pypsa-eur/scripts/build_biomass_transport_costs.py

71 lines
1.9 KiB
Python
Raw Normal View History

"""
Reads biomass transport costs for different countries of the JRC report
"The JRC-EU-TIMES model.
Bioenergy potentials
for EU and neighbouring countries."
(2015)
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
assuming as an approximation energy content of wood pellets
@author: bw0928
"""
import pandas as pd
import tabula as tbl
ENERGY_CONTENT = 4.8 # unit MWh/tonne (assuming wood pellets)
def build_biomass_transport_costs():
df_list = tbl.read_pdf(
snakemake.input[0],
pages="145-147",
multiple_tables=True,
)
countries = df_list[0][0].iloc[6:].rename(index=lambda x: x + 1)
# supply chain 1
df = df_list[1].copy().rename(index=countries.to_dict())
df.rename(
columns=df.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df = df.iloc[6:]
df.loc[6] = df.loc[6].str.replace("", "EUR")
# supply chain 2
df2 = df_list[2].copy().rename(index=countries.to_dict())
df2.rename(
columns=df2.iloc[:6].apply(lambda col: col.str.cat(sep=" "), axis=0).to_dict(),
inplace=True,
)
df2 = df2.iloc[6:]
df2.loc[6] = df2.loc[6].str.replace("", "EUR")
df.to_csv(snakemake.output.supply_chain1)
df2.to_csv(snakemake.output.supply_chain1)
transport_costs = pd.concat([df["per km/ton"], df2["per km/ton"]], axis=1).drop(6)
transport_costs = transport_costs.astype(float, errors="ignore").mean(axis=1)
# convert unit to EUR/MWh
transport_costs /= ENERGY_CONTENT
transport_costs = pd.DataFrame(transport_costs, columns=["cost [EUR/(km MWh)]"])
# rename
transport_costs.rename({"UK": "GB", "XK": "KO", "EL": "GR"}, inplace=True)
# add missing Norway
transport_costs.loc["NO"] = transport_costs.loc["SE"]
transport_costs.to_csv(snakemake.output.transport_costs)
if __name__ == "__main__":
prepare_biomass_transport_costs()