lignite 2030 investment 1500 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
26 solar-rooftop 2030 investment 725 EUR/kWel ETIP PV
27 solar-utility 2030 investment 425 EUR/kWel ETIP PV
28 PHS 2030 investment 2000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
29 hydro 2030 investment 2000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
30 ror 2030 investment 3000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
31 OCGT 2030 investment 400 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
32 nuclear 2030 investment 6000 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
33 CCGT 2030 investment 800 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
34 oil 2030 investment 400 EUR/kWel DIW DataDoc http://hdl.handle.net/10419/80348
35 onwind 2030 FOM 2.961083 %/year DIW DataDoc http://hdl.handle.net/10419/80348
36 offwind 2030 FOM 3.192338 %/year DIW DataDoc http://hdl.handle.net/10419/80348
37 solar 2030 FOM 4.166667 %/year DIW DataDoc http://hdl.handle.net/10419/80348
38 solar-rooftop 2030 FOM 2 %/year ETIP PV
39 solar-utility 2030 FOM 3 %/year ETIP PV
40 biomass 2030 FOM 4.526935 %/year DIW DataDoc http://hdl.handle.net/10419/80348
41 geothermal 2030 FOM 2.358491 %/year DIW DataDoc http://hdl.handle.net/10419/80348
42 coal 2030 FOM 1.923076 %/year DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
43 lignite 2030 FOM 2.0 %/year DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
44 oil 2030 FOM 1.5 %/year DIW DataDoc http://hdl.handle.net/10419/80348
45 PHS 2030 FOM 1 %/year DIW DataDoc http://hdl.handle.net/10419/80348
46 hydro 2030 FOM 1 %/year DIW DataDoc http://hdl.handle.net/10419/80348
47 ror 2030 FOM 2 %/year DIW DataDoc http://hdl.handle.net/10419/80348
48 CCGT 2030 FOM 2.5 %/year DIW DataDoc http://hdl.handle.net/10419/80348
49 OCGT 2030 FOM 3.75 %/year DIW DataDoc http://hdl.handle.net/10419/80348
50 onwind 2030 VOM 0.015 EUR/MWhel RES costs made up to fix curtailment order
51 offwind 2030 VOM 0.02 EUR/MWhel RES costs made up to fix curtailment order
52 solar 2030 VOM 0.01 EUR/MWhel RES costs made up to fix curtailment order
53 coal 2030 VOM 6 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
54 lignite 2030 VOM 7 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
55 CCGT 2030 VOM 4 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
56 OCGT 2030 VOM 3 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
57 nuclear 2030 VOM 8 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
58 gas 2030 fuel 21.6 EUR/MWhth IEA2011b
59 uranium 2030 fuel 3 EUR/MWhth DIW DataDoc http://hdl.handle.net/10419/80348
60 oil 2030 VOM 3 EUR/MWhel DIW DataDoc http://hdl.handle.net/10419/80348
61 nuclear 2030 fuel 3 EUR/MWhth IEA2011b
62 biomass 2030 fuel 7 EUR/MWhth IEA2011b
63 coal 2030 fuel 8.4 EUR/MWhth IEA2011b
64 lignite 2030 fuel 2.9 EUR/MWhth IEA2011b
65 biogas 2030 fuel 59 EUR/MWhth JRC and Zappa
66 solid biomass 2030 fuel 25.2 EUR/MWhth JRC and Zappa
67 oil 2030 fuel 50 EUR/MWhth IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf
68 PHS 2030 efficiency 0.75 per unit DIW DataDoc http://hdl.handle.net/10419/80348
69 hydro 2030 efficiency 0.9 per unit DIW DataDoc http://hdl.handle.net/10419/80348
70 ror 2030 efficiency 0.9 per unit DIW DataDoc http://hdl.handle.net/10419/80348
71 OCGT 2030 efficiency 0.39 per unit DIW DataDoc http://hdl.handle.net/10419/80348
