2021-07-01 18:09:04 +00:00
|
|
|
"""Solve network."""
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
import pypsa
|
2021-07-01 18:09:04 +00:00
|
|
|
import numpy as np
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
from vresutils.benchmark import memory_logger
|
2022-07-20 09:35:12 +00:00
|
|
|
from helper import override_component_attrs, update_config_with_sector_opts
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
pypsa.pf.logger.setLevel(logging.WARNING)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
def add_land_use_constraint(n):
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-06 07:55:41 +00:00
|
|
|
if 'm' in snakemake.wildcards.clusters:
|
2021-10-02 08:40:49 +00:00
|
|
|
_add_land_use_constraint_m(n)
|
2021-07-06 07:55:41 +00:00
|
|
|
else:
|
2021-10-02 08:40:49 +00:00
|
|
|
_add_land_use_constraint(n)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-10-02 08:40:49 +00:00
|
|
|
|
|
|
|
def _add_land_use_constraint(n):
|
2021-07-01 18:09:04 +00:00
|
|
|
#warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
2021-10-02 08:40:49 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
2021-10-02 08:40:49 +00:00
|
|
|
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"].groupby(n.generators.bus.map(n.buses.location)).sum()
|
2021-07-01 18:09:04 +00:00
|
|
|
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
|
2021-10-02 08:40:49 +00:00
|
|
|
n.generators.loc[existing.index,"p_nom_max"] -= existing
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
|
2021-10-02 08:40:49 +00:00
|
|
|
def _add_land_use_constraint_m(n):
|
2021-07-06 07:55:41 +00:00
|
|
|
# if generators clustering is lower than network clustering, land_use accounting is at generators clusters
|
|
|
|
|
2022-01-07 15:59:14 +00:00
|
|
|
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
|
2021-07-06 07:55:41 +00:00
|
|
|
grouping_years = snakemake.config["existing_capacities"]["grouping_years"]
|
|
|
|
current_horizon = snakemake.wildcards.planning_horizons
|
|
|
|
|
|
|
|
for carrier in ['solar', 'onwind', 'offwind-ac', 'offwind-dc']:
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-06 07:55:41 +00:00
|
|
|
existing = n.generators.loc[n.generators.carrier==carrier,"p_nom"]
|
|
|
|
ind = list(set([i.split(sep=" ")[0] + ' ' + i.split(sep=" ")[1] for i in existing.index]))
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2021-07-06 07:55:41 +00:00
|
|
|
previous_years = [
|
2022-01-07 15:59:14 +00:00
|
|
|
str(y) for y in
|
2021-07-06 07:55:41 +00:00
|
|
|
planning_horizons + grouping_years
|
|
|
|
if y < int(snakemake.wildcards.planning_horizons)
|
|
|
|
]
|
|
|
|
|
|
|
|
for p_year in previous_years:
|
|
|
|
ind2 = [i for i in ind if i + " " + carrier + "-" + p_year in existing.index]
|
|
|
|
sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2]
|
|
|
|
sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2]
|
2022-01-07 15:59:14 +00:00
|
|
|
n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[sel_p_year].rename(lambda x: x[:-4] + current_horizon)
|
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
n.generators.p_nom_max.clip(lower=0, inplace=True)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
def prepare_network(n, solve_opts=None):
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2019-04-18 09:39:17 +00:00
|
|
|
if 'clip_p_max_pu' in solve_opts:
|
2020-01-24 14:31:17 +00:00
|
|
|
for df in (n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow):
|
2019-04-18 09:39:17 +00:00
|
|
|
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
|
|
|
|
|
|
|
|
if solve_opts.get('load_shedding'):
|
2023-02-08 12:30:10 +00:00
|
|
|
# intersect between macroeconomic and surveybased willingness to pay
|
|
|
|
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
|
2019-04-18 09:39:17 +00:00
|
|
|
n.add("Carrier", "Load")
|
|
|
|
n.madd("Generator", n.buses.index, " load",
|
|
|
|
bus=n.buses.index,
|
|
|
|
carrier='load',
|
|
|
|
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
|
|
|
|
marginal_cost=1e2, # Eur/kWh
|
|
|
|
p_nom=1e9 # kW
|
|
|
|
)
|
|
|
|
|
|
|
|
if solve_opts.get('noisy_costs'):
|
|
|
|
for t in n.iterate_components():
|
|
|
|
#if 'capital_cost' in t.df:
|
|
|
|
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
|
|
|
|
if 'marginal_cost' in t.df:
|
2019-08-07 17:08:06 +00:00
|
|
|
np.random.seed(174)
|
2021-07-01 18:09:04 +00:00
|
|
|
