2250 lines
79 KiB
Python
2250 lines
79 KiB
Python
# coding: utf-8
|
|
|
|
import pypsa
|
|
import re
|
|
import os
|
|
import pytz
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
import xarray as xr
|
|
|
|
from itertools import product
|
|
from scipy.stats import beta
|
|
from vresutils.costdata import annuity
|
|
|
|
from build_energy_totals import build_eea_co2, build_eurostat_co2, build_co2_totals
|
|
from helper import override_component_attrs
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
from types import SimpleNamespace
|
|
spatial = SimpleNamespace()
|
|
|
|
|
|
def define_spatial(nodes):
|
|
"""
|
|
Namespace for spatial
|
|
|
|
Parameters
|
|
----------
|
|
nodes : list-like
|
|
"""
|
|
|
|
global spatial
|
|
global options
|
|
|
|
spatial.nodes = nodes
|
|
|
|
spatial.biomass = SimpleNamespace()
|
|
|
|
if options["biomass_transport"]:
|
|
spatial.biomass.nodes = nodes + " solid biomass"
|
|
spatial.biomass.locations = nodes
|
|
spatial.biomass.industry = nodes + " solid biomass for industry"
|
|
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
|
|
else:
|
|
spatial.biomass.nodes = ["EU solid biomass"]
|
|
spatial.biomass.locations = "EU"
|
|
spatial.biomass.industry = ["solid biomass for industry"]
|
|
spatial.biomass.industry_cc = ["solid biomass for industry CC"]
|
|
|
|
spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes)
|
|
|
|
|
|
def emission_sectors_from_opts(opts):
|
|
|
|
sectors = ["electricity"]
|
|
if "T" in opts:
|
|
sectors += [
|
|
"rail non-elec",
|
|
"road non-elec"
|
|
]
|
|
if "H" in opts:
|
|
sectors += [
|
|
"residential non-elec",
|
|
"services non-elec"
|
|
]
|
|
if "I" in opts:
|
|
sectors += [
|
|
"industrial non-elec",
|
|
"industrial processes",
|
|
"domestic aviation",
|
|
"international aviation",
|
|
"domestic navigation",
|
|
"international navigation"
|
|
]
|
|
|
|
return sectors
|
|
|
|
|
|
def get(item, investment_year=None):
|
|
"""Check whether item depends on investment year"""
|
|
if isinstance(item, dict):
|
|
return item[investment_year]
|
|
else:
|
|
return item
|
|
|
|
|
|
def co2_emissions_year(countries, opts, year):
|
|
"""
|
|
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
|
"""
|
|
|
|
eea_co2 = build_eea_co2(year)
|
|
|
|
# TODO: read Eurostat data from year > 2014
|
|
# this only affects the estimation of CO2 emissions for BA, RS, AL, ME, MK
|
|
if year > 2014:
|
|
eurostat_co2 = build_eurostat_co2(year=2014)
|
|
else:
|
|
eurostat_co2 = build_eurostat_co2(year)
|
|
|
|
co2_totals = build_co2_totals(eea_co2, eurostat_co2)
|
|
|
|
sectors = emission_sectors_from_opts(opts)
|
|
|
|
co2_emissions = co2_totals.loc[countries, sectors].sum().sum()
|
|
|
|
# convert MtCO2 to GtCO2
|
|
co2_emissions *= 0.001
|
|
|
|
return co2_emissions
|
|
|
|
|
|
# TODO: move to own rule with sector-opts wildcard?
|
|
def build_carbon_budget(o, fn):
|
|
"""
|
|
Distribute carbon budget following beta or exponential transition path.
|
|
"""
|
|
# opts?
|
|
|
|
if "be" in o:
|
|
#beta decay
|
|
carbon_budget = float(o[o.find("cb")+2:o.find("be")])
|
|
be = float(o[o.find("be")+2:])
|
|
if "ex" in o:
|
|
#exponential decay
|
|
carbon_budget = float(o[o.find("cb")+2:o.find("ex")])
|
|
r = float(o[o.find("ex")+2:])
|
|
|
|
countries = n.buses.country.dropna().unique()
|
|
|
|
e_1990 = co2_emissions_year(countries, opts, year=1990)
|
|
|
|
#emissions at the beginning of the path (last year available 2018)
|
|
e_0 = co2_emissions_year(countries, opts, year=2018)
|
|
|
|
#emissions in 2019 and 2020 assumed equal to 2018 and substracted
|
|
carbon_budget -= 2 * e_0
|
|
|
|
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
|
t_0 = planning_horizons[0]
|
|
|
|
if "be" in o:
|
|
|
|
# final year in the path
|
|
t_f = t_0 + (2 * carbon_budget / e_0).round(0)
|
|
|
|
def beta_decay(t):
|
|
cdf_term = (t - t_0) / (t_f - t_0)
|
|
return (e_0 / e_1990) * (1 - beta.cdf(cdf_term, be, be))
|
|
|
|
#emissions (relative to 1990)
|
|
co2_cap = pd.Series({t: beta_decay(t) for t in planning_horizons}, name=o)
|
|
|
|
if "ex" in o:
|
|
|
|
T = carbon_budget / e_0
|
|
m = (1 + np.sqrt(1 + r * T)) / T
|
|
|
|
def exponential_decay(t):
|
|
return (e_0 / e_1990) * (1 + (m + r) * (t - t_0)) * np.exp(-m * (t - t_0))
|
|
|
|
co2_cap = pd.Series({t: exponential_decay(t) for t in planning_horizons}, name=o)
|
|
|
|
# TODO log in Snakefile
|
|
if not os.path.exists(fn):
|
|
os.makedirs(fn)
|
|
co2_cap.to_csv(fn, float_format='%.3f')
|
|
|
|
|
|
def add_lifetime_wind_solar(n, costs):
|
|
"""Add lifetime for solar and wind generators."""
|
|
for carrier in ['solar', 'onwind', 'offwind']:
|
|
gen_i = n.generators.index.str.contains(carrier)
|
|
n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, 'lifetime']
|
|
|
|
|
|
def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
|
"""
|
|
Create a network topology like the power transmission network.
|
|
|
|
Parameters
|
|
----------
|
|
n : pypsa.Network
|
|
prefix : str
|
|
connector : str
|
|
bidirectional : bool, default True
|
|
True: one link for each connection
|
|
False: one link for each connection and direction (back and forth)
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame with columns bus0, bus1 and length
|
|
"""
|
|
|
|
ln_attrs = ["bus0", "bus1", "length"]
|
|
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
|
|
|
candidates = pd.concat([
|
|
n.lines[ln_attrs],
|
|
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
|
]).fillna(0)
|
|
|
|
positive_order = candidates.bus0 < candidates.bus1
|
|
candidates_p = candidates[positive_order]
|
|
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
|
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
|
candidates = pd.concat([candidates_p, candidates_n])
|
|
|
|
def make_index(c):
|
|
return prefix + c.bus0 + connector + c.bus1
|
|
|
|
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
|
topo.index = topo.apply(make_index, axis=1)
|
|
|
|
if not bidirectional:
|
|
topo_reverse = topo.copy()
|
|
topo_reverse.rename(columns=swap_buses, inplace=True)
|
|
topo_reverse.index = topo_reverse.apply(make_index, axis=1)
|
|
topo = topo.append(topo_reverse)
|
|
|
|
return topo
|
|
|
|
|
|
# TODO merge issue with PyPSA-Eur
|
|
def update_wind_solar_costs(n, costs):
|
|
"""
|
|
Update costs for wind and solar generators added with pypsa-eur to those
|
|
cost in the planning year
|
|
"""
|
|
|
|
#NB: solar costs are also manipulated for rooftop
|
|
#when distribution grid is inserted
|
|
n.generators.loc[n.generators.carrier=='solar', 'capital_cost'] = costs.at['solar-utility', 'fixed']
|
|
|
|
n.generators.loc[n.generators.carrier=='onwind', 'capital_cost'] = costs.at['onwind', 'fixed']
|
|
|
|
#for offshore wind, need to calculated connection costs
|
|
|
|
#assign clustered bus
|
|
#map initial network -> simplified network
|
|
busmap_s = pd.read_csv(snakemake.input.busmap_s, index_col=0).squeeze()
|
|
busmap_s.index = busmap_s.index.astype(str)
|
|
busmap_s = busmap_s.astype(str)
|
|
#map simplified network -> clustered network
|
|
busmap = pd.read_csv(snakemake.input.busmap, index_col=0).squeeze()
|
|
busmap.index = busmap.index.astype(str)
|
|
busmap = busmap.astype(str)
|
|
#map initial network -> clustered network
|
|
clustermaps = busmap_s.map(busmap)
|
|
|
|
#code adapted from pypsa-eur/scripts/add_electricity.py
|
|
for connection in ['dc', 'ac']:
|
|
tech = "offwind-" + connection
|
|
profile = snakemake.input['profile_offwind_' + connection]
|
|
with xr.open_dataset(profile) as ds:
|
|
underwater_fraction = ds['underwater_fraction'].to_pandas()
|
|
connection_cost = (snakemake.config['costs']['lines']['length_factor'] *
|
|
ds['average_distance'].to_pandas() *
|
|
(underwater_fraction *
|
|
costs.at[tech + '-connection-submarine', 'fixed'] +
|
|
(1. - underwater_fraction) *
|
|
costs.at[tech + '-connection-underground', 'fixed']))
|
|
|
|
#convert to aggregated clusters with weighting
|
|
weight = ds['weight'].to_pandas()
|
|
|
|
#e.g. clusters == 37m means that VRE generators are left
|
|
#at clustering of simplified network, but that they are
|
|
#connected to 37-node network
|
|
if snakemake.wildcards.clusters[-1:] == "m":
|
|
genmap = busmap_s
|
|
else:
|
|
genmap = clustermaps
|
|
|
|
connection_cost = (connection_cost*weight).groupby(genmap).sum()/weight.groupby(genmap).sum()
|
|
|
|
capital_cost = (costs.at['offwind', 'fixed'] +
|
|
costs.at[tech + '-station', 'fixed'] +
|
|
connection_cost)
|
|
|
|
logger.info("Added connection cost of {:0.0f}-{:0.0f} Eur/MW/a to {}"
|
|
.format(connection_cost[0].min(), connection_cost[0].max(), tech))
|
|
|
|
n.generators.loc[n.generators.carrier==tech, 'capital_cost'] = capital_cost.rename(index=lambda node: node + ' ' + tech)
|
|
|
|
|
|
def add_carrier_buses(n, carriers):
|
|
"""
|
|
Add buses to connect e.g. coal, nuclear and oil plants
|
|
"""
|
|
if isinstance(carriers, str):
|
|
carriers = [carriers]
|
|
|
|
for carrier in carriers:
|
|
|
|
n.add("Carrier", carrier)
|
|
|
|
n.add("Bus",
|
|
"EU " + carrier,
|
|
location="EU",
|
|
carrier=carrier
|
|
)
|
|
|
|
#capital cost could be corrected to e.g. 0.2 EUR/kWh * annuity and O&M
|
|
n.add("Store",
|
|
"EU " + carrier + " Store",
|
|
bus="EU " + carrier,
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier=carrier,
|
|
)
|
|
|
|
n.add("Generator",
|
|
"EU " + carrier,
|
|
bus="EU " + carrier,
|
|
p_nom_extendable=True,
|
|
carrier=carrier,
|
|
marginal_cost=costs.at[carrier, 'fuel']
|
|
)
|
|
|
|
|
|
# TODO: PyPSA-Eur merge issue
|
|
def remove_elec_base_techs(n):
|
|
"""remove conventional generators (e.g. OCGT) and storage units (e.g. batteries and H2)
|
|
from base electricity-only network, since they're added here differently using links
|
|
"""
|
|
|
|
for c in n.iterate_components(snakemake.config["pypsa_eur"]):
|
|
to_keep = snakemake.config["pypsa_eur"][c.name]
|
|
to_remove = pd.Index(c.df.carrier.unique()).symmetric_difference(to_keep)
|
|
print("Removing", c.list_name, "with carrier", to_remove)
|
|
names = c.df.index[c.df.carrier.isin(to_remove)]
|
|
print(names)
|
|
n.mremove(c.name, names)
|
|
n.carriers.drop(to_remove, inplace=True, errors="ignore")
|
|
|
|
|
|
# TODO: PyPSA-Eur merge issue
|
|
def remove_non_electric_buses(n):
|
|
"""
|
|
remove buses from pypsa-eur with carriers which are not AC buses
|
|
"""
|
|
print("drop buses from PyPSA-Eur with carrier: ", n.buses[~n.buses.carrier.isin(["AC", "DC"])].carrier.unique())
|
|
n.buses = n.buses[n.buses.carrier.isin(["AC", "DC"])]
|
|
|
|
|
|
def patch_electricity_network(n):
|
|
remove_elec_base_techs(n)
|
|
remove_non_electric_buses(n)
|
|
update_wind_solar_costs(n, costs)
|
|
n.loads["carrier"] = "electricity"
|
|
n.buses["location"] = n.buses.index
|
|
|
|
|
|
def add_co2_tracking(n, options):
|
|
|
|
# minus sign because opposite to how fossil fuels used:
|
|
# CH4 burning puts CH4 down, atmosphere up
|
|
n.add("Carrier", "co2",
|
|
co2_emissions=-1.)
