pypsa-eur/scripts/plot_summary.py

404 lines
14 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
#allow plotting without Xwindows
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from prepare_sector_network import co2_emissions_year
#consolidate and rename
def rename_techs(label):
prefix_to_remove = ["residential ","services ","urban ","rural ","central ","decentral "]
rename_if_contains = ["CHP","gas boiler","biogas","solar thermal","air heat pump","ground heat pump","resistive heater","Fischer-Tropsch"]
rename_if_contains_dict = {"water tanks" : "hot water storage",
"retrofitting" : "building retrofitting",
"H2" : "hydrogen storage",
2019-12-19 10:39:38 +00:00
"battery" : "battery storage",
"CC" : "CC"}
rename = {"solar" : "solar PV",
"Sabatier" : "methanation",
"offwind" : "offshore wind",
"offwind-ac" : "offshore wind (AC)",
"offwind-dc" : "offshore wind (DC)",
"onwind" : "onshore wind",
"ror" : "hydroelectricity",
"hydro" : "hydroelectricity",
"PHS" : "hydroelectricity",
"co2 Store" : "DAC",
"co2 stored" : "CO2 sequestration",
"AC" : "transmission lines",
"DC" : "transmission lines",
"B2B" : "transmission lines"}
for ptr in prefix_to_remove:
if label[:len(ptr)] == ptr:
label = label[len(ptr):]
for rif in rename_if_contains:
if rif in label:
label = rif
for old,new in rename_if_contains_dict.items():
if old in label:
label = new
for old,new in rename.items():
if old == label:
label = new
return label
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","solid biomass","biogas","onshore wind","offshore wind","offshore wind (AC)","offshore wind (DC)","solar PV","solar thermal","solar","building retrofitting","ground heat pump","air heat pump","heat pump","resistive heater","power-to-heat","gas-to-power/heat","CHP","OCGT","gas boiler","gas","natural gas","helmeth","methanation","hydrogen storage","power-to-gas","power-to-liquid","battery storage","hot water storage","CO2 sequestration"])
def plot_costs():
cost_df = pd.read_csv(snakemake.input.costs,index_col=list(range(3)),header=list(range(n_header)))
df = cost_df.groupby(cost_df.index.get_level_values(2)).sum()
#convert to billions
df = df/1e9
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.max(axis=1) < snakemake.config['plotting']['costs_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([0,snakemake.config['plotting']['costs_max']])
ax.set_ylabel("System Cost [EUR billion per year]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.costs,transparent=True)
def plot_energy():
energy_df = pd.read_csv(snakemake.input.energy,index_col=list(range(2)),header=list(range(n_header)))
df = energy_df.groupby(energy_df.index.get_level_values(1)).sum()
#convert MWh to TWh
df = df/1e6
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
2019-12-19 10:39:38 +00:00
print(df)
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
#new_columns = df.sum().sort_values().index
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
2019-12-19 10:39:38 +00:00
print(df.loc[new_index,new_columns])
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']])
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.energy,transparent=True)
def plot_balances():
co2_carriers = ["co2","co2 stored","process emissions"]
balances_df = pd.read_csv(snakemake.input.balances,index_col=list(range(3)),header=list(range(n_header)))
balances = {i.replace(" ","_") : [i] for i in balances_df.index.levels[0]}
balances["energy"] = balances_df.index.levels[0]^co2_carriers
for k,v in balances.items():
df = balances_df.loc[v]
df = df.groupby(df.index.get_level_values(2)).sum()
#convert MWh to TWh
df = df/1e6
#remove trailing link ports
df.index = [i[:-1] if ((i != "co2") and (i[-1:] in ["0","1","2","3"])) else i for i in df.index]
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']/10]
print("dropping")
print(df.loc[to_drop])
df = df.drop(to_drop)
print(df.sum())
if df.empty:
continue
new_index = (preferred_order&df.index).append(df.index.difference(preferred_order))
new_columns = df.columns.sort_values()
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
handles.reverse()
labels.reverse()
if v[0] in co2_carriers:
ax.set_ylabel("CO2 [MtCO2/a]")
else:
ax.set_ylabel("Energy [TWh/a]")
ax.set_xlabel("")
ax.grid(axis="y")
ax.legend(handles,labels,ncol=4,loc="upper left")
fig.tight_layout()
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf",transparent=True)
def historical_emissions(cts):
"""
read historical emissions to add them to the carbon budget plot
"""
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
#downloaded 201228 (modified by EEA last on 201221)