72 CCGT 2030 efficiency 0.5 per unit DIW DataDoc http://hdl.handle.net/10419/80348
73 biomass 2030 efficiency 0.468 per unit DIW DataDoc http://hdl.handle.net/10419/80348
74 geothermal 2030 efficiency 0.239 per unit DIW DataDoc http://hdl.handle.net/10419/80348
75 nuclear 2030 efficiency 0.337 per unit DIW DataDoc http://hdl.handle.net/10419/80348
76 gas 2030 CO2 intensity 0.187 tCO2/MWth https://www.eia.gov/environment/emissions/co2_vol_mass.php
77 coal 2030 efficiency 0.464 per unit DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC)
78 lignite 2030 efficiency 0.447 per unit DIW DataDoc http://hdl.handle.net/10419/80348
79 oil 2030 efficiency 0.393 per unit DIW DataDoc http://hdl.handle.net/10419/80348 CT
80 coal 2030 CO2 intensity 0.354 tCO2/MWth https://www.eia.gov/environment/emissions/co2_vol_mass.php
81 lignite 2030 CO2 intensity 0.4 tCO2/MWth German sources
82 oil 2030 CO2 intensity 0.248 tCO2/MWth https://www.eia.gov/environment/emissions/co2_vol_mass.php
83 geothermal 2030 CO2 intensity 0.026 tCO2/MWth https://www.eia.gov/environment/emissions/co2_vol_mass.php
84 solid biomass 2030 CO2 intensity 0.3 tCO2/MWth TODO
85 electrolysis 2030 investment 350 EUR/kWel Palzer Thesis
86 electrolysis 2030 FOM 4 %/year NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
87 electrolysis 2030 lifetime 18 years NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
88 electrolysis 2030 efficiency 0.8 per unit NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
89 fuel cell 2030 investment 339 EUR/kWel NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
90 fuel cell 2030 FOM 3 %/year NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
91 fuel cell 2030 lifetime 20 years NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013
92 fuel cell 2030 efficiency 0.58 per unit NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020
93 hydrogen storage 2030 investment 11.2 USD/kWh budischak2013
94 hydrogen storage 2030 lifetime 20 years budischak2013
95 methanation 2030 investment 1000 EUR/kWH2 Schaber thesis
96 methanation 2030 lifetime 25 years Schaber thesis
97 methanation 2030 FOM 3 %/year Schaber thesis
98 methanation 2030 efficiency 0.8 per unit Palzer and Schaber thesis
99 helmeth 2030 investment 2000 EUR/kW no source
100 helmeth 2030 lifetime 25 years no source
101 helmeth 2030 FOM 3 %/year no source
102 helmeth 2030 efficiency 0.8 per unit HELMETH press release
103 Fischer-Tropsch 2030 investment 677.6 EUR/kWH2 Fasihi doi:10.3390/su9020306 (60 kEUR/bpd = 847 EUR/kWL (1b = 1.7 MWh) 847*0.8 = 677.6)
104 Fischer-Tropsch 2030 lifetime 30 years doi:10.3390/su9020306
105 Fischer-Tropsch 2030 FOM 3 %/year doi:10.3390/su9020306
106 Fischer-Tropsch 2030 efficiency 0.8 per unit TODO
107 DAC 2030 investment 250 EUR/(tCO2/a) Fasihi doi:10.3390/su9020306/Climeworks
108 DAC 2030 lifetime 30 years Fasihi
109 DAC 2030 FOM 4 %/year Fasihi
110 battery inverter 2030 investment 411 USD/kWel budischak2013
111 battery inverter 2030 lifetime 20 years budischak2013
112 battery inverter 2030 efficiency 0.81 per unit budischak2013; Lund and Kempton (2008) http://dx.doi.org/10.1016/j.enpol.2008.06.007
113 battery inverter 2030 FOM 3 %/year budischak2013
114 battery storage 2030 investment 192 USD/kWh budischak2013
115 battery storage 2030 lifetime 15 years budischak2013
116 decentral air-sourced heat pump 2030 investment 1050 EUR/kWth HP; Palzer thesis