|
|
|
|
# this tracks CO2 in the atmosphere
|
|
n.add("Bus",
|
|
"co2 atmosphere",
|
|
location="EU",
|
|
carrier="co2"
|
|
)
|
|
|
|
# can also be negative
|
|
n.add("Store",
|
|
"co2 atmosphere",
|
|
e_nom_extendable=True,
|
|
e_min_pu=-1,
|
|
carrier="co2",
|
|
bus="co2 atmosphere"
|
|
)
|
|
|
|
# this tracks CO2 stored, e.g. underground
|
|
n.add("Bus",
|
|
"co2 stored",
|
|
location="EU",
|
|
carrier="co2 stored"
|
|
)
|
|
|
|
n.add("Store",
|
|
"co2 stored",
|
|
e_nom_extendable=True,
|
|
e_nom_max=options['co2_sequestration_potential'] * 1e6,
|
|
capital_cost=options['co2_sequestration_cost'],
|
|
carrier="co2 stored",
|
|
bus="co2 stored"
|
|
)
|
|
|
|
if options['co2_vent']:
|
|
|
|
n.add("Link",
|
|
"co2 vent",
|
|
bus0="co2 stored",
|
|
bus1="co2 atmosphere",
|
|
carrier="co2 vent",
|
|
efficiency=1.,
|
|
p_nom_extendable=True
|
|
)
|
|
|
|
|
|
def add_dac(n, costs):
|
|
|
|
heat_carriers = ["urban central heat", "services urban decentral heat"]
|
|
heat_buses = n.buses.index[n.buses.carrier.isin(heat_carriers)]
|
|
locations = n.buses.location[heat_buses]
|
|
|
|
efficiency2 = -(costs.at['direct air capture', 'electricity-input'] + costs.at['direct air capture', 'compression-electricity-input'])
|
|
efficiency3 = -(costs.at['direct air capture', 'heat-input'] - costs.at['direct air capture', 'compression-heat-output'])
|
|
|
|
n.madd("Link",
|
|
locations,
|
|
suffix=" DAC",
|
|
bus0="co2 atmosphere",
|
|
bus1="co2 stored",
|
|
bus2=locations.values,
|
|
bus3=heat_buses,
|
|
carrier="DAC",
|
|
capital_cost=costs.at['direct air capture', 'fixed'],
|
|
efficiency=1.,
|
|
efficiency2=efficiency2,
|
|
efficiency3=efficiency3,
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['direct air capture', 'lifetime']
|
|
)
|
|
|
|
|
|
def add_co2limit(n, Nyears=1., limit=0.):
|
|
|
|
print("Adding CO2 budget limit as per unit of 1990 levels of", limit)
|
|
|
|
countries = n.buses.country.dropna().unique()
|
|
|
|
sectors = emission_sectors_from_opts(opts)
|
|
|
|
# convert Mt to tCO2
|
|
co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0)
|
|
|
|
co2_limit = co2_totals.loc[countries, sectors].sum().sum()
|
|
|
|
co2_limit *= limit * Nyears
|
|
|
|
n.add("GlobalConstraint",
|
|
"CO2Limit",
|
|
carrier_attribute="co2_emissions",
|
|
sense="<=",
|
|
constant=co2_limit
|
|
)
|
|
|
|
# TODO PyPSA-Eur merge issue
|
|
def average_every_nhours(n, offset):
|
|
logger.info(f'Resampling the network to {offset}')
|
|
m = n.copy(with_time=False)
|
|
|
|
# TODO is this still needed?
|
|
#fix copying of network attributes
|
|
#copied from pypsa/io.py, should be in pypsa/components.py#Network.copy()
|
|
allowed_types = (float, int, bool, str) + tuple(np.typeDict.values())
|
|
attrs = dict((attr, getattr(n, attr))
|
|
for attr in dir(n)
|
|
if (not attr.startswith("__") and
|
|
isinstance(getattr(n,attr), allowed_types)))
|
|
for k,v in attrs.items():
|
|
setattr(m,k,v)
|
|
|
|
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
|
|
m.set_snapshots(snapshot_weightings.index)
|
|
m.snapshot_weightings = snapshot_weightings
|
|
|
|
for c in n.iterate_components():
|
|
pnl = getattr(m, c.list_name+"_t")
|
|
for k, df in c.pnl.items():
|
|
if not df.empty:
|
|
if c.list_name == "stores" and k == "e_max_pu":
|
|
pnl[k] = df.resample(offset).min()
|
|
elif c.list_name == "stores" and k == "e_min_pu":
|
|
pnl[k] = df.resample(offset).max()
|
|
else:
|
|
pnl[k] = df.resample(offset).mean()
|
|
|
|
return m
|
|
|
|
|
|
def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None):
|
|
"""
|
|
Give a 24*7 long list of weekly hourly profiles, generate this for each
|
|
country for the period dt_index, taking account of time zones and summer time.
|
|
"""
|
|
|
|
weekly_profile = pd.Series(weekly_profile, range(24*7))
|
|
|
|
week_df = pd.DataFrame(index=dt_index, columns=nodes)
|
|
|
|
for node in nodes:
|
|
timezone = pytz.timezone(pytz.country_timezones[node[:2]][0])
|
|
tz_dt_index = dt_index.tz_convert(timezone)
|
|
week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index]
|
|
week_df[node] = week_df[node].map(weekly_profile)
|
|
|
|
week_df = week_df.tz_localize(localize)
|
|
|
|
return week_df
|
|
|
|
|
|
def cycling_shift(df, steps=1):
|
|
"""Cyclic shift on index of pd.Series|pd.DataFrame by number of steps"""
|
|
df = df.copy()
|
|
new_index = np.roll(df.index, steps)
|
|
df.values[:] = df.reindex(index=new_index).values
|
|
return df
|
|
|
|
|
|
def transport_degree_factor(
|
|
temperature,
|
|
deadband_lower=15,
|
|
deadband_upper=20,
|
|
lower_degree_factor=0.5,
|
|
upper_degree_factor=1.6):
|
|
"""
|
|
Work out how much energy demand in vehicles increases due to heating and cooling.
|
|
There is a deadband where there is no increase.
|
|
Degree factors are % increase in demand compared to no heating/cooling fuel consumption.
|
|
Returns per unit increase in demand for each place and time
|
|
"""
|
|
|
|
dd = temperature.copy()
|
|
|
|
dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.
|
|
|
|
dT_lower = deadband_lower - temperature[temperature < deadband_lower]
|
|
dd[temperature < deadband_lower] = lower_degree_factor / 100 * dT_lower
|
|
|
|
dT_upper = temperature[temperature > deadband_upper] - deadband_upper
|
|
dd[temperature > deadband_upper] = upper_degree_factor / 100 * dT_upper
|
|
|
|
return dd
|
|
|
|
|
|
# TODO separate sectors and move into own rules
|
|
def prepare_data(n):
|
|
|
|
|
|
##############
|
|
#Heating
|
|
##############
|
|
|
|
|
|
ashp_cop = xr.open_dataarray(snakemake.input.cop_air_total).to_pandas().reindex(index=n.snapshots)
|
|
gshp_cop = xr.open_dataarray(snakemake.input.cop_soil_total).to_pandas().reindex(index=n.snapshots)
|
|
|
|
solar_thermal = xr.open_dataarray(snakemake.input.solar_thermal_total).to_pandas().reindex(index=n.snapshots)
|
|
# 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
|
|
solar_thermal = options['solar_cf_correction'] * solar_thermal / 1e3
|
|
|
|
energy_totals = pd.read_csv(snakemake.input.energy_totals_name, index_col=0)
|
|
|
|
nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
|
|
nodal_energy_totals.index = pop_layout.index
|
|
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0)
|
|
|
|
# copy forward the daily average heat demand into each hour, so it can be multipled by the intraday profile
|
|
daily_space_heat_demand = xr.open_dataarray(snakemake.input.heat_demand_total).to_pandas().reindex(index=n.snapshots, method="ffill")
|
|
|
|
intraday_profiles = pd.read_csv(snakemake.input.heat_profile, index_col=0)
|
|
|
|
sectors = ["residential", "services"]
|
|
uses = ["water", "space"]
|
|
|
|
heat_demand = {}
|
|
electric_heat_supply = {}
|
|
for sector, use in product(sectors, uses):
|
|
weekday = list(intraday_profiles[f"{sector} {use} weekday"])
|
|
weekend = list(intraday_profiles[f"{sector} {use} weekend"])
|
|
weekly_profile = weekday * 5 + weekend * 2
|
|
intraday_year_profile = generate_periodic_profiles(
|
|
daily_space_heat_demand.index.tz_localize("UTC"),
|
|
nodes=daily_space_heat_demand.columns,
|
|
weekly_profile=weekly_profile
|
|
)
|
|
|
|
if use == "space":
|
|
heat_demand_shape = daily_space_heat_demand * intraday_year_profile
|
|
else:
|
|
heat_demand_shape = intraday_year_profile
|
|
|
|
heat_demand[f"{sector} {use}"] = (heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals[f"total {sector} {use}"]) * 1e6
|
|
electric_heat_supply[f"{sector} {use}"] = (heat_demand_shape/heat_demand_shape.sum()).multiply(nodal_energy_totals[f"electricity {sector} {use}"]) * 1e6
|
|
|
|
heat_demand = pd.concat(heat_demand, axis=1)
|
|
electric_heat_supply = pd.concat(electric_heat_supply, axis=1)
|
|
|
|
# subtract from electricity load since heat demand already in heat_demand
|
|
electric_nodes = n.loads.index[n.loads.carrier == "electricity"]
|
|
n.loads_t.p_set[electric_nodes] = n.loads_t.p_set[electric_nodes] - electric_heat_supply.groupby(level=1, axis=1).sum()[electric_nodes]
|
|
|
|
##############
|
|
#Transport
|
|
##############
|
|
|
|
## Get overall demand curve for all vehicles
|
|
|
|
traffic = pd.read_csv(snakemake.input.traffic_data_KFZ, skiprows=2, usecols=["count"], squeeze=True)
|
|
|
|
#Generate profiles
|
|
transport_shape = generate_periodic_profiles(
|
|
dt_index=n.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=traffic.values
|
|
)
|
|
transport_shape = transport_shape / transport_shape.sum()
|
|
|
|
transport_data = pd.read_csv(snakemake.input.transport_name, index_col=0)
|
|
|
|
nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.)
