complete structure for plotting electricity production
This commit is contained in:
parent
879d2925f9
commit
9958425a44
@ -107,6 +107,6 @@ rule sync:
|
||||
shell:
|
||||
"""
|
||||
rsync -uvarh --no-g --ignore-missing-args --files-from=.sync-send . {params.cluster}
|
||||
rsync -uvarh --no-g --ignore-missing-args {params.cluster}/results results
|
||||
rsync -uvarh --no-g --ignore-missing-args {params.cluster}/logs logs
|
||||
rsync -uvarh --no-g {params.cluster}/results results
|
||||
rsync -uvarh --no-g {params.cluster}/logs logs
|
||||
"""
|
||||
|
@ -9,6 +9,10 @@ logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
private:
|
||||
keys:
|
||||
entsoe_api:
|
||||
|
||||
remote:
|
||||
ssh: ""
|
||||
path: ""
|
||||
|
@ -4,3 +4,4 @@
|
||||
font.family: sans-serif
|
||||
font.sans-serif: Ubuntu, DejaVu Sans
|
||||
image.cmap: viridis
|
||||
figure.autolayout : True
|
||||
|
@ -331,7 +331,7 @@ rule add_electricity:
|
||||
BENCHMARKS + "add_electricity"
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
mem_mb=10000,
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
@ -365,7 +365,7 @@ rule simplify_network:
|
||||
BENCHMARKS + "simplify_network/elec_s{simpl}"
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
mem_mb=10000,
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
@ -406,7 +406,7 @@ rule cluster_network:
|
||||
BENCHMARKS + "cluster_network/elec_s{simpl}_{clusters}"
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=6000,
|
||||
mem_mb=10000,
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
@ -429,7 +429,7 @@ rule add_extra_components:
|
||||
BENCHMARKS + "add_extra_components/elec_s{simpl}_{clusters}_ec"
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=3000,
|
||||
mem_mb=4000,
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
|
@ -79,6 +79,11 @@ rule validate_elec_networks:
|
||||
input:
|
||||
expand(
|
||||
RESULTS
|
||||
+ "figures/validate_electricity_production_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
+ "figures/.statistics_plots_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}",
|
||||
**config["scenario"]
|
||||
),
|
||||
expand(
|
||||
RESULTS
|
||||
+ "figures/.validation_plots_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
@ -16,7 +16,7 @@ def memory(w):
|
||||
factor *= int(m.group(1)) / 8760
|
||||
break
|
||||
if w.clusters.endswith("m") or w.clusters.endswith("c"):
|
||||
return int(factor * (18000 + 180 * int(w.clusters[:-1])))
|
||||
return int(factor * (35000 + 180 * int(w.clusters[:-1])))
|
||||
elif w.clusters == "all":
|
||||
return int(factor * (18000 + 180 * 4000))
|
||||
else:
|
||||
|
@ -148,12 +148,33 @@ rule plot_summary:
|
||||
"../scripts/plot_summary.py"
|
||||
|
||||
|
||||
STATISTICS_BARPLOTS = [
|
||||
"capacity_factor",
|
||||
"installed_capacity",
|
||||
"optimal_capacity",
|
||||
"capital_expenditure",
|
||||
"operational_expenditure",
|
||||
"curtailment",
|
||||
"supply",
|
||||
"withdrawal",
|
||||
"market_value",
|
||||
]
|
||||
|
||||
|
||||
rule plot_statistics:
|
||||
params:
|
||||
plotting=config["plotting"],
|
||||
barplots=STATISTICS_BARPLOTS,
|
||||
input:
|
||||
overrides="data/override_component_attrs",
|
||||
network=RESULTS + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
output:
|
||||
bar=RESULTS
|
||||
+ "figures/statistics_bar_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.pdf",
|
||||
**{
|
||||
f"{plot}_bar": RESULTS
|
||||
+ f"figures/statistics_{plot}_bar_elec_s{{simpl}}_{{clusters}}_ec_l{{ll}}_{{opts}}.pdf"
|
||||
for plot in STATISTICS_BARPLOTS
|
||||
},
|
||||
barplots_touch=RESULTS
|
||||
+ "figures/.statistics_plots_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}",
|
||||
script:
|
||||
"../scripts/plot_statistics.py"
|
||||
|
@ -141,11 +141,13 @@ if config["sector"]["gas_network"] or config["sector"]["H2_retrofit"]:
|
||||
|
||||
|
||||
rule retrieve_electricity_demand:
|
||||
params:
|
||||
version="2019-06-05" if config["snapshots"]["end"] < "2019" else "latest",
|
||||
input:
|
||||
HTTP.remote(
|
||||
"data.open-power-system-data.org/time_series/{params.version}/time_series_60min_singleindex.csv",