t.df['marginal_cost'] += 1e-2 + 2e-3 * (np.random.random(len(t.df)) - 0.5)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
for t in n.iterate_components(['Line', 'Link']):
|
2019-08-07 17:08:06 +00:00
|
|
|
np.random.seed(123)
|
2021-07-01 18:09:04 +00:00
|
|
|
t.df['capital_cost'] += (1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)) * t.df['length']
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
if solve_opts.get('nhours'):
|
|
|
|
nhours = solve_opts['nhours']
|
|
|
|
n.set_snapshots(n.snapshots[:nhours])
|
|
|
|
n.snapshot_weightings[:] = 8760./nhours
|
2020-08-19 18:25:04 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
if snakemake.config['foresight'] == 'myopic':
|
2020-08-17 10:04:45 +00:00
|
|
|
add_land_use_constraint(n)
|
2020-08-19 18:25:04 +00:00
|
|
|
|
2019-04-18 09:39:17 +00:00
|
|
|
return n
|
|
|
|
|
|
|
|
|
2019-11-27 17:34:53 +00:00
|
|
|
def add_battery_constraints(n):
|
2023-01-20 09:28:01 +00:00
|
|
|
"""
|
|
|
|
Add constraints to ensure that the ratio between the charger and
|
|
|
|
discharger.
|
|
|
|
1 * charger_size - efficiency * discharger_size = 0
|
|
|
|
"""
|
|
|
|
nodes = n.buses.index[n.buses.carrier == "battery"]
|
|
|
|
if nodes.empty:
|
2021-07-01 18:09:04 +00:00
|
|
|
return
|
2023-01-20 09:28:01 +00:00
|
|
|
link_p_nom = n.model["Link-p_nom"]
|
|
|
|
eff = n.links.efficiency[nodes + " discharger"].values
|
|
|
|
lhs = link_p_nom.loc[nodes + ' charger'] - link_p_nom.loc[nodes + ' discharger'] * eff
|
|
|
|
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
|
2019-11-27 17:34:53 +00:00
|
|
|
def add_chp_constraints(n):
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
electric = (n.links.index.str.contains("urban central")
|
|
|
|
& n.links.index.str.contains("CHP")
|
|
|
|
& n.links.index.str.contains("electric"))
|
|
|
|
heat = (n.links.index.str.contains("urban central")
|
|
|
|
& n.links.index.str.contains("CHP")
|
|
|
|
& n.links.index.str.contains("heat"))
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
electric_ext = n.links[electric].query("p_nom_extendable").index
|
|
|
|
heat_ext = n.links[heat].query("p_nom_extendable").index
|
2021-07-01 18:09:04 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
electric_fix = n.links[electric].query("~p_nom_extendable").index
|
|
|
|
heat_fix = n.links[heat].query("~p_nom_extendable").index
|
2021-07-01 18:09:04 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
p = n.model["Link-p"] # dimension: [time, link]
|
2020-08-14 07:11:19 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
# output ratio between heat and electricity and top_iso_fuel_line for extendable
|
2020-08-14 07:11:19 +00:00
|
|
|
if not electric_ext.empty:
|
2023-01-20 09:28:01 +00:00
|
|
|
p_nom = n.model["Link-p_nom"]
|
2019-07-16 14:00:21 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
lhs = (p_nom.loc[electric_ext] * (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values -
|
|
|
|
p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values)
|
|
|
|
n.model.add_constraints(lhs == 0, name='chplink-fix_p_nom_ratio')
|
2020-08-14 07:11:19 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
rename = {"Link-ext": "Link"}
|
|
|
|
lhs = p.loc[:, electric_ext] + p.loc[:, heat_ext] - p_nom.rename(rename).loc[electric_ext]
|
|
|
|
n.model.add_constraints(lhs <= 0, name='chplink-top_iso_fuel_line_ext')
|
2020-08-14 07:11:19 +00:00
|
|
|
|
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
# top_iso_fuel_line for fixed
|
2020-08-14 07:11:19 +00:00
|
|
|
if not electric_fix.empty:
|
2023-01-20 09:28:01 +00:00
|
|
|
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
|
|
|
|
rhs = n.links.p_nom[electric_fix]
|
|
|
|
n.model.add_constraints(lhs <= rhs, name='chplink-top_iso_fuel_line_fix')
|
2020-08-14 07:11:19 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
# back-pressure
|
2021-07-01 18:09:04 +00:00
|
|
|
if not electric.empty:
|
2023-01-20 09:28:01 +00:00
|
|
|
lhs = (p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values) -
|
|
|
|
p.loc[:, electric] * n.links.efficiency[electric])
|
|
|
|
n.model.add_constraints(lhs <= rhs, name='chplink-backpressure')
|
2021-07-01 18:09:04 +00:00
|
|
|
|
2020-07-07 16:40:17 +00:00
|
|
|
|
2021-06-21 10:34:47 +00:00
|
|
|
def add_pipe_retrofit_constraint(n):
|
|
|
|
"""Add constraint for retrofitting existing CH4 pipelines to H2 pipelines."""