|
|
nodal_transport_data.index = pop_layout.index
|
|
nodal_transport_data["number cars"] = pop_layout["fraction"] * nodal_transport_data["number cars"]
|
|
nodal_transport_data.loc[nodal_transport_data["average fuel efficiency"] == 0., "average fuel efficiency"] = transport_data["average fuel efficiency"].mean()
|
|
|
|
|
|
# electric motors are more efficient, so alter transport demand
|
|
|
|
plug_to_wheels_eta = options.get("bev_plug_to_wheel_efficiency", 0.2)
|
|
battery_to_wheels_eta = plug_to_wheels_eta * options.get("bev_charge_efficiency", 0.9)
|
|
|
|
efficiency_gain = nodal_transport_data["average fuel efficiency"] / battery_to_wheels_eta
|
|
|
|
#get heating demand for correction to demand time series
|
|
temperature = xr.open_dataarray(snakemake.input.temp_air_total).to_pandas()
|
|
|
|
# correction factors for vehicle heating
|
|
dd_ICE = transport_degree_factor(
|
|
temperature,
|
|
options['transport_heating_deadband_lower'],
|
|
options['transport_heating_deadband_upper'],
|
|
options['ICE_lower_degree_factor'],
|
|
options['ICE_upper_degree_factor']
|
|
)
|
|
|
|
dd_EV = transport_degree_factor(
|
|
temperature,
|
|
options['transport_heating_deadband_lower'],
|
|
options['transport_heating_deadband_upper'],
|
|
options['EV_lower_degree_factor'],
|
|
options['EV_upper_degree_factor']
|
|
)
|
|
|
|
# divide out the heating/cooling demand from ICE totals
|
|
# and multiply back in the heating/cooling demand for EVs
|
|
ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum()
|
|
|
|
energy_totals_transport = nodal_energy_totals["total road"] + nodal_energy_totals["total rail"] - nodal_energy_totals["electricity rail"]
|
|
|
|
transport = (transport_shape.multiply(energy_totals_transport) * 1e6 * Nyears).divide(efficiency_gain * ice_correction).multiply(1 + dd_EV)
|
|
|
|
## derive plugged-in availability for PKW's (cars)
|
|
|
|
traffic = pd.read_csv(snakemake.input.traffic_data_Pkw, skiprows=2, usecols=["count"], squeeze=True)
|
|
|
|
avail_max = options.get("bev_avail_max", 0.95)
|
|
avail_mean = options.get("bev_avail_mean", 0.8)
|
|
|
|
avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / (traffic.mean() - traffic.min())
|
|
|
|
avail_profile = generate_periodic_profiles(
|
|
dt_index=n.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=avail.values
|
|
)
|
|
|
|
dsm_week = np.zeros((24*7,))
|
|
|
|
dsm_week[(np.arange(0,7,1) * 24 + options['bev_dsm_restriction_time'])] = options['bev_dsm_restriction_value']
|
|
|
|
dsm_profile = generate_periodic_profiles(
|
|
dt_index=n.snapshots.tz_localize("UTC"),
|
|
nodes=pop_layout.index,
|
|
weekly_profile=dsm_week
|
|
)
|
|
|
|
|
|
return nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data
|
|
|
|
|
|
# TODO checkout PyPSA-Eur script
|
|
def prepare_costs(cost_file, USD_to_EUR, discount_rate, Nyears, lifetime):
|
|
|
|
#set all asset costs and other parameters
|
|
costs = pd.read_csv(cost_file, index_col=[0,1]).sort_index()
|
|
|
|
#correct units to MW and EUR
|
|
costs.loc[costs.unit.str.contains("/kW"), "value"] *= 1e3
|
|
costs.loc[costs.unit.str.contains("USD"), "value"] *= USD_to_EUR
|
|
|
|
#min_count=1 is important to generate NaNs which are then filled by fillna
|
|
costs = costs.loc[:, "value"].unstack(level=1).groupby("technology").sum(min_count=1)
|
|
costs = costs.fillna({"CO2 intensity" : 0,
|
|
"FOM" : 0,
|
|
"VOM" : 0,
|
|
"discount rate" : discount_rate,
|
|
"efficiency" : 1,
|
|
"fuel" : 0,
|
|
"investment" : 0,
|
|
"lifetime" : lifetime
|
|
})
|
|
|
|
annuity_factor = lambda v: annuity(v["lifetime"], v["discount rate"]) + v["FOM"] / 100
|
|
costs["fixed"] = [annuity_factor(v) * v["investment"] * Nyears for i, v in costs.iterrows()]
|
|
|
|
return costs
|
|
|
|
|
|
def add_generation(n, costs):
|
|
|
|
print("adding electricity generation")
|
|
|
|
nodes = pop_layout.index
|
|
|
|
fallback = {"OCGT": "gas"}
|
|
conventionals = options.get("conventional_generation", fallback)
|
|
|
|
add_carrier_buses(n, np.unique(list(conventionals.values())))
|
|
|
|
for generator, carrier in conventionals.items():
|
|
|
|
n.madd("Link",
|
|
nodes + " " + generator,
|
|
bus0="EU " + carrier,
|
|
bus1=nodes,
|
|
bus2="co2 atmosphere",
|
|
marginal_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'VOM'], #NB: VOM is per MWel
|
|
capital_cost=costs.at[generator, 'efficiency'] * costs.at[generator, 'fixed'], #NB: fixed cost is per MWel
|
|
p_nom_extendable=True,
|
|
carrier=generator,
|
|
efficiency=costs.at[generator, 'efficiency'],
|
|
efficiency2=costs.at[carrier, 'CO2 intensity'],
|
|
lifetime=costs.at[generator, 'lifetime']
|
|
)
|
|
|
|
|
|
def add_wave(n, wave_cost_factor):
|
|
|
|
# TODO: handle in Snakefile
|
|
wave_fn = "data/WindWaveWEC_GLTB.xlsx"
|
|
|
|
#in kW
|
|
capacity = pd.Series({"Attenuator": 750,
|
|
"F2HB": 1000,
|
|
"MultiPA": 600})
|
|
|
|
#in EUR/MW
|
|
annuity_factor = annuity(25,0.07) + 0.03
|
|
costs = 1e6 * wave_cost_factor * annuity_factor * pd.Series({"Attenuator": 2.5,
|
|
"F2HB": 2,
|
|
"MultiPA": 1.5})
|
|
|
|
sheets = pd.read_excel(wave_fn, sheet_name=["FirthForth", "Hebrides"],
|
|
usecols=["Attenuator", "F2HB", "MultiPA"],
|
|
index_col=0, skiprows=[0], parse_dates=True)
|
|
|
|
wave = pd.concat([sheets[l].divide(capacity, axis=1) for l in locations],
|
|
keys=locations,
|
|
axis=1)
|
|
|
|
for wave_type in costs.index:
|
|
n.add("Generator",
|
|
"Hebrides " + wave_type,
|
|
bus="GB4 0", # TODO this location is hardcoded
|
|
p_nom_extendable=True,
|
|
carrier="wave",
|
|
capital_cost=costs[wave_type],
|
|
p_max_pu=wave["Hebrides", wave_type]
|
|
)
|
|
|
|
|
|
def insert_electricity_distribution_grid(n, costs):
|
|
# TODO pop_layout?
|
|
# TODO options?
|
|
|
|
print("Inserting electricity distribution grid with investment cost factor of",
|
|
options['electricity_distribution_grid_cost_factor'])
|
|
|
|
nodes = pop_layout.index
|
|
|
|
cost_factor = options['electricity_distribution_grid_cost_factor']
|
|
|
|
n.madd("Bus",
|
|
nodes + " low voltage",
|
|
location=nodes,
|
|
carrier="low voltage"
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " electricity distribution grid",
|
|
bus0=nodes,
|
|
bus1=nodes + " low voltage",
|
|
p_nom_extendable=True,
|
|
p_min_pu=-1,
|
|
carrier="electricity distribution grid",
|
|
efficiency=1,
|
|
lifetime=costs.at['electricity distribution grid', 'lifetime'],
|
|
capital_cost=costs.at['electricity distribution grid', 'fixed'] * cost_factor
|
|
)
|
|
|
|
# this catches regular electricity load and "industry electricity"
|
|
loads = n.loads.index[n.loads.carrier.str.contains("electricity")]
|
|
n.loads.loc[loads, "bus"] += " low voltage"
|
|
|
|
bevs = n.links.index[n.links.carrier == "BEV charger"]
|
|
n.links.loc[bevs, "bus0"] += " low voltage"
|
|
|
|
v2gs = n.links.index[n.links.carrier == "V2G"]
|
|
n.links.loc[v2gs, "bus1"] += " low voltage"
|
|
|
|
hps = n.links.index[n.links.carrier.str.contains("heat pump")]
|
|
n.links.loc[hps, "bus0"] += " low voltage"
|
|
|
|
rh = n.links.index[n.links.carrier.str.contains("resistive heater")]
|
|
n.links.loc[rh, "bus0"] += " low voltage"
|
|
|
|
mchp = n.links.index[n.links.carrier.str.contains("micro gas")]
|
|
n.links.loc[mchp, "bus1"] += " low voltage"
|
|
|
|
# set existing solar to cost of utility cost rather the 50-50 rooftop-utility
|
|
solar = n.generators.index[n.generators.carrier == "solar"]
|
|
n.generators.loc[solar, "capital_cost"] = costs.at['solar-utility', 'fixed']
|
|
if snakemake.wildcards.clusters[-1:] == "m":
|
|
simplified_pop_layout = pd.read_csv(snakemake.input.simplified_pop_layout, index_col=0)
|
|
pop_solar = simplified_pop_layout.total.rename(index = lambda x: x + " solar")
|
|
else:
|
|
pop_solar = pop_layout.total.rename(index = lambda x: x + " solar")
|
|
|
|
# add max solar rooftop potential assuming 0.1 kW/m2 and 10 m2/person,
|
|
# i.e. 1 kW/person (population data is in thousands of people) so we get MW
|
|
potential = 0.1 * 10 * pop_solar
|
|
|
|
n.madd("Generator",
|
|
solar,
|
|
suffix=" rooftop",
|
|
bus=n.generators.loc[solar, "bus"] + " low voltage",
|
|
carrier="solar rooftop",
|
|
p_nom_extendable=True,
|
|
p_nom_max=potential,
|
|
marginal_cost=n.generators.loc[solar, 'marginal_cost'],
|
|
capital_cost=costs.at['solar-rooftop', 'fixed'],
|
|
efficiency=n.generators.loc[solar, 'efficiency'],
|
|
p_max_pu=n.generators_t.p_max_pu[solar]
|
|
)
|
|
|
|
n.add("Carrier", "home battery")
|
|
|
|
n.madd("Bus",
|
|
nodes + " home battery",
|
|
location=nodes,
|
|
carrier="home battery"
|
|
)
|
|
|
|
n.madd("Store",
|
|
nodes + " home battery",
|
|
bus=nodes + " home battery",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier="home battery",
|
|
capital_cost=costs.at['home battery storage', 'fixed'],
|
|
lifetime=costs.at['battery storage', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " home battery charger",
|
|
bus0=nodes + " low voltage",
|
|
bus1=nodes + " home battery",
|
|
carrier="home battery charger",
|
|
efficiency=costs.at['battery inverter', 'efficiency']**0.5,
|
|
capital_cost=costs.at['home battery inverter', 'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " home battery discharger",
|
|
bus0=nodes + " home battery",
|
|
bus1=nodes + " low voltage",
|
|
carrier="home battery discharger",
|
|
efficiency=costs.at['battery inverter', 'efficiency']**0.5,
|
|
marginal_cost=options['marginal_cost_storage'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter', 'lifetime']
|
|
)
|
|
|
|
|
|
def insert_gas_distribution_costs(n, costs):