|
||||
"data.open-power-system-data.org/time_series/{version}/time_series_60min_singleindex.csv".format(
|
||||
version="2019-06-05"
|
||||
if config["snapshots"]["end"] < "2019"
|
||||
else "latest"
|
||||
),
|
||||
keep_local=True,
|
||||
static=True,
|
||||
),
|
||||
|
@ -55,7 +55,7 @@ rule solve_operations_network:
|
||||
)
|
||||
threads: 4
|
||||
resources:
|
||||
mem_mb=(lambda w: 5000 + 372 * int(w.clusters)),
|
||||
mem_mb=(lambda w: 10000 + 372 * int(w.clusters)),
|
||||
shadow:
|
||||
"minimal"
|
||||
conda:
|
||||
|
@ -18,15 +18,23 @@ rule build_electricity_production:
|
||||
resources:
|
||||
mem_mb=5000,
|
||||
script:
|
||||
"../scripts/retrieve_electricity_production.py"
|
||||
"../scripts/build_electricity_production.py"
|
||||
|
||||
|
||||
PLOTS = ["production_bar", "production_deviation_bar", "seasonal_operation_area"]
|
||||
|
||||
|
||||
rule plot_electricity_production:
|
||||
input:
|
||||
network=RESULTS + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
electricity_production="data/historical_electricity_production.csv",
|
||||
electricity_production=RESOURCES + "historical_electricity_production.csv",
|
||||
output:
|
||||
electricity_producion=RESULTS
|
||||
+ "figures/validate_electricity_production_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.pdf",
|
||||
**{
|
||||
plot: RESULTS
|
||||
+ f"figures/validation_{plot}_elec_s{{simpl}}_{{clusters}}_ec_l{{ll}}_{{opts}}.pdf"
|
||||
for plot in PLOTS
|
||||
},
|
||||
plots_touch=RESULTS
|
||||
+ "figures/.validation_plots_elec_s{simpl}_{clusters}_ec_l{ll}_{opts}",
|
||||
script:
|
||||
"scripts/plot_electricity_production.py"
|
||||
"../scripts/plot_electricity_production.py"
|
||||
|
@ -3,16 +3,11 @@
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Created on Mon Jul 3 11:19:54 2023.
|
||||
|
||||
@author: fabian
|
||||
"""
|
||||
|
||||
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging
|
||||
from entsoe import EntsoePandasClient
|
||||
from entsoe.exceptions import NoMatchingDataError
|
||||
|
||||
@ -31,6 +26,10 @@ carrier_grouper = {
|
||||
"Fossil Brown coal/Lignite": "Lignite",
|
||||
"Fossil Peat": "Lignite",
|
||||
"Fossil Hard coal": "Coal",
|
||||
"Wind Onshore": "Onshore Wind",
|
||||
"Wind Offshore": "Offshore Wind",
|
||||
"Other renewable": "Other",
|
||||
"Marine": "Other",
|
||||
}
|
||||
|
||||
|
||||
@ -38,43 +37,37 @@ if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake("retrieve_historical_electricity_generation")
|
||||
snakemake = mock_snakemake("build_electricity_production")
|
||||
configure_logging(snakemake)
|
||||
|
||||
api_key = snakemake.config["private"]["keys"]["entsoe_api"]
|
||||
client = EntsoePandasClient(api_key=api_key)
|
||||
|
||||
api_key = "aeff3346-a240-40df-bd12-692772b845d0"
|
||||
client = EntsoePandasClient(api_key=api_key)
|
||||
start = pd.Timestamp(snakemake.params.snapshots["start"], tz="Europe/Brussels")
|
||||
end = pd.Timestamp(snakemake.params.snapshots["end"], tz="Europe/Brussels")
|
||||
|
||||
start = pd.Timestamp(snakemake.params.snapshots["start"], tz="Europe/Brussels")
|
||||
end = pd.Timestamp(snakemake.params.snapshots["end"], tz="Europe/Brussels")
|
||||
countries = snakemake.params.countries
|
||||
|
||||
countries = snakemake.params.countries
|
||||
generation = []
|
||||
unavailable_countries = []
|
||||
|
||||
for country in countries:
|
||||
country_code = country
|
||||
|
||||
generation = []
|
||||
unavailable_countries = []
|
||||
try:
|
||||
gen = client.query_generation(country, start=start, end=end, nett=True)
|
||||
gen = gen.tz_localize(None).resample("1h").mean()
|
||||
gen = gen.loc[start.tz_localize(None) : end.tz_localize(None)]
|
||||
gen = gen.rename(columns=carrier_grouper).groupby(level=0, axis=1).sum()
|
||||
generation.append(gen)
|
||||
except NoMatchingDataError:
|
||||
unavailable_countries.append(country)
|
||||
|
||||
for country in countries:
|
||||
country_code = country
|
||||
if unavailable_countries:
|
||||
logger.warning(
|
||||
f"Historical electricity production for countries {', '.join(unavailable_countries)} not available."