|
2022-03-17 17:15:59 +00:00
|
|
|
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
|
|
|
|
h2_retrofitted_i = n.links.query("carrier == 'H2 pipeline retrofitted' and p_nom_extendable").index
|
2021-06-21 10:34:47 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
if h2_retrofitted_i.empty or gas_pipes_i.empty:
|
|
|
|
return
|
2021-06-21 10:34:47 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
p_nom = n.model["Link-p_nom"]
|
2021-06-21 10:34:47 +00:00
|
|
|
|
2021-08-04 08:49:06 +00:00
|
|
|
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
2023-01-20 09:28:01 +00:00
|
|
|
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
|
|
|
|
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
n.model.add_constraints(lhs == rhs, name='Link-pipe_retrofit')
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2021-06-21 10:34:47 +00:00
|
|
|
|
|
|
|
|
2021-08-06 10:46:03 +00:00
|
|
|
def add_co2_sequestration_limit(n, sns):
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2021-08-06 10:46:03 +00:00
|
|
|
co2_stores = n.stores.loc[n.stores.carrier=='co2 stored'].index
|
|
|
|
|
2023-02-08 12:30:10 +00:00
|
|
|
if co2_stores.empty or 'Store-e' not in n.model.variables:
|
2021-08-06 10:46:03 +00:00
|
|
|
return
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2021-12-10 11:05:38 +00:00
|
|
|
limit = n.config["sector"].get("co2_sequestration_potential", 200) * 1e6
|
|
|
|
for o in opts:
|
|
|
|
if not "seq" in o: continue
|
2022-09-29 07:12:36 +00:00
|
|
|
limit = float(o[o.find("seq")+3:]) * 1e6
|
2021-12-10 11:05:38 +00:00
|
|
|
break
|
2022-01-07 15:59:14 +00:00
|
|
|
|
2023-02-08 12:30:10 +00:00
|
|
|
n.add("GlobalConstraint", 'co2_sequestration_limit', sense="<=", constant=limit,
|
|
|
|
type=np.nan, carrier_attribute="co2 stored")
|
2021-08-06 10:46:03 +00:00
|
|
|
|
|
|
|
|
2019-11-27 17:34:53 +00:00
|
|
|
def extra_functionality(n, snapshots):
|
|
|
|
add_battery_constraints(n)
|
2021-06-21 10:34:47 +00:00
|
|
|
add_pipe_retrofit_constraint(n)
|
2023-01-20 09:28:01 +00:00
|
|
|
# add_co2_sequestration_limit(n, snapshots)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
def solve_network(n, config, opts="", **kwargs):
|
2022-11-18 10:22:06 +00:00
|
|
|
options = config['solving']['solver']['options']
|
|
|
|
solver_options = config['solving']["solver_options"][options] if options else None
|
2022-11-16 13:48:09 +00:00
|
|
|
solver_name = config['solving']['solver']['name']
|
2023-01-20 09:28:01 +00:00
|
|
|
cf_solving = config["solving"]["options"]
|
|
|
|
track_iterations = cf_solving.get("track_iterations", False)
|
|
|
|
min_iterations = cf_solving.get("min_iterations", 4)
|
|
|
|
max_iterations = cf_solving.get("max_iterations", 6)
|
2021-07-01 18:09:04 +00:00
|
|
|
|
|
|
|
# add to network for extra_functionality
|
|
|
|
n.config = config
|
|
|
|
n.opts = opts
|
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
skip_iterations = cf_solving.get("skip_iterations", False)
|
|
|
|
if not n.lines.s_nom_extendable.any():
|
|
|
|
skip_iterations = True
|
|
|
|
logger.info("No expandable lines found. Skipping iterative solving.")
