biomass_transport: fix cost calculation and get from remote

This commit is contained in:
Fabian Neumann 2021-08-09 16:30:38 +02:00
parent d428c1b77d
commit 6711d721b9
3 changed files with 61 additions and 38 deletions

View File

@ -186,11 +186,11 @@ rule build_biomass_potentials:
if config["sector"]["biomass_transport"]:
rule build_biomass_transport_costs:
input:
transport_cost_data=HTTP.remote("https://publications.jrc.ec.europa.eu/repository/bitstream/JRC98626/biomass%20potentials%20in%20europe_web%20rev.pdf", keep_local=True)
transport_cost_data=HTTP.remote("publications.jrc.ec.europa.eu/repository/bitstream/JRC98626/biomass potentials in europe_web rev.pdf", keep_local=True)
output:
supply_chain1="resources/biomass_transport_costs_supply_chain1.csv",
supply_chain2="resources/biomass_transport_costs_supply_chain2.csv",
transport_costs="resources/biomass_transport_costs.csv",
biomass_transport_costs="resources/biomass_transport_costs.csv",
threads: 1
resources: mem_mb=1000
benchmark: "benchmarks/build_biomass_transport_costs"

View File

@ -16,52 +16,75 @@ assuming as an approximation energy content of wood pellets
import pandas as pd
import tabula as tbl
ENERGY_CONTENT = 4.8 # unit MWh/tonne (assuming wood pellets)
ENERGY_CONTENT = 4.8 # unit MWh/t (wood pellets)
def get_countries():
pandas_options = dict(
skiprows=list(range(6)),
header=None,
index_col=0
)
return tbl.read_pdf(
str(snakemake.input.transport_cost_data),
pages="145",
multiple_tables=False,
pandas_options=pandas_options
)[0].index
def get_cost_per_tkm(page, countries):
pandas_options = dict(
skiprows=range(6),
header=0,
sep=' |,',
engine='python',
index_col=False,
)
sc = tbl.read_pdf(
str(snakemake.input.transport_cost_data),
pages=page,
multiple_tables=False,
pandas_options=pandas_options
)[0]
sc.index = countries
sc.columns = sc.columns.str.replace("", "EUR")
return sc
def build_biomass_transport_costs():
df_list = tbl.read_pdf(
snakemake.input.transport_cost_data,
pages="145-147",
multiple_tables=True,
)
countries = df_list[0][0].iloc[6:].rename(index=lambda x: x + 1)
countries = get_countries()
# supply chain 1
df = df_list[1].copy().rename(index=countries.to_dict())
df.rename(
columns=df.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df = df.iloc[6:]
df.loc[6] = df.loc[6].str.replace("", "EUR")
sc1 = get_cost_per_tkm(146, countries)
sc2 = get_cost_per_tkm(147, countries)
# supply chain 2
df2 = df_list[2].copy().rename(index=countries.to_dict())
df2.rename(
columns=df2.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df2 = df2.iloc[6:]
df2.loc[6] = df2.loc[6].str.replace("", "EUR")
sc1.to_csv(snakemake.output.supply_chain1)
sc2.to_csv(snakemake.output.supply_chain2)
df.to_csv(snakemake.output.supply_chain1)
df2.to_csv(snakemake.output.supply_chain1)
# take mean of both supply chains
to_concat = [sc1["EUR/km/ton"], sc2["EUR/km/ton"]]
transport_costs = pd.concat(to_concat, axis=1).mean(axis=1)
transport_costs = pd.concat([df["per km/ton"], df2["per km/ton"]], axis=1).drop(6)
transport_costs = transport_costs.astype(float, errors="ignore").mean(axis=1)
# convert unit to EUR/MWh
# convert tonnes to MWh
transport_costs /= ENERGY_CONTENT
transport_costs = pd.DataFrame(transport_costs, columns=["cost [EUR/(km MWh)]"])
transport_costs.name = "EUR/km/MWh"
# rename
transport_costs.rename({"UK": "GB", "XK": "KO", "EL": "GR"}, inplace=True)
# rename country names
to_rename = {
"UK": "GB",
"XK": "KO",
"EL": "GR"
}
transport_costs.rename(to_rename, inplace=True)
# add missing Norway with data from Sweden
transport_costs["NO"] = transport_costs["SE"]
# add missing Norway
transport_costs.loc["NO"] = transport_costs.loc["SE"]
transport_costs.to_csv(snakemake.output.transport_costs)

View File

@ -1613,7 +1613,7 @@ def add_biomass(n, costs):
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
transport_costs = pd.read_csv(
snakemake.input.biomass_transport,
snakemake.input.biomass_transport_costs,
index_col=0,
squeeze=True
)