|
||||
)
|
||||
|
||||
try:
|
||||
gen = client.query_generation(country, start=start, end=end, nett=True)
|
||||
gen = gen.tz_localize(None).resample("1h").mean()
|
||||
gen = gen.rename(columns=carrier_grouper).groupby(level=0, axis=1).sum()
|
||||
generation.append(gen)
|
||||
except NoMatchingDataError:
|
||||
unavailable_countries.append(country)
|
||||
|
||||
|
||||
if unavailable_countries:
|
||||
logger.warning(
|
||||
f"Historical electricity production for countries {', '.join(unavailable_countries)} not available."
|
||||
)
|
||||
|
||||
keys = [c for c in countries if c not in unavailable_countries]
|
||||
generation = pd.concat(generation, keys=keys, axis=1)
|
||||
generation = generation.loc[start.tz_localize(None) : end.tz_localize(None)]
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
generation.to_csv(snakemake.output[0])
|
||||
keys = [c for c in countries if c not in unavailable_countries]
|
||||
generation = pd.concat(generation, keys=keys, axis=1)
|
||||
generation.to_csv(snakemake.output[0])
|
||||
|
146
scripts/plot_electricity_production.py
Normal file
146
scripts/plot_electricity_production.py
Normal file
@ -0,0 +1,146 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging
|
||||
from pypsa.statistics import get_bus_and_carrier
|
||||
|
||||
sns.set_theme("paper", style="whitegrid")
|
||||
|
||||
carrier_groups = {
|
||||
"Offshore Wind (AC)": "Offshore Wind",
|
||||
"Offshore Wind (DC)": "Offshore Wind",
|
||||
"Open-Cycle Gas": "Gas",
|
||||
"Combined-Cycle Gas": "Gas",
|
||||
"Reservoir & Dam": "Hydro",
|
||||
"Pumped Hydro Storage": "Hydro",
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_electricity_production",
|
||||
simpl="",
|
||||
opts="Ept-12h",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
n.loads.carrier = "load"
|
||||
|
||||
historic = pd.read_csv(
|
||||
snakemake.input.electricity_production,
|
||||
index_col=0,
|
||||
header=[0, 1],
|
||||
parse_dates=True,
|
||||
)
|
||||
historic = historic.drop("Other renewable", axis=1, level=1)
|
||||
historic = historic.drop("Marine", axis=1, level=1)
|
||||
|
||||
colors = n.carriers.set_index("nice_name").color.where(
|
||||
lambda s: s != "", "lightgrey"
|
||||
)
|
||||
colors["Offshore Wind"] = colors["Offshore Wind (AC)"]
|
||||
colors["Gas"] = colors["Combined-Cycle Gas"]
|
||||
colors["Hydro"] = colors["Reservoir & Dam"]
|
||||
colors["Other"] = "lightgray"
|
||||
|
||||
if len(historic.index) > len(n.snapshots):
|
||||
historic = historic.resample(n.snapshots.inferred_freq).mean().loc[n.snapshots]
|
||||
|
||||
optimized = n.statistics.dispatch(
|
||||
groupby=get_bus_and_carrier, aggregate_time=False
|
||||
).T
|
||||
optimized = optimized[["Generator", "StorageUnit"]].droplevel(0, axis=1)
|
||||
optimized = optimized.rename(columns=n.buses.country, level=0)
|
||||
optimized = optimized.rename(columns=carrier_groups, level=1)
|
||||
optimized = optimized.groupby(axis=1, level=[0, 1]).sum()
|
||||
|
||||
data = pd.concat([historic, optimized], keys=["Historic", "Optimized"], axis=1)
|
||||
data.columns.names = ["Kind", "Country", "Carrier"]
|
||||
data = data.mul(n.snapshot_weightings.generators, axis=0)
|
||||
|
||||
# %% total production per carrier
|
||||
fig, ax = plt.subplots(figsize=(6, 6))
|
||||
|
||||
df = data.groupby(level=["Kind", "Carrier"], axis=1).sum().sum().unstack().T
|
||||
df = df / 1e6 # TWh
|
||||
df.plot.barh(ax=ax, xlabel="Electricity Production [TWh]", ylabel="")
|
||||
ax.grid(axis="y")