|
|
# TODO options?
|
|
|
|
f_costs = options['gas_distribution_grid_cost_factor']
|
|
|
|
print("Inserting gas distribution grid with investment cost factor of", f_costs)
|
|
|
|
capital_cost = costs.loc['electricity distribution grid']["fixed"] * f_costs
|
|
|
|
# gas boilers
|
|
gas_b = n.links.index[n.links.carrier.str.contains("gas boiler") &
|
|
(~n.links.carrier.str.contains("urban central"))]
|
|
n.links.loc[gas_b, "capital_cost"] += capital_cost
|
|
|
|
# micro CHPs
|
|
mchp = n.links.index[n.links.carrier.str.contains("micro gas")]
|
|
n.links.loc[mchp, "capital_cost"] += capital_cost
|
|
|
|
|
|
def add_electricity_grid_connection(n, costs):
|
|
|
|
carriers = ["onwind", "solar"]
|
|
|
|
gens = n.generators.index[n.generators.carrier.isin(carriers)]
|
|
|
|
n.generators.loc[gens, "capital_cost"] += costs.at['electricity grid connection', 'fixed']
|
|
|
|
|
|
def add_storage(n, costs):
|
|
# TODO pop_layout
|
|
# TODO options?
|
|
|
|
print("adding electricity storage")
|
|
|
|
nodes = pop_layout.index
|
|
|
|
n.add("Carrier", "H2")
|
|
|
|
n.madd("Bus",
|
|
nodes + " H2",
|
|
location=nodes,
|
|
carrier="H2"
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " H2 Electrolysis",
|
|
bus1=nodes + " H2",
|
|
bus0=nodes,
|
|
p_nom_extendable=True,
|
|
carrier="H2 Electrolysis",
|
|
efficiency=costs.at["electrolysis", "efficiency"],
|
|
capital_cost=costs.at["electrolysis", "fixed"],
|
|
lifetime=costs.at['electrolysis', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " H2 Fuel Cell",
|
|
bus0=nodes + " H2",
|
|
bus1=nodes,
|
|
p_nom_extendable=True,
|
|
carrier ="H2 Fuel Cell",
|
|
efficiency=costs.at["fuel cell", "efficiency"],
|
|
capital_cost=costs.at["fuel cell", "fixed"] * costs.at["fuel cell", "efficiency"], #NB: fixed cost is per MWel
|
|
lifetime=costs.at['fuel cell', 'lifetime']
|
|
)
|
|
|
|
cavern_nodes = pd.DataFrame()
|
|
if options['hydrogen_underground_storage']:
|
|
h2_salt_cavern_potential = pd.read_csv(snakemake.input.h2_cavern, index_col=0, squeeze=True)
|
|
h2_cavern_ct = h2_salt_cavern_potential[~h2_salt_cavern_potential.isna()]
|
|
cavern_nodes = pop_layout[pop_layout.ct.isin(h2_cavern_ct.index)]
|
|
|
|
h2_capital_cost = costs.at["hydrogen storage underground", "fixed"]
|
|
|
|
# assumptions: weight storage potential in a country by population
|
|
# TODO: fix with real geographic potentials
|
|
# convert TWh to MWh with 1e6
|
|
h2_pot = h2_cavern_ct.loc[cavern_nodes.ct]
|
|
h2_pot.index = cavern_nodes.index
|
|
h2_pot = h2_pot * cavern_nodes.fraction * 1e6
|
|
|
|
n.madd("Store",
|
|
cavern_nodes.index + " H2 Store",
|
|
bus=cavern_nodes.index + " H2",
|
|
e_nom_extendable=True,
|
|
e_nom_max=h2_pot.values,
|
|
e_cyclic=True,
|
|
carrier="H2 Store",
|
|
capital_cost=h2_capital_cost
|
|
)
|
|
|
|
# hydrogen stored overground (where not already underground)
|
|
h2_capital_cost = costs.at["hydrogen storage tank incl. compressor", "fixed"]
|
|
nodes_overground = cavern_nodes.index.symmetric_difference(nodes)
|
|
|
|
n.madd("Store",
|
|
nodes_overground + " H2 Store",
|
|
bus=nodes_overground + " H2",
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier="H2 Store",
|
|
capital_cost=h2_capital_cost
|
|
)
|
|
|
|
attrs = ["bus0", "bus1", "length"]
|
|
h2_links = pd.DataFrame(columns=attrs)
|
|
|
|
candidates = pd.concat({"lines": n.lines[attrs],
|
|
"links": n.links.loc[n.links.carrier == "DC", attrs]})
|
|
|
|
for candidate in candidates.index:
|
|
buses = [candidates.at[candidate, "bus0"], candidates.at[candidate, "bus1"]]
|
|
buses.sort()
|
|
name = f"H2 pipeline {buses[0]} -> {buses[1]}"
|
|
if name not in h2_links.index:
|
|
h2_links.at[name, "bus0"] = buses[0]
|
|
h2_links.at[name, "bus1"] = buses[1]
|
|
h2_links.at[name, "length"] = candidates.at[candidate, "length"]
|
|
|
|
# TODO Add efficiency losses
|
|
n.madd("Link",
|
|
h2_links.index,
|
|
bus0=h2_links.bus0.values + " H2",
|
|
bus1=h2_links.bus1.values + " H2",
|
|
p_min_pu=-1,
|
|
p_nom_extendable=True,
|
|
length=h2_links.length.values,
|
|
capital_cost=costs.at['H2 (g) pipeline', 'fixed'] * h2_links.length.values,
|
|
carrier="H2 pipeline",
|
|
lifetime=costs.at['H2 (g) pipeline', 'lifetime']
|
|
)
|
|
|
|
n.add("Carrier", "battery")
|
|
|
|
n.madd("Bus",
|
|
nodes + " battery",
|
|
location=nodes,
|
|
carrier="battery"
|
|
)
|
|
|
|
n.madd("Store",
|
|
nodes + " battery",
|
|
bus=nodes + " battery",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier="battery",
|
|
capital_cost=costs.at['battery storage', 'fixed'],
|
|
lifetime=costs.at['battery storage', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " battery charger",
|
|
bus0=nodes,
|
|
bus1=nodes + " battery",
|
|
carrier="battery charger",
|
|
efficiency=costs.at['battery inverter', 'efficiency']**0.5,
|
|
capital_cost=costs.at['battery inverter', 'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " battery discharger",
|
|
bus0=nodes + " battery",
|
|
bus1=nodes,
|
|
carrier="battery discharger",
|
|
efficiency=costs.at['battery inverter', 'efficiency']**0.5,
|
|
marginal_cost=options['marginal_cost_storage'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['battery inverter', 'lifetime']
|
|
)
|
|
|
|
if options['methanation']:
|
|
|
|
n.madd("Link",
|
|
nodes + " Sabatier",
|
|
bus0=nodes + " H2",
|
|
bus1="EU gas",
|
|
bus2="co2 stored",
|
|
p_nom_extendable=True,
|
|
carrier="Sabatier",
|
|
efficiency=costs.at["methanation", "efficiency"],
|
|
efficiency2=-costs.at["methanation", "efficiency"] * costs.at['gas', 'CO2 intensity'],
|
|
capital_cost=costs.at["methanation", "fixed"] * costs.at["methanation", "efficiency"], # costs given per kW_gas
|
|
lifetime=costs.at['methanation', 'lifetime']
|
|
)
|
|
|
|
if options['helmeth']:
|
|
|
|
n.madd("Link",
|
|
nodes + " helmeth",
|
|
bus0=nodes,
|
|
bus1="EU gas",
|
|
bus2="co2 stored",
|
|
carrier="helmeth",
|
|
p_nom_extendable=True,
|
|
efficiency=costs.at["helmeth", "efficiency"],
|
|
efficiency2=-costs.at["helmeth", "efficiency"] * costs.at['gas', 'CO2 intensity'],
|
|
capital_cost=costs.at["helmeth", "fixed"],
|
|
lifetime=costs.at['helmeth', 'lifetime']
|
|
)
|
|
|
|
|
|
if options['SMR']:
|
|
|
|
n.madd("Link",
|
|
nodes + " SMR CC",
|
|
bus0="EU gas",
|
|
bus1=nodes + " H2",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
p_nom_extendable=True,
|
|
carrier="SMR CC",
|
|
efficiency=costs.at["SMR CC", "efficiency"],
|
|
efficiency2=costs.at['gas', 'CO2 intensity'] * (1 - options["cc_fraction"]),
|
|
efficiency3=costs.at['gas', 'CO2 intensity'] * options["cc_fraction"],
|
|
capital_cost=costs.at["SMR CC", "fixed"],
|
|
lifetime=costs.at['SMR CC', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " SMR",
|
|
bus0="EU gas",
|
|
bus1=nodes + " H2",
|
|
bus2="co2 atmosphere",
|
|
p_nom_extendable=True,
|
|
carrier="SMR",
|
|
efficiency=costs.at["SMR", "efficiency"],
|
|
efficiency2=costs.at['gas', 'CO2 intensity'],
|
|
capital_cost=costs.at["SMR", "fixed"],
|
|
lifetime=costs.at['SMR', 'lifetime']
|
|
)
|
|
|
|
|
|
def add_land_transport(n, costs):
|
|
# TODO options?
|
|
|
|
print("adding land transport")
|
|
|
|
fuel_cell_share = get(options["land_transport_fuel_cell_share"], investment_year)
|
|
electric_share = get(options["land_transport_electric_share"], investment_year)
|
|
ice_share = 1 - fuel_cell_share - electric_share
|
|
|
|
print("FCEV share", fuel_cell_share)
|
|
print("EV share", electric_share)
|
|
print("ICEV share", ice_share)
|
|
|
|
assert ice_share >= 0, "Error, more FCEV and EV share than 1."
