pypsa-eur/scripts/build_industrial_production_per_node.py

175 lines
6.4 KiB
Python
Raw Normal View History

import pypsa
import pandas as pd
import geopandas as gpd
from shapely import wkt, prepared
from scipy.spatial import cKDTree as KDTree
def prepare_hotmaps_database():
df = pd.read_csv(snakemake.input.hotmaps_industrial_database,
sep=";",
index_col=0)
#remove those sites without valid geometries
df.drop(df.index[df.geom.isna()],
inplace=True)
#parse geometry
#https://geopandas.org/gallery/create_geopandas_from_pandas.html?highlight=parse#from-wkt-format
df["Coordinates"] = df.geom.apply(lambda x : wkt.loads(x[x.find(";POINT")+1:]))
gdf = gpd.GeoDataFrame(df, geometry='Coordinates')
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape_prepped = prepared.prep(europe_shape)
not_in_europe = gdf.index[~gdf.geometry.apply(europe_shape_prepped.contains)]
print("Removing the following industrial facilities since they are not in European area:")
print(gdf.loc[not_in_europe])
gdf.drop(not_in_europe,
inplace=True)
country_to_code = {
'Belgium' : 'BE',
'Bulgaria' : 'BG',
'Czech Republic' : 'CZ',
'Denmark' : 'DK',
'Germany' : 'DE',
'Estonia' : 'EE',
'Ireland' : 'IE',
'Greece' : 'GR',
'Spain' : 'ES',
'France' : 'FR',
'Croatia' : 'HR',
'Italy' : 'IT',
'Cyprus' : 'CY',
'Latvia' : 'LV',
'Lithuania' : 'LT',
'Luxembourg' : 'LU',
'Hungary' : 'HU',
'Malta' : 'MA',
'Netherland' : 'NL',
'Austria' : 'AT',
'Poland' : 'PL',
'Portugal' : 'PT',
'Romania' : 'RO',
'Slovenia' : 'SI',
'Slovakia' : 'SK',
'Finland' : 'FI',
'Sweden' : 'SE',
'United Kingdom' : 'GB',
'Iceland' : 'IS',
'Norway' : 'NO',
'Montenegro' : 'ME',
'FYR of Macedonia' : 'MK',
'Albania' : 'AL',
'Serbia' : 'RS',
'Turkey' : 'TU',
'Bosnia and Herzegovina' : 'BA',
'Switzerland' : 'CH',
'Liechtenstein' : 'AT',
}
gdf["country_code"] = gdf.Country.map(country_to_code)
if gdf["country_code"].isna().any():
print("Warning, some countries not assigned an ISO code")
gdf["x"] = gdf.geometry.x
gdf["y"] = gdf.geometry.y
return gdf
def assign_buses(gdf):
gdf["bus"] = ""
for c in n.buses.country.unique():
buses_i = n.buses.index[n.buses.country == c]
kdtree = KDTree(n.buses.loc[buses_i, ['x','y']].values)
industry_i = gdf.index[(gdf.country_code == c)]
if industry_i.empty:
print("Skipping country with no industry:",c)
else:
tree_i = kdtree.query(gdf.loc[industry_i, ['x','y']].values)[1]
gdf.loc[industry_i, 'bus'] = buses_i[tree_i]
if (gdf.bus == "").any():
print("Some industrial facilities have empty buses")
if gdf.bus.isna().any():
print("Some industrial facilities have NaN buses")
def build_nodal_industrial_production(gdf):
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow,
index_col=0)
nodal_industrial_production = pd.DataFrame(index=n.buses.index,
columns=industrial_production.columns,
dtype=float)
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
pop_layout["ct"] = pop_layout.index.str[:2]
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
#map JRC/our sectors to hotmaps sector, where mapping exist
sector_mapping = {'Electric arc' : 'Iron and steel',
'Integrated steelworks' : 'Iron and steel',
'DRI + Electric arc' : 'Iron and steel',
'Ammonia' : 'Chemical industry',
'Basic chemicals (without ammonia)' : 'Chemical industry',
'Other chemicals' : 'Chemical industry',
'Pharmaceutical products etc.' : 'Chemical industry',
'Cement' : 'Cement',
'Ceramics & other NMM' : 'Non-metallic mineral products',
'Glass production' : 'Glass',
'Pulp production' : 'Paper and printing',
'Paper production' : 'Paper and printing',
'Printing and media reproduction' : 'Paper and printing',
'Alumina production' : 'Non-ferrous metals',
'Aluminium - primary production' : 'Non-ferrous metals',
'Aluminium - secondary production' : 'Non-ferrous metals',
'Other non-ferrous metals' : 'Non-ferrous metals',
}
for c in n.buses.country.unique():
buses = n.buses.index[n.buses.country == c]
for sector in industrial_production.columns:
facilities = gdf.index[(gdf.country_code == c) & (gdf.Subsector == sector_mapping.get(sector,"None"))]
if (sector in sector_mapping) and not facilities.empty:
emissions = gdf.loc[facilities,"Emissions_ETS_2014"]
if emissions.sum() == 0:
distribution_key = pd.Series(1/len(facilities),
facilities)
else:
#BEWARE: this is a strong assumption
emissions = emissions.fillna(emissions.mean())
distribution_key = emissions/emissions.sum()
distribution_key = distribution_key.groupby(gdf.loc[facilities,"bus"]).sum().reindex(buses,fill_value=0.)
else:
distribution_key = pop_layout.loc[buses,"fraction"]
if abs(distribution_key.sum() - 1) > 1e-4:
print(c,sector,distribution_key)
nodal_industrial_production.loc[buses,sector] = industrial_production.at[c,sector]*distribution_key
nodal_industrial_production.to_csv(snakemake.output.industrial_production_per_node)
if __name__ == "__main__":
n = pypsa.Network(snakemake.input.network)
hotmaps_database = prepare_hotmaps_database()
assign_buses(hotmaps_database)
build_nodal_industrial_production(hotmaps_database)