175 lines
6.4 KiB
Python
175 lines
6.4 KiB
Python
|
|
||
|
import pypsa
|
||
|
import pandas as pd
|
||
|
import geopandas as gpd
|
||
|
from shapely import wkt, prepared
|
||
|
from scipy.spatial import cKDTree as KDTree
|
||
|
|
||
|
|
||
|
def prepare_hotmaps_database():
|
||
|
|
||
|
df = pd.read_csv(snakemake.input.hotmaps_industrial_database,
|
||
|
sep=";",
|
||
|
index_col=0)
|
||
|
|
||
|
#remove those sites without valid geometries
|
||
|
df.drop(df.index[df.geom.isna()],
|
||
|
inplace=True)
|
||
|
|
||
|
#parse geometry
|
||
|
#https://geopandas.org/gallery/create_geopandas_from_pandas.html?highlight=parse#from-wkt-format
|
||
|
df["Coordinates"] = df.geom.apply(lambda x : wkt.loads(x[x.find(";POINT")+1:]))
|
||
|
|
||
|
gdf = gpd.GeoDataFrame(df, geometry='Coordinates')
|
||
|
|
||
|
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
|
||
|
europe_shape_prepped = prepared.prep(europe_shape)
|
||
|
not_in_europe = gdf.index[~gdf.geometry.apply(europe_shape_prepped.contains)]
|
||
|
print("Removing the following industrial facilities since they are not in European area:")
|
||
|
print(gdf.loc[not_in_europe])
|
||
|
gdf.drop(not_in_europe,
|
||
|
inplace=True)
|
||
|
|
||
|
country_to_code = {
|
||
|
'Belgium' : 'BE',
|
||
|
'Bulgaria' : 'BG',
|
||
|
'Czech Republic' : 'CZ',
|
||
|
'Denmark' : 'DK',
|
||
|
'Germany' : 'DE',
|
||
|
'Estonia' : 'EE',
|
||
|
'Ireland' : 'IE',
|
||
|
'Greece' : 'GR',
|
||
|
'Spain' : 'ES',
|
||
|
'France' : 'FR',
|
||
|
'Croatia' : 'HR',
|
||
|
'Italy' : 'IT',
|
||
|
'Cyprus' : 'CY',
|
||
|
'Latvia' : 'LV',
|
||
|
'Lithuania' : 'LT',
|
||
|
'Luxembourg' : 'LU',
|
||
|
'Hungary' : 'HU',
|
||
|
'Malta' : 'MA',
|
||
|
'Netherland' : 'NL',
|
||
|
'Austria' : 'AT',
|
||
|
'Poland' : 'PL',
|
||
|
'Portugal' : 'PT',
|
||
|
'Romania' : 'RO',
|
||
|
'Slovenia' : 'SI',
|
||
|
'Slovakia' : 'SK',
|
||
|
'Finland' : 'FI',
|
||
|
'Sweden' : 'SE',
|
||
|
'United Kingdom' : 'GB',
|
||
|
'Iceland' : 'IS',
|
||
|
'Norway' : 'NO',
|
||
|
'Montenegro' : 'ME',
|
||
|
'FYR of Macedonia' : 'MK',
|
||
|
'Albania' : 'AL',
|
||
|
'Serbia' : 'RS',
|
||
|
'Turkey' : 'TU',
|
||
|
'Bosnia and Herzegovina' : 'BA',
|
||
|
'Switzerland' : 'CH',
|
||
|
'Liechtenstein' : 'AT',
|
||
|
}
|
||
|
gdf["country_code"] = gdf.Country.map(country_to_code)
|
||
|
|
||
|
if gdf["country_code"].isna().any():
|
||
|
print("Warning, some countries not assigned an ISO code")
|
||
|
|
||
|
gdf["x"] = gdf.geometry.x
|
||
|
gdf["y"] = gdf.geometry.y
|
||
|
|
||
|
return gdf
|
||
|
|
||
|
|
||
|
def assign_buses(gdf):
|
||
|
|
||
|
gdf["bus"] = ""
|
||
|
|
||
|
for c in n.buses.country.unique():
|
||
|
buses_i = n.buses.index[n.buses.country == c]
|
||
|
kdtree = KDTree(n.buses.loc[buses_i, ['x','y']].values)
|
||
|
|
||
|
industry_i = gdf.index[(gdf.country_code == c)]
|
||
|
|
||
|
if industry_i.empty:
|
||
|
print("Skipping country with no industry:",c)
|
||
|
else:
|
||
|
tree_i = kdtree.query(gdf.loc[industry_i, ['x','y']].values)[1]
|
||
|
gdf.loc[industry_i, 'bus'] = buses_i[tree_i]
|
||
|
|
||
|
if (gdf.bus == "").any():
|
||
|
print("Some industrial facilities have empty buses")