|
|
|
|
nodes = pop_layout.index
|
|
|
|
if electric_share > 0:
|
|
|
|
n.add("Carrier", "Li ion")
|
|
|
|
n.madd("Bus",
|
|
nodes,
|
|
location=nodes,
|
|
suffix=" EV battery",
|
|
carrier="Li ion"
|
|
)
|
|
|
|
p_set = electric_share * (transport[nodes] + cycling_shift(transport[nodes], 1) + cycling_shift(transport[nodes], 2)) / 3
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" land transport EV",
|
|
bus=nodes + " EV battery",
|
|
carrier="land transport EV",
|
|
p_set=p_set
|
|
)
|
|
|
|
|
|
p_nom = nodal_transport_data["number cars"] * options.get("bev_charge_rate", 0.011) * electric_share
|
|
|
|
n.madd("Link",
|
|
nodes,
|
|
suffix= " BEV charger",
|
|
bus0=nodes,
|
|
bus1=nodes + " EV battery",
|
|
p_nom=p_nom,
|
|
carrier="BEV charger",
|
|
p_max_pu=avail_profile[nodes],
|
|
efficiency=options.get("bev_charge_efficiency", 0.9),
|
|
#These were set non-zero to find LU infeasibility when availability = 0.25
|
|
#p_nom_extendable=True,
|
|
#p_nom_min=p_nom,
|
|
#capital_cost=1e6, #i.e. so high it only gets built where necessary
|
|
)
|
|
|
|
if electric_share > 0 and options["v2g"]:
|
|
|
|
n.madd("Link",
|
|
nodes,
|
|
suffix=" V2G",
|
|
bus1=nodes,
|
|
bus0=nodes + " EV battery",
|
|
p_nom=p_nom,
|
|
carrier="V2G",
|
|
p_max_pu=avail_profile[nodes],
|
|
efficiency=options.get("bev_charge_efficiency", 0.9),
|
|
)
|
|
|
|
if electric_share > 0 and options["bev_dsm"]:
|
|
|
|
e_nom = nodal_transport_data["number cars"] * options.get("bev_energy", 0.05) * options["bev_availability"] * electric_share
|
|
|
|
n.madd("Store",
|
|
nodes,
|
|
suffix=" battery storage",
|
|
bus=nodes + " EV battery",
|
|
carrier="battery storage",
|
|
e_cyclic=True,
|
|
e_nom=e_nom,
|
|
e_max_pu=1,
|
|
e_min_pu=dsm_profile[nodes]
|
|
)
|
|
|
|
if fuel_cell_share > 0:
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" land transport fuel cell",
|
|
bus=nodes + " H2",
|
|
carrier="land transport fuel cell",
|
|
p_set=fuel_cell_share / options['transport_fuel_cell_efficiency'] * transport[nodes]
|
|
)
|
|
|
|
if ice_share > 0:
|
|
|
|
if "EU oil" not in n.buses.index:
|
|
n.add("Bus",
|
|
"EU oil",
|
|
location="EU",
|
|
carrier="oil"
|
|
)
|
|
|
|
ice_efficiency = options['transport_internal_combustion_efficiency']
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" land transport oil",
|
|
bus="EU oil",
|
|
carrier="land transport oil",
|
|
p_set=ice_share / ice_efficiency * transport[nodes]
|
|
)
|
|
|
|
co2 = ice_share / ice_efficiency * transport[nodes].sum().sum() / 8760 * costs.at["oil", 'CO2 intensity']
|
|
|
|
n.madd("Load",
|
|
["land transport oil emissions"],
|
|
bus="co2 atmosphere",
|
|
carrier="land transport oil emissions",
|
|
p_set=-co2
|
|
)
|
|
|
|
|
|
def add_heat(n, costs):
|
|
# TODO options?
|
|
# TODO pop_layout?
|
|
|
|
print("adding heat")
|
|
|
|
sectors = ["residential", "services"]
|
|
|
|
nodes = create_nodes_for_heat_sector()
|
|
|
|
#NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
|
|
|
|
urban_fraction = options['central_fraction'] * pop_layout["urban"] / pop_layout[["urban", "rural"]].sum(axis=1)
|
|
|
|
# exogenously reduce space heat demand
|
|
if options["reduce_space_heat_exogenously"]:
|
|
dE = get(options["reduce_space_heat_exogenously_factor"], investment_year)
|
|
print(f"assumed space heat reduction of {dE*100} %")
|
|
for sector in sectors:
|
|
heat_demand[sector + " space"] = (1 - dE) * heat_demand[sector + " space"]
|
|
|
|
heat_systems = [
|
|
"residential rural",
|
|
"services rural",
|
|
"residential urban decentral",
|
|
"services urban decentral",
|
|
"urban central"
|
|
]
|
|
|
|
for name in heat_systems:
|
|
|
|
name_type = "central" if name == "urban central" else "decentral"
|
|
|
|
n.add("Carrier", name + " heat")
|
|
|
|
n.madd("Bus",
|
|
nodes[name] + f" {name} heat",
|
|
location=nodes[name],
|
|
carrier=name + " heat"
|
|
)
|
|
|
|
## Add heat load
|
|
|
|
for sector in sectors:
|
|
if "rural" in name:
|
|
factor = 1 - urban_fraction[nodes[name]]
|
|
elif "urban" in name:
|
|
factor = urban_fraction[nodes[name]]
|
|
if sector in name:
|
|
heat_load = heat_demand[[sector + " water",sector + " space"]].groupby(level=1,axis=1).sum()[nodes[name]].multiply(factor)
|
|
|
|
if name == "urban central":
|
|
heat_load = heat_demand.groupby(level=1,axis=1).sum()[nodes[name]].multiply(urban_fraction[nodes[name]] * (1 + options['district_heating_loss']))
|
|
|
|
n.madd("Load",
|
|
nodes[name],
|
|
suffix=f" {name} heat",
|
|
bus=nodes[name] + f" {name} heat",
|
|
carrier=name + " heat",
|
|
p_set=heat_load
|
|
)
|
|
|
|
## Add heat pumps
|
|
|
|
heat_pump_type = "air" if "urban" in name else "ground"
|
|
|
|
costs_name = f"{name_type} {heat_pump_type}-sourced heat pump"
|
|
cop = {"air" : ashp_cop, "ground" : gshp_cop}
|
|
efficiency = cop[heat_pump_type][nodes[name]] if options["time_dep_hp_cop"] else costs.at[costs_name, 'efficiency']
|
|
|
|
n.madd("Link",
|
|
nodes[name],
|
|
suffix=f" {name} {heat_pump_type} heat pump",
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + f" {name} heat",
|
|
carrier=f"{name} {heat_pump_type} heat pump",
|
|
efficiency=efficiency,
|
|
capital_cost=costs.at[costs_name, 'efficiency'] * costs.at[costs_name, 'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at[costs_name, 'lifetime']
|
|
)
|
|
|
|
if options["tes"]:
|
|
|
|
n.add("Carrier", name + " water tanks")
|
|
|
|
n.madd("Bus",
|
|
nodes[name] + f" {name} water tanks",
|
|
location=nodes[name],
|
|
carrier=name + " water tanks"
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes[name] + f" {name} water tanks charger",
|
|
bus0=nodes[name] + f" {name} heat",
|
|
bus1=nodes[name] + f" {name} water tanks",
|
|
efficiency=costs.at['water tank charger', 'efficiency'],
|
|
carrier=name + " water tanks charger",
|
|
p_nom_extendable=True
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes[name] + f" {name} water tanks discharger",
|
|
bus0=nodes[name] + f" {name} water tanks",
|
|
bus1=nodes[name] + f" {name} heat",
|
|
carrier=name + " water tanks discharger",
|
|
efficiency=costs.at['water tank discharger', 'efficiency'],
|
|
p_nom_extendable=True
|
|
)
|
|
|
|
|
|
if isinstance(options["tes_tau"], dict):
|
|
tes_time_constant_days = options["tes_tau"][name_type]
|
|
else:
|
|
logger.warning("Deprecated: a future version will require you to specify 'tes_tau' ",
|
|
"for 'decentral' and 'central' separately.")
|
|
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
|
|
|
|
# conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
|
|
capital_cost = costs.at[name_type + ' water tank storage', 'fixed'] / 0.00117 / 40
|
|
|
|
n.madd("Store",
|
|
nodes[name] + f" {name} water tanks",
|
|
bus=nodes[name] + f" {name} water tanks",
|
|
e_cyclic=True,
|
|
e_nom_extendable=True,
|
|
carrier=name + " water tanks",
|
|
standing_loss=1 - np.exp(- 1 / 24 / tes_time_constant_days),
|
|
capital_cost=capital_cost,
|
|
lifetime=costs.at[name_type + ' water tank storage', 'lifetime']
|
|
)
|
|
|
|
if options["boilers"]:
|
|
|
|
key = f"{name_type} resistive heater"
|
|
|
|
n.madd("Link",
|
|
nodes[name] + f" {name} resistive heater",
|
|
bus0=nodes[name],
|
|
bus1=nodes[name] + f" {name} heat",
|
|
carrier=name + " resistive heater",
|
|
efficiency=costs.at[key, 'efficiency'],
|
|
capital_cost=costs.at[key, 'efficiency'] * costs.at[key, 'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at[key, 'lifetime']
|
|
)
|
|
|
|
key = f"{name_type} gas boiler"
|
|
|
|
n.madd("Link",
|
|
nodes[name] + f" {name} gas boiler",
|
|
p_nom_extendable=True,
|
|
bus0="EU gas",
|
|
bus1=nodes[name] + f" {name} heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=name + " gas boiler",
|
|
efficiency=costs.at[key, 'efficiency'],
|
|
efficiency2=costs.at['gas', 'CO2 intensity'],
|
|
capital_cost=costs.at[key, 'efficiency'] * costs.at[key, 'fixed'],
|
|
lifetime=costs.at[key, 'lifetime']
|
|
)
|
|
|
|
if options["solar_thermal"]:
|
|
|
|
n.add("Carrier", name + " solar thermal")
|
|
|
|
n.madd("Generator",
|
|
nodes[name],
|
|
suffix=f" {name} solar thermal collector",
|
|
bus=nodes[name] + f" {name} heat",
|
|
carrier=name + " solar thermal",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at[name_type + ' solar thermal', 'fixed'],
|
|
p_max_pu=solar_thermal[nodes[name]],
|
|
lifetime=costs.at[name_type + ' solar thermal', 'lifetime']
|
|
)
|
|
|
|
if options["chp"] and name == "urban central":
|
|
|
|
# add gas CHP; biomass CHP is added in biomass section
|
|
n.madd("Link",
|
|
nodes[name] + " urban central gas CHP",
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2=nodes[name] + " urban central heat",
|
|
bus3="co2 atmosphere",
|
|
carrier="urban central gas CHP",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central gas CHP', 'fixed'] * costs.at['central gas CHP', 'efficiency'],
|
|
marginal_cost=costs.at['central gas CHP', 'VOM'],
|
|
efficiency=costs.at['central gas CHP', 'efficiency'],
|
|
efficiency2=costs.at['central gas CHP', 'efficiency'] / costs.at['central gas CHP', 'c_b'],
|
|
efficiency3=costs.at['gas', 'CO2 intensity'],
|
|
lifetime=costs.at['central gas CHP', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes[name] + " urban central gas CHP CC",
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2=nodes[name] + " urban central heat",
|
|
bus3="co2 atmosphere",
|
|
bus4="co2 stored",
|
|
carrier="urban central gas CHP CC",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at['central gas CHP', 'fixed']*costs.at['central gas CHP', 'efficiency'] + costs.at['biomass CHP capture', 'fixed']*costs.at['gas', 'CO2 intensity'],
|
|
marginal_cost=costs.at['central gas CHP', 'VOM'],
|
|
efficiency=costs.at['central gas CHP', 'efficiency'] - costs.at['gas', 'CO2 intensity'] * (costs.at['biomass CHP capture', 'electricity-input'] + costs.at['biomass CHP capture', 'compression-electricity-input']),
|
|
efficiency2=costs.at['central gas CHP', 'efficiency'] / costs.at['central gas CHP', 'c_b'] + costs.at['gas', 'CO2 intensity'] * (costs.at['biomass CHP capture', 'heat-output'] + costs.at['biomass CHP capture', 'compression-heat-output'] - costs.at['biomass CHP capture', 'heat-input']),
|
|
efficiency3=costs.at['gas', 'CO2 intensity'] * (1-costs.at['biomass CHP capture', 'capture_rate']),
|
|
efficiency4=costs.at['gas', 'CO2 intensity'] * costs.at['biomass CHP capture', 'capture_rate'],
|
|
lifetime=costs.at['central gas CHP', 'lifetime']
|
|
)
|
|
|
|
if options["chp"] and options["micro_chp"] and name != "urban central":
|
|
|
|
n.madd("Link",
|
|
nodes[name] + f" {name} micro gas CHP",
|
|
p_nom_extendable=True,
|
|
bus0="EU gas",
|
|
bus1=nodes[name],
|
|
bus2=nodes[name] + f" {name} heat",
|
|
bus3="co2 atmosphere",
|
|
carrier=name + " micro gas CHP",
|
|
efficiency=costs.at['micro CHP', 'efficiency'],
|
|
efficiency2=costs.at['micro CHP', 'efficiency-heat'],
|
|
efficiency3=costs.at['gas', 'CO2 intensity'],
|
|
capital_cost=costs.at['micro CHP', 'fixed'],
