[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
95903eeca7
commit
6a51a1d94e
@ -342,5 +342,5 @@ texinfo_documents = [
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {
|
||||
'https://docs.python.org/': ('https://docs.python.org/3', None),
|
||||
"https://docs.python.org/": ("https://docs.python.org/3", None),
|
||||
}
|
||||
|
@ -170,7 +170,7 @@ def eurostat_per_country(input_eurostat: str, country: str) -> pd.DataFrame:
|
||||
sheet_name=None,
|
||||
skiprows=4,
|
||||
index_col=list(range(4)),
|
||||
na_values=":"
|
||||
na_values=":",
|
||||
)
|
||||
sheet.pop("Cover")
|
||||
return pd.concat(sheet)
|
||||
@ -499,9 +499,8 @@ def idees_per_country(ct: str, base_dir: str) -> pd.DataFrame:
|
||||
|
||||
assert df.index[9] == "Domestic"
|
||||
assert df.index[10] == "International - Intra-EEAwUK"
|
||||
ct_totals["total domestic aviation freight"] = df.iloc[[9,10]].sum()
|
||||
ct_totals["total domestic aviation freight"] = df.iloc[[9, 10]].sum()
|
||||
|
||||
|
||||
assert df.index[11] == "International - Extra-EEAwUK"
|
||||
ct_totals["total international aviation freight"] = df.iloc[11]
|
||||
|
||||
|
@ -172,14 +172,15 @@ ch_mapping = {
|
||||
"Textil / Leder": "Textiles and leather",
|
||||
"Papier / Druck": "Pulp, paper and printing",
|
||||
"Chemie / Pharma": "Chemical industry",
|
||||
"Zement / Beton": "Non-metallic mineral products",
|
||||
"Zement / Beton": "Non-metallic mineral products",
|
||||
"Andere NE-Mineralien": "Other non-ferrous metals",
|
||||
"Metall / Eisen": "Iron and steel",
|
||||
"NE-Metall": "Non Ferrous Metals",
|
||||
"Metall / Geräte" : "Transport equipment",
|
||||
"Metall / Geräte": "Transport equipment",
|
||||
"Maschinen": "Machinery equipment",
|
||||
"Andere Industrien": "Other industrial sectors",
|
||||
}
|
||||
"Andere Industrien": "Other industrial sectors",
|
||||
}
|
||||
|
||||
|
||||
def find_physical_output(df):
|
||||
start = np.where(df.index.str.contains("Physical output", na=""))[0][0]
|
||||
@ -191,11 +192,12 @@ def find_physical_output(df):
|
||||
def get_energy_ratio(country, eurostat_dir, jrc_dir, year):
|
||||
if country == "CH":
|
||||
# data ranges between 2014-2023
|
||||
e_country = pd.read_csv(snakemake.input.ch_industrial_production,
|
||||
index_col=0).dropna()
|
||||
e_country = pd.read_csv(
|
||||
snakemake.input.ch_industrial_production, index_col=0
|
||||
).dropna()
|
||||
e_country = e_country.rename(index=ch_mapping).groupby(level=0).sum()
|
||||
e_country = e_country[str(min(2019, year))]
|
||||
e_country *= tj_to_ktoe
|
||||
e_country *= tj_to_ktoe
|
||||
else:
|
||||
ct_eurostat = country.replace("GB", "UK")
|
||||
# estimate physical output, energy consumption in the sector and country
|
||||
@ -298,7 +300,9 @@ def separate_basic_chemicals(demand, year):
|
||||
|
||||
year_to_use = min(max(year, 2018), 2022)
|
||||
if year_to_use != year:
|
||||
logger.info(f"Year {year} outside data range. Using data from {year_to_use} for ammonia production.")
|
||||
logger.info(
|
||||
f"Year {year} outside data range. Using data from {year_to_use} for ammonia production."
|
||||
)
|
||||
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year_to_use)]
|
||||
|
||||
demand["Basic chemicals"] -= demand["Ammonia"]
|
||||
|
Loading…
Reference in New Issue
Block a user