|
||
|
if gdf.bus.isna().any():
|
||
|
print("Some industrial facilities have NaN buses")
|
||
|
|
||
|
|
||
|
def build_nodal_industrial_production(gdf):
|
||
|
|
||
|
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow,
|
||
|
index_col=0)
|
||
|
|
||
|
nodal_industrial_production = pd.DataFrame(index=n.buses.index,
|
||
|
columns=industrial_production.columns,
|
||
|
dtype=float)
|
||
|
|
||
|
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
|
||
|
pop_layout["ct"] = pop_layout.index.str[:2]
|
||
|
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
|
||
|
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
|
||
|
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
|
||
|
|
||
|
#map JRC/our sectors to hotmaps sector, where mapping exist
|
||
|
sector_mapping = {'Electric arc' : 'Iron and steel',
|
||
|
'Integrated steelworks' : 'Iron and steel',
|
||
|
'DRI + Electric arc' : 'Iron and steel',
|
||
|
'Ammonia' : 'Chemical industry',
|
||
|
'Basic chemicals (without ammonia)' : 'Chemical industry',
|
||
|
'Other chemicals' : 'Chemical industry',
|
||
|
'Pharmaceutical products etc.' : 'Chemical industry',
|
||
|
'Cement' : 'Cement',
|
||
|
'Ceramics & other NMM' : 'Non-metallic mineral products',
|
||
|
'Glass production' : 'Glass',
|
||
|
'Pulp production' : 'Paper and printing',
|
||
|
'Paper production' : 'Paper and printing',
|
||
|
'Printing and media reproduction' : 'Paper and printing',
|
||
|
'Alumina production' : 'Non-ferrous metals',
|
||
|
'Aluminium - primary production' : 'Non-ferrous metals',
|
||
|
'Aluminium - secondary production' : 'Non-ferrous metals',
|
||
|
'Other non-ferrous metals' : 'Non-ferrous metals',
|
||
|
}
|
||
|
|
||
|
for c in n.buses.country.unique():
|
||
|
buses = n.buses.index[n.buses.country == c]
|
||
|
for sector in industrial_production.columns:
|
||
|
facilities = gdf.index[(gdf.country_code == c) & (gdf.Subsector == sector_mapping.get(sector,"None"))]
|
||
|
if (sector in sector_mapping) and not facilities.empty:
|
||
|
emissions = gdf.loc[facilities,"Emissions_ETS_2014"]
|
||
|
if emissions.sum() == 0:
|
||
|
distribution_key = pd.Series(1/len(facilities),
|
||
|
facilities)
|
||
|
else:
|
||
|
#BEWARE: this is a strong assumption
|
||
|
emissions = emissions.fillna(emissions.mean())
|
||
|
distribution_key = emissions/emissions.sum()
|
||
|
distribution_key = distribution_key.groupby(gdf.loc[facilities,"bus"]).sum().reindex(buses,fill_value=0.)
|
||
|
else:
|
||
|
distribution_key = pop_layout.loc[buses,"fraction"]
|
||
|
|
||
|
if abs(distribution_key.sum() - 1) > 1e-4:
|
||
|
print(c,sector,distribution_key)
|
||
|
|
||
|
nodal_industrial_production.loc[buses,sector] = industrial_production.at[c,sector]*distribution_key
|
||
|
|
||
|
nodal_industrial_production.to_csv(snakemake.output.industrial_production_per_node)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
|
||
|
n = pypsa.Network(snakemake.input.network)
|
||
|
|
||
|
hotmaps_database = prepare_hotmaps_database()
|
||
|
|
||
|
assign_buses(hotmaps_database)
|
||
|
|
||
|
build_nodal_industrial_production(hotmaps_database)
|