|
|
lifetime=costs.at['micro CHP', 'lifetime']
|
|
)
|
|
|
|
|
|
if options['retrofitting']['retro_endogen']:
|
|
|
|
print("adding retrofitting endogenously")
|
|
|
|
# resample heat demand temporal 'heat_demand_r' depending on in config
|
|
# specified temporal resolution, to not overestimate retrofitting
|
|
hours = list(filter(re.compile(r'^\d+h$', re.IGNORECASE).search, opts))
|
|
if len(hours)==0:
|
|
hours = [n.snapshots[1] - n.snapshots[0]]
|
|
heat_demand_r = heat_demand.resample(hours[0]).mean()
|
|
|
|
# retrofitting data 'retro_data' with 'costs' [EUR/m^2] and heat
|
|
# demand 'dE' [per unit of original heat demand] for each country and
|
|
# different retrofitting strengths [additional insulation thickness in m]
|
|
retro_data = pd.read_csv(snakemake.input.retro_cost_energy,
|
|
index_col=[0, 1], skipinitialspace=True,
|
|
header=[0, 1])
|
|
# heated floor area [10^6 * m^2] per country
|
|
floor_area = pd.read_csv(snakemake.input.floor_area, index_col=[0, 1])
|
|
|
|
n.add("Carrier", "retrofitting")
|
|
|
|
# share of space heat demand 'w_space' of total heat demand
|
|
w_space = {}
|
|
for sector in sectors:
|
|
w_space[sector] = heat_demand_r[sector + " space"] / \
|
|
(heat_demand_r[sector + " space"] + heat_demand_r[sector + " water"])
|
|
w_space["tot"] = ((heat_demand_r["services space"] +
|
|
heat_demand_r["residential space"]) /
|
|
heat_demand_r.groupby(level=[1], axis=1).sum())
|
|
|
|
|
|
for name in n.loads[n.loads.carrier.isin([x + " heat" for x in heat_systems])].index:
|
|
|
|
node = n.buses.loc[name, "location"]
|
|
ct = pop_layout.loc[node, "ct"]
|
|
|
|
# weighting 'f' depending on the size of the population at the node
|
|
f = urban_fraction[node] if "urban" in name else (1-urban_fraction[node])
|
|
if f == 0:
|
|
continue
|
|
# get sector name ("residential"/"services"/or both "tot" for urban central)
|
|
sec = [x if x in name else "tot" for x in sectors][0]
|
|
|
|
# get floor aread at node and region (urban/rural) in m^2
|
|
floor_area_node = ((pop_layout.loc[node].fraction
|
|
* floor_area.loc[ct, "value"] * 10**6).loc[sec] * f)
|
|
# total heat demand at node [MWh]
|
|
demand = (n.loads_t.p_set[name].resample(hours[0])
|
|
.mean())
|
|
|
|
# space heat demand at node [MWh]
|
|
space_heat_demand = demand * w_space[sec][node]
|
|
# normed time profile of space heat demand 'space_pu' (values between 0-1),
|
|
# p_max_pu/p_min_pu of retrofitting generators
|
|
space_pu = (space_heat_demand / space_heat_demand.max()).to_frame(name=node)
|
|
|
|
# minimum heat demand 'dE' after retrofitting in units of original heat demand (values between 0-1)
|
|
dE = retro_data.loc[(ct, sec), ("dE")]
|
|
# get addtional energy savings 'dE_diff' between the different retrofitting strengths/generators at one node
|
|
dE_diff = abs(dE.diff()).fillna(1-dE.iloc[0])
|
|
# convert costs Euro/m^2 -> Euro/MWh
|
|
capital_cost = retro_data.loc[(ct, sec), ("cost")] * floor_area_node / \
|
|
((1 - dE) * space_heat_demand.max())
|
|
# number of possible retrofitting measures 'strengths' (set in list at config.yaml 'l_strength')
|
|
# given in additional insulation thickness [m]
|
|
# for each measure, a retrofitting generator is added at the node
|
|
strengths = retro_data.columns.levels[1]
|
|
|
|
# check that ambitious retrofitting has higher costs per MWh than moderate retrofitting
|
|
if (capital_cost.diff() < 0).sum():
|
|
print(f"Warning: costs are not linear for {ct} {sec}")
|
|
s = capital_cost[(capital_cost.diff() < 0)].index
|
|
strengths = strengths.drop(s)
|
|
|
|
# reindex normed time profile of space heat demand back to hourly resolution
|
|
space_pu = space_pu.reindex(index=heat_demand.index).fillna(method="ffill")
|
|
|
|
# add for each retrofitting strength a generator with heat generation profile following the profile of the heat demand
|
|
for strength in strengths:
|
|
n.madd('Generator',
|
|
[node],
|
|
suffix=' retrofitting ' + strength + " " + name[6::],
|
|
bus=name,
|
|
carrier="retrofitting",
|
|
p_nom_extendable=True,
|
|
p_nom_max=dE_diff[strength] * space_heat_demand.max(), # maximum energy savings for this renovation strength
|
|
p_max_pu=space_pu,
|
|
p_min_pu=space_pu,
|
|
country=ct,
|
|
capital_cost=capital_cost[strength] * options['retrofitting']['cost_factor']
|
|
)
|
|
|
|
|
|
def create_nodes_for_heat_sector():
|
|
# TODO pop_layout
|
|
|
|
# rural are areas with low heating density and individual heating
|
|
# urban are areas with high heating density
|
|
# urban can be split into district heating (central) and individual heating (decentral)
|
|
|
|
sectors = ["residential", "services"]
|
|
|
|
nodes = {}
|
|
for sector in sectors:
|
|
nodes[sector + " rural"] = pop_layout.index
|
|
|
|
if options["central"]:
|
|
# TODO: this looks hardcoded, move to config
|
|
urban_decentral_ct = pd.Index(["ES", "GR", "PT", "IT", "BG"])
|
|
nodes[sector + " urban decentral"] = pop_layout.index[pop_layout.ct.isin(urban_decentral_ct)]
|
|
else:
|
|
nodes[sector + " urban decentral"] = pop_layout.index
|
|
|
|
# for central nodes, residential and services are aggregated
|
|
nodes["urban central"] = pop_layout.index.symmetric_difference(nodes["residential urban decentral"])
|
|
|
|
return nodes
|
|
|
|
|
|
def add_biomass(n, costs):
|
|
|
|
print("adding biomass")
|
|
|
|
# biomass distributed at country level - i.e. transport within country allowed
|
|
countries = n.buses.country.dropna().unique()
|
|
|
|
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
|
|
|
|
transport_costs = pd.read_csv(
|
|
snakemake.input.biomass_transport_costs,
|
|
index_col=0,
|
|
squeeze=True
|
|
)
|
|
|
|
# potential per node distributed within country by population
|
|
biomass_pot_node = (biomass_potentials.loc[pop_layout.ct]
|
|
.set_index(pop_layout.index)
|
|
.mul(pop_layout.fraction, axis="index"))
|
|
|
|
n.add("Carrier", "biogas")
|
|
n.add("Carrier", "solid biomass")
|
|
|
|
n.add("Bus",
|
|
"EU biogas",
|
|
location="EU",
|
|
carrier="biogas"
|
|
)
|
|
|
|
n.madd("Bus",
|
|
spatial.biomass.nodes,
|
|
location=spatial.biomass.locations,
|
|
carrier="solid biomass"
|
|
)
|
|
|
|
n.add("Store",
|
|
"EU biogas",
|
|
bus="EU biogas",
|
|
carrier="biogas",
|
|
e_nom=biomass_potentials.loc[countries, "biogas"].sum(),
|
|
marginal_cost=costs.at['biogas', 'fuel'],
|
|
e_initial=biomass_potentials.loc[countries, "biogas"].sum()
|
|
)
|
|
|
|
n.madd("Store",
|
|
spatial.biomass.nodes,
|
|
bus=spatial.biomass.nodes,
|
|
carrier="solid biomass",
|
|
e_nom=biomass_pot_node["solid biomass"].values,
|
|
marginal_cost=costs.at['solid biomass', 'fuel'],
|
|
e_initial=biomass_pot_node["solid biomass"].values
|
|
)
|
|
|
|
n.add("Link",
|
|
"biogas to gas",
|
|
bus0="EU biogas",
|
|
bus1="EU gas",
|
|
bus2="co2 atmosphere",
|
|
carrier="biogas to gas",
|
|
capital_cost=costs.loc["biogas upgrading", "fixed"],
|
|
marginal_cost=costs.loc["biogas upgrading", "VOM"],
|
|
efficiency2=-costs.at['gas', 'CO2 intensity'],
|
|
p_nom_extendable=True
|
|
)
|
|
|
|
if options["biomass_transport"]:
|
|
|
|
# add biomass transport
|
|
biomass_transport = create_network_topology(n, "biomass transport ", bidirectional=False)
|
|
|
|
# costs
|
|
bus0_costs = biomass_transport.bus0.apply(lambda x: transport_costs[x[:2]])
|
|
bus1_costs = biomass_transport.bus1.apply(lambda x: transport_costs[x[:2]])
|
|
biomass_transport["costs"] = pd.concat([bus0_costs, bus1_costs], axis=1).mean(axis=1)
|
|
|
|
n.madd("Link",
|
|
biomass_transport.index,
|
|
bus0=biomass_transport.bus0 + " solid biomass",
|
|
bus1=biomass_transport.bus1 + " solid biomass",
|
|
p_nom_extendable=True,
|
|
length=biomass_transport.length.values,
|
|
marginal_cost=biomass_transport.costs * biomass_transport.length.values,
|
|
capital_cost=1,
|
|
carrier="solid biomass transport"
|
|
)
|
|
|
|
#AC buses with district heating
|
|
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
|
if not urban_central.empty and options["chp"]:
|
|
urban_central = urban_central.str[:-len(" urban central heat")]
|
|
|
|
key = 'central solid biomass CHP'
|
|
|
|
n.madd("Link",
|
|
urban_central + " urban central solid biomass CHP",
|
|
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
|
bus1=urban_central,
|
|
bus2=urban_central + " urban central heat",
|
|
carrier="urban central solid biomass CHP",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'],
|
|
marginal_cost=costs.at[key, 'VOM'],
|
|
efficiency=costs.at[key, 'efficiency'],
|
|
efficiency2=costs.at[key, 'efficiency-heat'],
|
|
lifetime=costs.at[key, 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
urban_central + " urban central solid biomass CHP CC",
|
|
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
|
bus1=urban_central,
|
|
bus2=urban_central + " urban central heat",
|
|
bus3="co2 atmosphere",
|
|
bus4="co2 stored",
|
|
carrier="urban central solid biomass CHP CC",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'] + costs.at['biomass CHP capture', 'fixed'] * costs.at['solid biomass', 'CO2 intensity'],
|
|
marginal_cost=costs.at[key, 'VOM'],
|
|
efficiency=costs.at[key, 'efficiency'] - costs.at['solid biomass', 'CO2 intensity'] * (costs.at['biomass CHP capture', 'electricity-input'] + costs.at['biomass CHP capture', 'compression-electricity-input']),
|
|
efficiency2=costs.at[key, 'efficiency-heat'] + costs.at['solid biomass', 'CO2 intensity'] * (costs.at['biomass CHP capture', 'heat-output'] + costs.at['biomass CHP capture', 'compression-heat-output'] - costs.at['biomass CHP capture', 'heat-input']),
|
|
efficiency3=-costs.at['solid biomass', 'CO2 intensity'] * costs.at['biomass CHP capture', 'capture_rate'],
|
|
efficiency4=costs.at['solid biomass', 'CO2 intensity'] * costs.at['biomass CHP capture', 'capture_rate'],
|
|
lifetime=costs.at[key, 'lifetime']
|
|
)
|
|
|
|
|
|
def add_industry(n, costs):
|
|
|
|
print("adding industrial demand")
|
|
|
|
nodes = pop_layout.index
|
|
|
|
# 1e6 to convert TWh to MWh
|
|
industrial_demand = pd.read_csv(snakemake.input.industrial_demand, index_col=0) * 1e6
|
|
|
|
n.madd("Bus",
|
|
spatial.biomass.df.loc[industrial_demand.index, "industry"].values,
|
|
location=spatial.biomass.df.loc[industrial_demand.index, "locations"].values,
|
|
carrier="solid biomass for industry"
|
|
)
|
|
|
|
p_set = industrial_demand["solid biomass"].rename(index=lambda x: x + " solid biomass for industry") / 8760
|
|
|
|
n.madd("Load",
|
|
spatial.biomass.df.loc[industrial_demand.index, "industry"].values,
|
|
bus=spatial.biomass.df.loc[industrial_demand.index, "industry"].values,
|
|
carrier="solid biomass for industry",
|
|
p_set=p_set
|
|
)
|
|
|
|
n.madd("Link",
|
|
spatial.biomass.df.loc[industrial_demand.index, "industry"].values,
|
|
bus0=spatial.biomass.df.loc[industrial_demand.index, "nodes"].values,
|
|
bus1=spatial.biomass.df.loc[industrial_demand.index, "industry"].values,
|
|
carrier="solid biomass for industry",
|
|
p_nom_extendable=True,
|
|
efficiency=1.