fn = "data/eea/UNFCCC_v23.csv"
df = pd.read_csv(fn, encoding="latin-1")
df.loc[df["Year"] == "1985-1987","Year"] = 1986
df["Year"] = df["Year"].astype(int)
df = df.set_index(['Year', 'Sector_name', 'Country_code', 'Pollutant_name']).sort_index()
e = pd.Series()
e["electricity"] = '1.A.1.a - Public Electricity and Heat Production'
e['residential non-elec'] = '1.A.4.b - Residential'
e['services non-elec'] = '1.A.4.a - Commercial/Institutional'
e['rail non-elec'] = "1.A.3.c - Railways"
e["road non-elec"] = '1.A.3.b - Road Transportation'
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
e['international navigation'] = '1.D.1.b - International Navigation'
e["domestic aviation"] = '1.A.3.a - Domestic Aviation'
e["international aviation"] = '1.D.1.a - International Aviation'
e['total energy'] = '1 - Energy'
e['industrial processes'] = '2 - Industrial Processes and Product Use'
e['agriculture'] = '3 - Agriculture'
e['LULUCF'] = '4 - Land Use, Land-Use Change and Forestry'
e['waste management'] = '5 - Waste management'
e['other'] = '6 - Other Sector'
e['indirect'] = 'ind_CO2 - Indirect CO2'
e["total wL"] = "Total (with LULUCF)"
e["total woL"] = "Total (without LULUCF)"
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
cts
if "GB" in cts:
cts.remove("GB")
cts.append("UK")
year = np.arange(1990,2018).tolist()
idx = pd.IndexSlice
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2
co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec',
'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation',
'international navigation']].sum()
emissions = co2_totals.loc["electricity"]
if "T" in opts:
emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum()
if "H" in opts:
emissions += co2_totals.loc[[i+ " non-elec" for i in ["residential","services"]]].sum()
if "I" in opts:
emissions += co2_totals.loc[["industrial non-elec","industrial processes",
"domestic aviation","international aviation",
"domestic navigation","international navigation"]].sum()
return emissions
def plot_carbon_budget_distribution():
"""
Plot historical carbon emissions in the EU and decarbonization path
"""
import matplotlib.gridspec as gridspec
import seaborn as sns; sns.set()
sns.set_style('ticks')
plt.style.use('seaborn-ticks')
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['xtick.labelsize'] = 20
plt.rcParams['ytick.labelsize'] = 20
plt.figure(figsize=(10, 7))
gs1 = gridspec.GridSpec(1, 1)
ax1 = plt.subplot(gs1[0,0])
ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22)
ax1.set_ylim([0,5])
ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1])
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
cts=countries.index.to_list()
e_1990 = co2_emissions_year(cts, opts, year=1990)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
index_col=0)
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
color='dodgerblue', label=None)
emissions = historical_emissions(cts)
ax1.plot(emissions, color='black', linewidth=3, label=None)
#plot commited and uder-discussion targets
#(notice that historical emissions include all countries in the
# network, but targets refer to EU)
ax1.plot([2020],[0.8*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
ax1.plot([2030],[0.45*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
markeredgecolor='black')
ax1.plot([2030],[0.6*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]],
color='gray', linewidth=2, marker='_', alpha=0.5)
ax1.plot([2050],[0.01*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
linewidth=0, markeredgecolor='black',
label='EU under-discussion target', zorder=10,
clip_on=False)
ax1.plot([2050],[0.125*emissions[1990]],'ro',
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black', label='EU commited target')
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
facecolor='white', frameon=True)
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml', encoding='utf8') as f:
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
snakemake.wildcards = Dict()
#snakemake.wildcards['sector_opts']='3H-T-H-B-I-solar3-dist1-cb48be3'
for item in ["costs", "energy"]:
snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item)
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/{name}/csvs/supply_energy.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/{name}/graphs/balances-energy.csv'.format(name=snakemake.config['run'],item=item)
n_header = 4
plot_costs()
plot_energy()
plot_balances()
for sector_opts in snakemake.config['scenario']['sector_opts']:
opts=sector_opts.split('-')
for o in opts:
if "cb" in o:
plot_carbon_budget_distribution()