pypsa-eur/scripts/plot_validation_electricity_production.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

151 lines
4.7 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
2024-02-19 15:21:48 +00:00
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
import matplotlib.pyplot as plt
import pandas as pd
import pypsa
import seaborn as sns
2023-08-15 13:02:41 +00:00
from _helpers import configure_logging, set_scenario_config
from pypsa.statistics import get_bus_and_carrier
sns.set_theme("paper", style="whitegrid")
carrier_groups = {
"Offshore Wind (AC)": "Offshore Wind",
"Offshore Wind (DC)": "Offshore Wind",
"Open-Cycle Gas": "Gas",
"Combined-Cycle Gas": "Gas",
"Reservoir & Dam": "Hydro",
"Pumped Hydro Storage": "Hydro",
}
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"plot_validation_electricity_production",
opts="Ept",
clusters="37c",
ll="v1.0",
)
configure_logging(snakemake)
2023-08-15 13:02:41 +00:00
set_scenario_config(snakemake)
n = pypsa.Network(snakemake.input.network)
n.loads.carrier = "load"
historic = pd.read_csv(
snakemake.input.electricity_production,
index_col=0,
header=[0, 1],
parse_dates=True,
)
subset_technologies = ["Geothermal", "Nuclear", "Biomass", "Lignite", "Oil", "Coal"]
lowercase_technologies = [
technology.lower() if technology in subset_technologies else technology
for technology in historic.columns.levels[1]
]
historic.columns = historic.columns.set_levels(lowercase_technologies, level=1)
colors = n.carriers.set_index("nice_name").color.where(
lambda s: s != "", "lightgrey"
)
colors["Offshore Wind"] = colors["Offshore Wind (AC)"]
colors["Gas"] = colors["Combined-Cycle Gas"]
colors["Hydro"] = colors["Reservoir & Dam"]
colors["Other"] = "lightgray"
if len(historic.index) > len(n.snapshots):
historic = historic.resample(n.snapshots.inferred_freq).mean().loc[n.snapshots]
optimized = n.statistics.dispatch(
groupby=get_bus_and_carrier, aggregate_time=False
).T
optimized = optimized[["Generator", "StorageUnit"]].droplevel(0, axis=1)
optimized = optimized.rename(columns=n.buses.country, level=0)
optimized = optimized.rename(columns=carrier_groups, level=1)
optimized = optimized.T.groupby(level=[0, 1]).sum().T
data = pd.concat([historic, optimized], keys=["Historic", "Optimized"], axis=1)
data.columns.names = ["Kind", "Country", "Carrier"]
data = data.mul(n.snapshot_weightings.generators, axis=0)
# total production per carrier
fig, ax = plt.subplots(figsize=(6, 6))
df = data.groupby(level=["Kind", "Carrier"], axis=1).sum().sum().unstack().T
df = df / 1e6 # TWh
df.plot.barh(ax=ax, xlabel="Electricity Production [TWh]", ylabel="")
ax.grid(axis="y")
fig.savefig(snakemake.output.production_bar, bbox_inches="tight")
# highest diffs
fig, ax = plt.subplots(figsize=(6, 10))
df = data.sum() / 1e6 # TWh
df = df["Optimized"] - df["Historic"]
df = df.dropna().sort_values()
df = pd.concat([df.iloc[:5], df.iloc[-5:]])
c = colors[df.index.get_level_values(1)]
df.plot.barh(
xlabel="Optimized Production - Historic Production [TWh]", ax=ax, color=c.values
)
ax.set_title("Strongest Deviations")
ax.grid(axis="y")
fig.savefig(snakemake.output.production_deviation_bar, bbox_inches="tight")
# seasonal operation
fig, axes = plt.subplots(3, 1, figsize=(9, 9))
df = (
data.groupby(level=["Kind", "Carrier"], axis=1)
.sum()
.resample("1W")
.mean()
.clip(lower=0)
)
df = df / 1e3
order = (
(df["Historic"].diff().abs().sum() / df["Historic"].sum()).sort_values().index
)
c = colors[order]
optimized = df["Optimized"].reindex(order, axis=1, level=1)
historical = df["Historic"].reindex(order, axis=1, level=1)
kwargs = dict(color=c, legend=False, ylabel="Production [GW]", xlabel="")
optimized.plot.area(ax=axes[0], **kwargs, title="Optimized")
historical.plot.area(ax=axes[1], **kwargs, title="Historic")
diff = optimized - historical
diff.clip(lower=0).plot.area(
ax=axes[2], **kwargs, title="$\Delta$ (Optimized - Historic)"
)
lim = axes[2].get_ylim()[1]
diff.clip(upper=0).plot.area(ax=axes[2], **kwargs)
axes[2].set_ylim(bottom=-lim, top=lim)
h, l = axes[0].get_legend_handles_labels()
fig.legend(
h[::-1],
l[::-1],
loc="center left",
bbox_to_anchor=(1, 0.5),
ncol=1,
frameon=False,
labelspacing=1,
)
fig.savefig(snakemake.output.seasonal_operation_area, bbox_inches="tight")
# touch file
with open(snakemake.output.plots_touch, "a"):
pass