|
|
)
|
|
|
|
n.madd("Link",
|
|
spatial.biomass.df.loc[industrial_demand.index, "industry_cc"].values,
|
|
bus0=spatial.biomass.df.loc[industrial_demand.index, "nodes"].values,
|
|
bus1=spatial.biomass.df.loc[industrial_demand.index, "industry_cc"].values,
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="solid biomass for industry CC",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["cement capture", "fixed"] * costs.at['solid biomass', 'CO2 intensity'],
|
|
efficiency=0.9, # TODO: make config option
|
|
efficiency2=-costs.at['solid biomass', 'CO2 intensity'] * costs.at["cement capture", "capture_rate"],
|
|
efficiency3=costs.at['solid biomass', 'CO2 intensity'] * costs.at["cement capture", "capture_rate"],
|
|
lifetime=costs.at['cement capture', 'lifetime']
|
|
)
|
|
|
|
n.add("Bus",
|
|
"gas for industry",
|
|
location="EU",
|
|
carrier="gas for industry")
|
|
|
|
n.add("Load",
|
|
"gas for industry",
|
|
bus="gas for industry",
|
|
carrier="gas for industry",
|
|
p_set=industrial_demand.loc[nodes, "methane"].sum() / 8760
|
|
)
|
|
|
|
n.add("Link",
|
|
"gas for industry",
|
|
bus0="EU gas",
|
|
bus1="gas for industry",
|
|
bus2="co2 atmosphere",
|
|
carrier="gas for industry",
|
|
p_nom_extendable=True,
|
|
efficiency=1.,
|
|
efficiency2=costs.at['gas', 'CO2 intensity']
|
|
)
|
|
|
|
n.add("Link",
|
|
"gas for industry CC",
|
|
bus0="EU gas",
|
|
bus1="gas for industry",
|
|
bus2="co2 atmosphere",
|
|
bus3="co2 stored",
|
|
carrier="gas for industry CC",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["cement capture", "fixed"] * costs.at['gas', 'CO2 intensity'],
|
|
efficiency=0.9,
|
|
efficiency2=costs.at['gas', 'CO2 intensity'] * (1 - costs.at["cement capture", "capture_rate"]),
|
|
efficiency3=costs.at['gas', 'CO2 intensity'] * costs.at["cement capture", "capture_rate"],
|
|
lifetime=costs.at['cement capture', 'lifetime']
|
|
)
|
|
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" H2 for industry",
|
|
bus=nodes + " H2",
|
|
carrier="H2 for industry",
|
|
p_set=industrial_demand.loc[nodes, "hydrogen"] / 8760
|
|
)
|
|
|
|
if options["shipping_hydrogen_liquefaction"]:
|
|
|
|
n.madd("Bus",
|
|
nodes,
|
|
suffix=" H2 liquid",
|
|
carrier="H2 liquid",
|
|
location=nodes
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " H2 liquefaction",
|
|
bus0=nodes + " H2",
|
|
bus1=nodes + " H2 liquid",
|
|
carrier="H2 liquefaction",
|
|
efficiency=costs.at["H2 liquefaction", 'efficiency'],
|
|
capital_cost=costs.at["H2 liquefaction", 'fixed'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['H2 liquefaction', 'lifetime']
|
|
)
|
|
|
|
shipping_bus = nodes + " H2 liquid"
|
|
else:
|
|
shipping_bus = nodes + " H2"
|
|
|
|
all_navigation = ["total international navigation", "total domestic navigation"]
|
|
efficiency = options['shipping_average_efficiency'] / costs.at["fuel cell", "efficiency"]
|
|
shipping_hydrogen_share = get(options['shipping_hydrogen_share'], investment_year)
|
|
p_set = shipping_hydrogen_share * nodal_energy_totals.loc[nodes, all_navigation].sum(axis=1) * 1e6 * efficiency / 8760
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" H2 for shipping",
|
|
bus=shipping_bus,
|
|
carrier="H2 for shipping",
|
|
p_set=p_set
|
|
)
|
|
|
|
if shipping_hydrogen_share < 1:
|
|
|
|
shipping_oil_share = 1 - shipping_hydrogen_share
|
|
|
|
p_set = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum(axis=1) * 1e6 / 8760.
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" shipping oil",
|
|
bus="EU oil",
|
|
carrier="shipping oil",
|
|
p_set=p_set
|
|
)
|
|
|
|
co2 = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum().sum() * 1e6 / 8760 * costs.at["oil", "CO2 intensity"]
|
|
|
|
n.add("Load",
|
|
"shipping oil emissions",
|
|
bus="co2 atmosphere",
|
|
carrier="shipping oil emissions",
|
|
p_set=-co2
|
|
)
|
|
|
|
if "EU oil" not in n.buses.index:
|
|
|
|
n.add("Bus",
|
|
"EU oil",
|
|
location="EU",
|
|
carrier="oil"
|
|
)
|
|
|
|
if "EU oil Store" not in n.stores.index:
|
|
|
|
#could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
|
n.add("Store",
|
|
"EU oil Store",
|
|
bus="EU oil",
|
|
e_nom_extendable=True,
|
|
e_cyclic=True,
|
|
carrier="oil",
|
|
)
|
|
|
|
if "EU oil" not in n.generators.index:
|
|
|
|
n.add("Generator",
|
|
"EU oil",
|
|
bus="EU oil",
|
|
p_nom_extendable=True,
|
|
carrier="oil",
|
|
marginal_cost=costs.at["oil", 'fuel']
|
|
)
|
|
|
|
if options["oil_boilers"]:
|
|
|
|
nodes_heat = create_nodes_for_heat_sector()
|
|
|
|
for name in ["residential rural", "services rural", "residential urban decentral", "services urban decentral"]:
|
|
|
|
n.madd("Link",
|
|
nodes_heat[name] + f" {name} oil boiler",
|
|
p_nom_extendable=True,
|
|
bus0="EU oil",
|
|
bus1=nodes_heat[name] + f" {name} heat",
|
|
bus2="co2 atmosphere",
|
|
carrier=f"{name} oil boiler",
|
|
efficiency=costs.at['decentral oil boiler', 'efficiency'],
|
|
efficiency2=costs.at['oil', 'CO2 intensity'],
|
|
capital_cost=costs.at['decentral oil boiler', 'efficiency'] * costs.at['decentral oil boiler', 'fixed'],
|
|
lifetime=costs.at['decentral oil boiler', 'lifetime']
|
|
)
|
|
|
|
n.madd("Link",
|
|
nodes + " Fischer-Tropsch",
|
|
bus0=nodes + " H2",
|
|
bus1="EU oil",
|
|
bus2="co2 stored",
|
|
carrier="Fischer-Tropsch",
|
|
efficiency=costs.at["Fischer-Tropsch", 'efficiency'],
|
|
capital_cost=costs.at["Fischer-Tropsch", 'fixed'],
|
|
efficiency2=-costs.at["oil", 'CO2 intensity'] * costs.at["Fischer-Tropsch", 'efficiency'],
|
|
p_nom_extendable=True,
|
|
lifetime=costs.at['Fischer-Tropsch', 'lifetime']
|
|
)
|
|
|
|
n.add("Load",
|
|
"naphtha for industry",
|
|
bus="EU oil",
|
|
carrier="naphtha for industry",
|
|
p_set=industrial_demand.loc[nodes, "naphtha"].sum() / 8760
|
|
)
|
|
|
|
all_aviation = ["total international aviation", "total domestic aviation"]
|
|
p_set = nodal_energy_totals.loc[nodes, all_aviation].sum(axis=1).sum() * 1e6 / 8760
|
|
|
|
n.add("Load",
|
|
"kerosene for aviation",
|
|
bus="EU oil",
|
|
carrier="kerosene for aviation",
|
|
p_set=p_set
|
|
)
|
|
|
|
#NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned
|
|
#except for the process emissions when naphtha is used for petrochemicals, which can be captured with other industry process emissions
|
|
#tco2 per hour
|
|
co2_release = ["naphtha for industry", "kerosene for aviation"]
|
|
co2 = n.loads.loc[co2_release, "p_set"].sum() * costs.at["oil", 'CO2 intensity'] - industrial_demand.loc[nodes, "process emission from feedstock"].sum() / 8760
|
|
|
|
n.add("Load",
|
|
"oil emissions",
|
|
bus="co2 atmosphere",
|
|
carrier="oil emissions",
|
|
p_set=-co2
|
|
)
|
|
|
|
# TODO simplify bus expression
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" low-temperature heat for industry",
|
|
bus=[node + " urban central heat" if node + " urban central heat" in n.buses.index else node + " services urban decentral heat" for node in nodes],
|
|
carrier="low-temperature heat for industry",
|
|
p_set=industrial_demand.loc[nodes, "low-temperature heat"] / 8760
|
|
)
|
|
|
|
# remove today's industrial electricity demand by scaling down total electricity demand
|
|
for ct in n.buses.country.dropna().unique():
|
|
# TODO map onto n.bus.country
|
|
loads_i = n.loads.index[(n.loads.index.str[:2] == ct) & (n.loads.carrier == "electricity")]
|
|
if n.loads_t.p_set[loads_i].empty: continue
|
|
factor = 1 - industrial_demand.loc[loads_i, "current electricity"].sum() / n.loads_t.p_set[loads_i].sum().sum()
|
|
n.loads_t.p_set[loads_i] *= factor
|
|
|
|
n.madd("Load",
|
|
nodes,
|
|
suffix=" industry electricity",
|
|
bus=nodes,
|
|
carrier="industry electricity",
|
|
p_set=industrial_demand.loc[nodes, "electricity"] / 8760
|
|
)
|
|
|
|
n.add("Bus",
|
|
"process emissions",
|
|
location="EU",
|
|
carrier="process emissions"
|
|
)
|
|
|
|
# this should be process emissions fossil+feedstock
|
|
# then need load on atmosphere for feedstock emissions that are currently going to atmosphere via Link Fischer-Tropsch demand
|
|
n.add("Load",
|
|
"process emissions",
|
|
bus="process emissions",
|
|
carrier="process emissions",
|
|
p_set=-industrial_demand.loc[nodes,["process emission", "process emission from feedstock"]].sum(axis=1).sum() / 8760
|
|
)
|
|
|
|
n.add("Link",
|
|
"process emissions",
|
|
bus0="process emissions",
|
|
bus1="co2 atmosphere",
|
|
carrier="process emissions",
|
|
p_nom_extendable=True,
|
|
efficiency=1.