117 decentral air-sourced heat pump 2030 lifetime 20 years HP; Palzer thesis
118 decentral air-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
119 decentral air-sourced heat pump 2030 efficiency 3 per unit default for costs
120 decentral air-sourced heat pump 2030 discount rate 0.04 per unit Palzer thesis
121 decentral ground-sourced heat pump 2030 investment 1400 EUR/kWth Palzer thesis
122 decentral ground-sourced heat pump 2030 lifetime 20 years Palzer thesis
123 decentral ground-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
124 decentral ground-sourced heat pump 2030 efficiency 4 per unit default for costs
125 decentral ground-sourced heat pump 2030 discount rate 0.04 per unit Palzer thesis
126 central air-sourced heat pump 2030 investment 700 EUR/kWth Palzer thesis
127 central air-sourced heat pump 2030 lifetime 20 years Palzer thesis
128 central air-sourced heat pump 2030 FOM 3.5 %/year Palzer thesis
129 central air-sourced heat pump 2030 efficiency 3 per unit default for costs
130 retrofitting I 2030 discount rate 0.04 per unit Palzer thesis
131 retrofitting I 2030 lifetime 50 years Palzer thesis
132 retrofitting I 2030 FOM 1 %/year Palzer thesis
133 retrofitting I 2030 investment 50 EUR/m2/fraction reduction Palzer thesis
134 retrofitting II 2030 discount rate 0.04 per unit Palzer thesis
135 retrofitting II 2030 lifetime 50 years Palzer thesis
136 retrofitting II 2030 FOM 1 %/year Palzer thesis
137 retrofitting II 2030 investment 250 EUR/m2/fraction reduction Palzer thesis
138 water tank charger 2030 efficiency 0.9 per unit HP
139 water tank discharger 2030 efficiency 0.9 per unit HP
140 decentral water tank storage 2030 investment 860 EUR/m3 IWES Interaktion
141 decentral water tank storage 2030 FOM 1 %/year HP
142 decentral water tank storage 2030 lifetime 20 years HP
143 decentral water tank storage 2030 discount rate 0.04 per unit Palzer thesis
144 central water tank storage 2030 investment 30 EUR/m3 IWES Interaktion
145 central water tank storage 2030 FOM 1 %/year HP
146 central water tank storage 2030 lifetime 40 years HP
147 decentral resistive heater 2030 investment 100 EUR/kWhth Schaber thesis
148 decentral resistive heater 2030 lifetime 20 years Schaber thesis
149 decentral resistive heater 2030 FOM 2 %/year Schaber thesis
150 decentral resistive heater 2030 efficiency 0.9 per unit Schaber thesis
151 decentral resistive heater 2030 discount rate 0.04 per unit Palzer thesis
152 central resistive heater 2030 investment 100 EUR/kWhth Schaber thesis
153 central resistive heater 2030 lifetime 20 years Schaber thesis
154 central resistive heater 2030 FOM 2 %/year Schaber thesis
155 central resistive heater 2030 efficiency 0.9 per unit Schaber thesis
156 decentral gas boiler 2030 investment 175 EUR/kWhth Palzer thesis
157 decentral gas boiler 2030 lifetime 20 years Palzer thesis
158 decentral gas boiler 2030 FOM 2 %/year Palzer thesis
159 decentral gas boiler 2030 efficiency 0.9 per unit Palzer thesis
160 decentral gas boiler 2030 discount rate 0.04 per unit Palzer thesis
161 central gas boiler 2030 investment 63 EUR/kWhth Palzer thesis
162 central gas boiler 2030 lifetime 22 years Palzer thesis
163 central gas boiler 2030 FOM 1 %/year Palzer thesis
164 central gas boiler 2030 efficiency 0.9 per unit Palzer thesis
165 decentral CHP 2030 lifetime 25 years HP