|
||||
fig.savefig(snakemake.output.production_bar, bbox_inches="tight")
|
||||
|
||||
# %% highest diffs
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 10))
|
||||
|
||||
df = data.sum() / 1e6 # TWh
|
||||
df = df["Optimized"] - df["Historic"]
|
||||
df = df.dropna().sort_values()
|
||||
df = pd.concat([df.iloc[:5], df.iloc[-5:]])
|
||||
c = colors[df.index.get_level_values(1)]
|
||||
df.plot.barh(
|
||||
xlabel="Optimized Production - Historic Production [TWh]", ax=ax, color=c.values
|
||||
)
|
||||
ax.set_title("Strongest Deviations")
|
||||
ax.grid(axis="y")
|
||||
fig.savefig(snakemake.output.production_deviation_bar, bbox_inches="tight")
|
||||
|
||||
# %% seasonal operation
|
||||
|
||||
fig, axes = plt.subplots(3, 1, figsize=(9, 9))
|
||||
|
||||
df = (
|
||||
data.groupby(level=["Kind", "Carrier"], axis=1)
|
||||
.sum()
|
||||
.resample("1W")
|
||||
.mean()
|
||||
.clip(lower=0)
|
||||
)
|
||||
df = df / 1e3
|
||||
|
||||
order = (
|
||||
(df["Historic"].diff().abs().sum() / df["Historic"].sum()).sort_values().index
|
||||
)
|
||||
c = colors[order]
|
||||
optimized = df["Optimized"].reindex(order, axis=1, level=1)
|
||||
historical = df["Historic"].reindex(order, axis=1, level=1)
|
||||
|
||||
kwargs = dict(color=c, legend=False, ylabel="Production [GW]", xlabel="")
|
||||
|
||||
optimized.plot.area(ax=axes[0], **kwargs, title="Optimized")
|
||||
historical.plot.area(ax=axes[1], **kwargs, title="Historic")
|
||||
|
||||
diff = historical - optimized
|
||||
diff.clip(lower=0).plot.area(
|
||||
ax=axes[2], **kwargs, title="$\Delta$ (Optimized - Historic)"
|
||||
)
|
||||
lim = axes[2].get_ylim()[1]
|
||||
diff.clip(upper=0).plot.area(ax=axes[2], **kwargs)
|
||||
axes[2].set_ylim(bottom=-lim, top=lim)
|
||||
|
||||
h, l = axes[0].get_legend_handles_labels()
|
||||
fig.legend(
|
||||
h[::-1],
|
||||
l[::-1],
|
||||
loc="center left",
|
||||
bbox_to_anchor=(1, 0.5),
|
||||
ncol=1,
|
||||
frameon=False,
|
||||
labelspacing=1,
|
||||
)
|
||||
fig.savefig(snakemake.output.seasonal_operation_area, bbox_inches="tight")
|
||||
|
||||
# touch file
|
||||
with open(snakemake.output.plots_touch, "a"):
|
||||
pass
|
@ -1,47 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Created on Mon Jul 3 12:50:26 2023.
|
||||
|
||||
@author: fabian
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from pypsa.statistics import get_bus_and_carrier
|
||||
|
||||
carrier_groups = {
|
||||
"Offshore Wind (AC)": "Offshore Wind",
|
||||
"Offshore Wind (DC)": "Offshore Wind",
|
||||
"Open-Cycle Gas": "Gas",
|
||||
"Combined-Cycle Gas": "Gas",
|
||||
"Reservoir & Dam": "Hydro",
|
||||
"Pumped Hydro Storage": "Hydro",
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_statistics",
|
||||
simpl="",
|
||||
opts="Co2L-3h",
|
||||
clusters="37c",
|
||||
ll="v1.0",
|
||||
)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
historic = pd.read_csv(
|
||||
snakemake.input.historic_electricity_generation, index_col=0, header=[0, 1]
|
||||
)
|
||||
|
||||
|
||||
simulated = n.statistics.dispatch(groupby=get_bus_and_carrier, aggregate_time=False).T
|
||||
simulated = simulated[["Generator", "StorageUnit"]].droplevel(0, axis=1)
|
||||
simulated = simulated.rename(columns=n.buses.country, level=0)
|
||||
simulated = simulated.rename(carrier_groups, level=1)
|
||||
simulated = simulated.groupby(axis=1, level=[0, 1]).sum()
|
@ -3,15 +3,11 @@
|
||||
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Created on Fri Jun 30 10:50:53 2023.