|
|
)
|
|
|
|
#assume enough local waste heat for CC
|
|
n.add("Link",
|
|
"process emissions CC",
|
|
bus0="process emissions",
|
|
bus1="co2 atmosphere",
|
|
bus2="co2 stored",
|
|
carrier="process emissions CC",
|
|
p_nom_extendable=True,
|
|
capital_cost=costs.at["cement capture", "fixed"],
|
|
efficiency=1 - costs.at["cement capture", "capture_rate"],
|
|
efficiency2=costs.at["cement capture", "capture_rate"],
|
|
lifetime=costs.at['cement capture', 'lifetime']
|
|
)
|
|
|
|
|
|
def add_waste_heat(n):
|
|
# TODO options?
|
|
|
|
print("adding possibility to use industrial waste heat in district heating")
|
|
|
|
#AC buses with district heating
|
|
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
|
if not urban_central.empty:
|
|
urban_central = urban_central.str[:-len(" urban central heat")]
|
|
|
|
# TODO what is the 0.95 and should it be a config option?
|
|
if options['use_fischer_tropsch_waste_heat']:
|
|
n.links.loc[urban_central + " Fischer-Tropsch", "bus3"] = urban_central + " urban central heat"
|
|
n.links.loc[urban_central + " Fischer-Tropsch", "efficiency3"] = 0.95 - n.links.loc[urban_central + " Fischer-Tropsch", "efficiency"]
|
|
|
|
if options['use_fuel_cell_waste_heat']:
|
|
n.links.loc[urban_central + " H2 Fuel Cell", "bus2"] = urban_central + " urban central heat"
|
|
n.links.loc[urban_central + " H2 Fuel Cell", "efficiency2"] = 0.95 - n.links.loc[urban_central + " H2 Fuel Cell", "efficiency"]
|
|
|
|
|
|
def decentral(n):
|
|
"""Removes the electricity transmission system."""
|
|
n.lines.drop(n.lines.index, inplace=True)
|
|
n.links.drop(n.links.index[n.links.carrier.isin(["DC", "B2B"])], inplace=True)
|
|
|
|
|
|
def remove_h2_network(n):
|
|
|
|
n.links.drop(n.links.index[n.links.carrier == "H2 pipeline"], inplace=True)
|
|
|
|
if "EU H2 Store" in n.stores.index:
|
|
n.stores.drop("EU H2 Store", inplace=True)
|
|
|
|
|
|
def maybe_adjust_costs_and_potentials(n, opts):
|
|
|
|
for o in opts:
|
|
if "+" not in o: continue
|
|
oo = o.split("+")
|
|
carrier_list = np.hstack((n.generators.carrier.unique(), n.links.carrier.unique(),
|
|
n.stores.carrier.unique(), n.storage_units.carrier.unique()))
|
|
suptechs = map(lambda c: c.split("-", 2)[0], carrier_list)
|
|
if oo[0].startswith(tuple(suptechs)):
|
|
carrier = oo[0]
|
|
attr_lookup = {"p": "p_nom_max", "e": "e_nom_max", "c": "capital_cost"}
|
|
attr = attr_lookup[oo[1][0]]
|
|
factor = float(oo[1][1:])
|
|
#beware if factor is 0 and p_nom_max is np.inf, 0*np.inf is nan
|
|
if carrier == "AC": # lines do not have carrier
|
|
n.lines[attr] *= factor
|
|
else:
|
|
if attr == 'p_nom_max':
|
|
comps = {"Generator", "Link", "StorageUnit"}
|
|
elif attr == 'e_nom_max':
|
|
comps = {"Store"}
|
|
else:
|
|
comps = {"Generator", "Link", "StorageUnit", "Store"}
|
|
for c in n.iterate_components(comps):
|
|
if carrier=='solar':
|
|
sel = c.df.carrier.str.contains(carrier) & ~c.df.carrier.str.contains("solar rooftop")
|
|
else:
|
|
sel = c.df.carrier.str.contains(carrier)
|
|
c.df.loc[sel,attr] *= factor
|
|
print("changing", attr , "for", carrier, "by factor", factor)
|
|
|
|
|
|
# TODO this should rather be a config no wildcard
|
|
def limit_individual_line_extension(n, maxext):
|
|
print(f"limiting new HVAC and HVDC extensions to {maxext} MW")
|
|
n.lines['s_nom_max'] = n.lines['s_nom'] + maxext
|
|
hvdc = n.links.index[n.links.carrier == 'DC']
|
|
n.links.loc[hvdc, 'p_nom_max'] = n.links.loc[hvdc, 'p_nom'] + maxext
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if 'snakemake' not in globals():
|
|
from helper import mock_snakemake
|
|
snakemake = mock_snakemake(
|
|
'prepare_sector_network',
|
|
simpl='',
|
|
clusters=48,
|
|
lv=1.0,
|
|
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
|
planning_horizons=2020,
|
|
)
|
|
|
|
logging.basicConfig(level=snakemake.config['logging_level'])
|
|
|
|
options = snakemake.config["sector"]
|
|
|
|
opts = snakemake.wildcards.sector_opts.split('-')
|
|
|
|
investment_year = int(snakemake.wildcards.planning_horizons[-4:])
|
|
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
|
|
|
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
|
Nyears = n.snapshot_weightings.generators.sum() / 8760
|
|
|
|
costs = prepare_costs(snakemake.input.costs,
|
|
snakemake.config['costs']['USD2013_to_EUR2013'],
|
|
snakemake.config['costs']['discountrate'],
|
|
Nyears,
|
|
snakemake.config['costs']['lifetime'])
|
|
|
|
patch_electricity_network(n)
|
|
|
|
define_spatial(pop_layout.index)
|
|
|
|
if snakemake.config["foresight"] == 'myopic':
|
|
|
|
add_lifetime_wind_solar(n, costs)
|
|
|
|
conventional = snakemake.config['existing_capacities']['conventional_carriers']
|
|
add_carrier_buses(n, conventional)
|
|
|
|
add_co2_tracking(n, options)
|
|
|
|
add_generation(n, costs)
|
|
|
|
add_storage(n, costs)
|
|
|
|
# TODO merge with opts cost adjustment below
|
|
for o in opts:
|
|
if o[:4] == "wave":
|
|
wave_cost_factor = float(o[4:].replace("p", ".").replace("m", "-"))
|
|
print("Including wave generators with cost factor of", wave_cost_factor)
|
|
add_wave(n, wave_cost_factor)
|
|
if o[:4] == "dist":
|
|
options['electricity_distribution_grid'] = True
|
|
options['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p", ".").replace("m", "-"))
|
|
if o == "biomasstransport":
|
|
options["biomass_transport"] = True
|
|
|
|
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data = prepare_data(n)
|
|
|
|
if "nodistrict" in opts:
|
|
options["central"] = False
|
|
|
|
if "T" in opts:
|
|
add_land_transport(n, costs)
|
|
|
|
if "H" in opts:
|
|
add_heat(n, costs)
|
|
|
|
if "B" in opts:
|
|
add_biomass(n, costs)
|
|
|
|
if "I" in opts:
|
|
add_industry(n, costs)
|
|
|
|
if "I" in opts and "H" in opts:
|
|
add_waste_heat(n)
|
|
|
|
if options['dac']:
|
|
add_dac(n, costs)
|
|
|
|
if "decentral" in opts:
|
|
decentral(n)
|
|
|
|
if "noH2network" in opts:
|
|
remove_h2_network(n)
|
|
|
|
for o in opts:
|
|
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
|
if m is not None:
|
|
n = average_every_nhours(n, m.group(0))
|
|
break
|
|
|
|
limit_type = "config"
|
|
limit = get(snakemake.config["co2_budget"], investment_year)
|
|
for o in opts:
|
|
if not "cb" in o: continue
|
|
limit_type = "carbon budget"
|
|
fn = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/carbon_budget_distribution.csv'
|
|
if not os.path.exists(fn):
|
|
build_carbon_budget(o, fn)
|
|
co2_cap = pd.read_csv(fn, index_col=0, squeeze=True)
|
|
limit = co2_cap[investment_year]
|
|
break
|
|
for o in opts:
|
|
if not "Co2L" in o: continue
|
|
limit_type = "wildcard"
|
|
limit = o[o.find("Co2L")+4:]
|
|
limit = float(limit.replace("p", ".").replace("m", "-"))
|
|
break
|
|
print("add CO2 limit from", limit_type)
|
|
add_co2limit(n, Nyears, limit)
|
|
|
|
for o in opts:
|
|
if not o[:10] == 'linemaxext': continue
|
|
maxext = float(o[10:]) * 1e3
|
|
limit_individual_line_extension(n, maxext)
|
|
break
|
|
|
|
if options['electricity_distribution_grid']:
|
|
insert_electricity_distribution_grid(n, costs)
|
|
|
|
maybe_adjust_costs_and_potentials(n, opts)
|
|
|
|
if options['gas_distribution_grid']:
|
|
insert_gas_distribution_costs(n, costs)
|
|
|
|
if options['electricity_grid_connection']:
|
|
add_electricity_grid_connection(n, costs)
|
|
|
|
n.export_to_netcdf(snakemake.output[0])
|