|
|
|
|
|
|
|
|
if skip_iterations:
|
|
|
|
n.optimize(
|
|
|
|
solver_name=solver_name,
|
|
|
|
solver_options=solver_options,
|
|
|
|
extra_functionality=extra_functionality,
|
|
|
|
**kwargs,
|
|
|
|
)
|
2021-07-01 18:09:04 +00:00
|
|
|
else:
|
2023-01-20 09:28:01 +00:00
|
|
|
n.optimize.optimize_transmission_expansion_iteratively(
|
|
|
|
solver_name=solver_name,
|
|
|
|
solver_options=solver_options,
|
|
|
|
track_iterations=track_iterations,
|
|
|
|
min_iterations=min_iterations,
|
|
|
|
max_iterations=max_iterations,
|
|
|
|
extra_functionality=extra_functionality,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2019-04-18 09:39:17 +00:00
|
|
|
return n
|
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
|
2023-01-20 09:28:01 +00:00
|
|
|
|
2019-04-18 09:39:17 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
if 'snakemake' not in globals():
|
2021-06-18 07:45:51 +00:00
|
|
|
from helper import mock_snakemake
|
2021-07-01 18:09:04 +00:00
|
|
|
snakemake = mock_snakemake(
|
2022-03-21 08:14:15 +00:00
|
|
|
'solve_network',
|
2021-07-01 18:09:04 +00:00
|
|
|
simpl='',
|
2022-01-07 15:59:14 +00:00
|
|
|
opts="",
|
2023-01-20 09:28:01 +00:00
|
|
|
clusters="45",
|
2021-07-01 18:09:04 +00:00
|
|
|
lv=1.0,
|
2023-01-20 09:28:01 +00:00
|
|
|
sector_opts='Co2L0-3H-T-H-B-I-A-solar+p3-dist1',
|
|
|
|
planning_horizons="2050",
|
2019-04-18 09:39:17 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
logging.basicConfig(filename=snakemake.log.python,
|
|
|
|
level=snakemake.config['logging_level'])
|
2021-06-18 07:41:18 +00:00
|
|
|
|
2022-07-20 09:35:12 +00:00
|
|
|
update_config_with_sector_opts(snakemake.config, snakemake.wildcards.sector_opts)
|
|
|
|
|
2019-04-18 09:39:17 +00:00
|
|
|
tmpdir = snakemake.config['solving'].get('tmpdir')
|
|
|
|
if tmpdir is not None:
|
2022-01-24 13:34:54 +00:00
|
|
|
from pathlib import Path
|
2021-07-01 18:09:04 +00:00
|
|
|
Path(tmpdir).mkdir(parents=True, exist_ok=True)
|
2022-08-03 15:07:19 +00:00
|
|
|
opts = snakemake.wildcards.sector_opts.split('-')
|
2021-07-01 18:09:04 +00:00
|
|
|
solve_opts = snakemake.config['solving']['options']
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
fn = getattr(snakemake.log, 'memory', None)
|
|
|
|
with memory_logger(filename=fn, interval=30.) as mem:
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
overrides = override_component_attrs(snakemake.input.overrides)
|
|
|
|
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
|
2020-07-07 16:40:17 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
n = prepare_network(n, solve_opts)
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
n = solve_network(n, config=snakemake.config, opts=opts,
|
|
|
|
solver_dir=tmpdir,
|
|
|
|
solver_logfile=snakemake.log.solver)
|
2020-08-17 10:04:45 +00:00
|
|
|
|
2021-07-01 18:09:04 +00:00
|
|
|
if "lv_limit" in n.global_constraints.index:
|
|
|
|
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]
|
|
|
|
n.line_volume_limit_dual = n.global_constraints.at["lv_limit", "mu"]
|
2019-04-18 09:39:17 +00:00
|
|
|
|
2022-06-30 06:42:18 +00:00
|
|
|
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
2019-04-18 09:39:17 +00:00
|
|
|
n.export_to_netcdf(snakemake.output[0])
|
|
|
|
|
|
|
|
logger.info("Maximum memory usage: {}".format(mem.mem_usage))
|