166 decentral CHP 2030 investment 1400 EUR/kWel HP
167 decentral CHP 2030 FOM 3 %/year HP
168 decentral CHP 2030 discount rate 0.04 per unit Palzer thesis
169 central CHP 2030 lifetime 25 years HP
170 central CHP 2030 investment 650 EUR/kWel HP
171 central CHP 2030 FOM 3 %/year HP
172 decentral solar thermal 2030 discount rate 0.04 per unit Palzer thesis
173 decentral solar thermal 2030 FOM 1.3 %/year HP
174 decentral solar thermal 2030 investment 270000 EUR/1000m2 HP
175 decentral solar thermal 2030 lifetime 20 years HP
176 central solar thermal 2030 FOM 1.4 %/year HP
177 central solar thermal 2030 investment 140000 EUR/1000m2 HP
178 central solar thermal 2030 lifetime 20 years HP
179 HVAC overhead 2030 investment 400 EUR/MW/km Hagspiel
180 HVAC overhead 2030 lifetime 40 years Hagspiel
181 HVAC overhead 2030 FOM 2 %/year Hagspiel
182 HVDC overhead 2030 investment 400 EUR/MW/km Hagspiel
183 HVDC overhead 2030 lifetime 40 years Hagspiel
184 HVDC overhead 2030 FOM 2 %/year Hagspiel
185 HVDC submarine 2030 investment 2000 EUR/MW/km Own analysis of European submarine HVDC projects since 2000
186 HVDC submarine 2030 lifetime 40 years Hagspiel
187 HVDC submarine 2030 FOM 2 %/year Hagspiel
188 HVDC inverter pair 2030 investment 150000 EUR/MW Hagspiel
189 HVDC inverter pair 2030 lifetime 40 years Hagspiel
190 HVDC inverter pair 2030 FOM 2 %/year Hagspiel

View File

@ -1139,23 +1139,45 @@ def add_industry(network):
"Fischer-Tropsch", "Fischer-Tropsch",
carrier="Fischer-Tropsch") carrier="Fischer-Tropsch")
#TODO: Add capital cost network.add("Bus",
#NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned "Fischer-Tropsch-demand",
carrier="Fischer-Tropsch")
#use madd to get carrier inserted
network.madd("Store",
["Fischer-Tropsch Store"],
bus="Fischer-Tropsch",
e_nom_extendable=True,
#force fossil to be empty at end of period; can start higher to represent fossil input
e_max_pu=pd.DataFrame({ "Fischer-Tropsch Store" : pd.Series([1.]*(len(network.snapshots)-1)+[0.],index=network.snapshots)}),
carrier="Fischer-Tropsch",
marginal_cost=costs.at["oil",'fuel'])
network.madd("Link", network.madd("Link",
nodes + " Fischer-Tropsch", nodes + " Fischer-Tropsch",
bus0=nodes + " H2", bus0=nodes + " H2",
bus1="Fischer-Tropsch", bus1="Fischer-Tropsch",
bus2="co2 stored", bus2="co2 stored",
bus3="co2 atmosphere",
carrier="Fischer-Tropsch", carrier="Fischer-Tropsch",
efficiency=0.8, efficiency=costs.at["Fischer-Tropsch",'efficiency'],
efficiency2=-0.26*0.8, capital_cost=costs.at["Fischer-Tropsch",'fixed'],
efficiency3=0.26*0.8, efficiency2=-costs.at["oil",'CO2 intensity']*costs.at["Fischer-Tropsch",'efficiency'],
p_nom_extendable=True)
#NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned
network.madd("Link",
["Fischer-Tropsch-demand"],
bus0="Fischer-Tropsch",
bus1="Fischer-Tropsch-demand",
bus2="co2 atmosphere",
carrier="Fischer-Tropsch-demand",
efficiency=1.,
efficiency2=costs.at["oil",'CO2 intensity'],
p_nom_extendable=True) p_nom_extendable=True)
network.add("Load", network.add("Load",
"Fischer-Tropsch", "Fischer-Tropsch",
bus="Fischer-Tropsch", bus="Fischer-Tropsch-demand",
p_set = industrial_demand.loc[nodes,["aviation kerosene","naphtha feedstock"]].sum().sum()/8760.) p_set = industrial_demand.loc[nodes,["aviation kerosene","naphtha feedstock"]].sum().sum()/8760.)
network.madd("Load", network.madd("Load",