|
||||
|
||||
@author: fabian
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pypsa
|
||||
import seaborn as sns
|
||||
from _helpers import configure_logging
|
||||
|
||||
sns.set_theme("paper", style="whitegrid")
|
||||
|
||||
@ -23,80 +19,94 @@ if __name__ == "__main__":
|
||||
snakemake = mock_snakemake(
|
||||
"plot_statistics",
|
||||
simpl="",
|
||||
opts="Co2L-3h",
|
||||
clusters="37c",
|
||||
opts="Ept-12h",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
)
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
n = pypsa.Network(snakemake.network)
|
||||
n.loads.carrier = "load"
|
||||
n.carriers.loc["load", ["nice_name", "color"]] = "Load", "darkred"
|
||||
colors = n.carriers.set_index("nice_name").color.where(
|
||||
lambda s: s != "", "lightgrey"
|
||||
)
|
||||
|
||||
# %%
|
||||
|
||||
n.loads.carrier = "load"
|
||||
n.carriers.loc["load", ["nice_name", "color"]] = "Load", "darkred"
|
||||
colors = n.carriers.set_index("nice_name").color.where(lambda s: s != "", "lightgrey")
|
||||
def rename_index(ds):
|
||||
return ds.set_axis(ds.index.map(lambda x: f"{x[1]}\n({x[0].lower()})"))
|
||||
|
||||
def plot_static_per_carrier(ds, ax, drop_zero=True):
|
||||
if drop_zero:
|
||||
ds = ds[ds != 0]
|
||||
ds = ds.dropna()
|
||||
c = colors[ds.index.get_level_values("carrier")]
|
||||
ds = ds.pipe(rename_index)
|
||||
label = f"{ds.attrs['name']} [{ds.attrs['unit']}]"
|
||||
ds.plot.barh(color=c.values, xlabel=label, ax=ax)
|
||||
ax.grid(axis="y")
|
||||
|
||||
def rename_index(ds):
|
||||
return ds.set_axis(ds.index.map(lambda x: f"{x[1]}\n({x[0].lower()})"))
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.capacity_factor().dropna()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.capacity_factor_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.installed_capacity().dropna()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds.drop(("Generator", "Load"))
|
||||
ds = ds / 1e3
|
||||
ds.attrs["unit"] = "GW"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.installed_capacity_bar)
|
||||
|
||||
def plot_static_per_carrier(ds, ax, drop_zero=True):
|
||||
if drop_zero:
|
||||
ds = ds[ds != 0]
|
||||
ds = ds.dropna()
|
||||
c = colors[ds.index.get_level_values("carrier")]
|
||||
ds = ds.pipe(rename_index)
|
||||
label = f"{ds.attrs['name']} [{ds.attrs['unit']}]"
|
||||
ds.plot.barh(color=c.values, xlabel=label, ax=ax)
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.optimal_capacity()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds.drop(("Generator", "Load"))
|
||||
ds = ds / 1e3
|
||||
ds.attrs["unit"] = "GW"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.optimal_capacity_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.capex()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.capital_expenditure_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.capacity_factor().dropna()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.opex()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.operational_expenditure_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.installed_capacity().dropna()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / 1e3
|
||||
ds.attrs["unit"] = "GW"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.curtailment()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.curtailment_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.supply()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / 1e6
|
||||
ds.attrs["unit"] = "TWh"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.supply_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.optimal_capacity()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / 1e3
|
||||
ds.attrs["unit"] = "GW"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.withdrawal()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / -1e6
|
||||
ds.attrs["unit"] = "TWh"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.withdrawal_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.market_value()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
fig.savefig(snakemake.output.market_value_bar)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.capex()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.curtailment()
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.supply()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / 1e6
|
||||
ds.attrs["unit"] = "TWh"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ds = n.statistics.withdrawal()
|
||||
ds = ds.drop("Line")
|
||||
ds = ds / -1e6
|
||||
ds.attrs["unit"] = "TWh"
|
||||
plot_static_per_carrier(ds, ax)
|
||||
# fig.savefig("")
|
||||
# touch file
|
||||
with open(snakemake.output.barplots_touch, "a"):
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user