pypsa-eur/scripts/build_industrial_production_per_node.py

48 lines
2.3 KiB
Python
Raw Normal View History

import pandas as pd
def build_nodal_industrial_production():
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow,
index_col=0)
distribution_keys = pd.read_csv(snakemake.input.industrial_distribution_key,
index_col=0)
distribution_keys["country"] = distribution_keys.index.str[:2]
nodal_industrial_production = pd.DataFrame(index=distribution_keys.index,
columns=industrial_production.columns,
dtype=float)
#map JRC/our sectors to hotmaps sector, where mapping exist
sector_mapping = {'Electric arc' : 'Iron and steel',
'Integrated steelworks' : 'Iron and steel',
'DRI + Electric arc' : 'Iron and steel',
'Ammonia' : 'Chemical industry',
'Basic chemicals (without ammonia)' : 'Chemical industry',
'Other chemicals' : 'Chemical industry',
'Pharmaceutical products etc.' : 'Chemical industry',
'Cement' : 'Cement',
'Ceramics & other NMM' : 'Non-metallic mineral products',
'Glass production' : 'Glass',
'Pulp production' : 'Paper and printing',
'Paper production' : 'Paper and printing',
'Printing and media reproduction' : 'Paper and printing',
'Alumina production' : 'Non-ferrous metals',
'Aluminium - primary production' : 'Non-ferrous metals',
'Aluminium - secondary production' : 'Non-ferrous metals',
'Other non-ferrous metals' : 'Non-ferrous metals',
}
for c in distribution_keys.country.unique():
buses = distribution_keys.index[distribution_keys.country == c]
for sector in industrial_production.columns:
distribution_key = distribution_keys.loc[buses,sector_mapping.get(sector,"population")]
nodal_industrial_production.loc[buses,sector] = industrial_production.at[c,sector]*distribution_key
nodal_industrial_production.to_csv(snakemake.output.industrial_production_per_node)
if __name__ == "__main__":
build_nodal_industrial_production()