Compare commits
11 Commits
Author | SHA1 | Date | |
---|---|---|---|
8b79f49bb9 | |||
82e8a23918 | |||
ca334452a0 | |||
2762254803 | |||
23f7c14c8e | |||
4ac714c151 | |||
f28db0ffe3 | |||
c80588fcbb | |||
ab322e3f86 | |||
99558ce92b | |||
fdd13b956d |
@ -1,4 +1,4 @@
|
||||
name: pytorch_sac_ae
|
||||
name: pytorch_sac_ae2
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
|
179
encoder.py
179
encoder.py
@ -1,9 +1,8 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def tie_weights(src, trg):
|
||||
def tie_weights(src, trg):
|
||||
assert type(src) == type(trg)
|
||||
trg.weight = src.weight
|
||||
trg.bias = src.bias
|
||||
@ -11,7 +10,7 @@ def tie_weights(src, trg):
|
||||
|
||||
OUT_DIM = {2: 39, 4: 35, 6: 31}
|
||||
|
||||
|
||||
'''
|
||||
class PixelEncoder(nn.Module):
|
||||
"""Convolutional encoder of pixels observations."""
|
||||
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
|
||||
@ -29,8 +28,8 @@ class PixelEncoder(nn.Module):
|
||||
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
||||
|
||||
out_dim = OUT_DIM[num_layers]
|
||||
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
|
||||
self.ln = nn.LayerNorm(self.feature_dim * 2)
|
||||
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim)
|
||||
self.ln = nn.LayerNorm(self.feature_dim)
|
||||
|
||||
self.outputs = dict()
|
||||
|
||||
@ -64,17 +63,97 @@ class PixelEncoder(nn.Module):
|
||||
|
||||
h_norm = self.ln(h_fc)
|
||||
self.outputs['ln'] = h_norm
|
||||
|
||||
h_tan = torch.tanh(h_norm)
|
||||
|
||||
mu, logstd = torch.chunk(h_tan, 2, dim=-1)
|
||||
out = torch.tanh(h_norm)
|
||||
self.outputs['tanh'] = out
|
||||
|
||||
return out
|
||||
|
||||
def copy_conv_weights_from(self, source):
|
||||
"""Tie convolutional layers"""
|
||||
# only tie conv layers
|
||||
for i in range(self.num_layers):
|
||||
tie_weights(src=source.convs[i], trg=self.convs[i])
|
||||
|
||||
def log(self, L, step, log_freq):
|
||||
if step % log_freq != 0:
|
||||
return
|
||||
|
||||
for k, v in self.outputs.items():
|
||||
L.log_histogram('train_encoder/%s_hist' % k, v, step)
|
||||
if len(v.shape) > 2:
|
||||
L.log_image('train_encoder/%s_img' % k, v[0], step)
|
||||
|
||||
for i in range(self.num_layers):
|
||||
L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step)
|
||||
L.log_param('train_encoder/fc', self.fc, step)
|
||||
L.log_param('train_encoder/ln', self.ln, step)
|
||||
'''
|
||||
|
||||
class PixelEncoder(nn.Module):
|
||||
"""Convolutional encoder of pixels observations."""
|
||||
def __init__(self, obs_shape, feature_dim, num_layers=2, num_filters=32):
|
||||
super().__init__()
|
||||
|
||||
assert len(obs_shape) == 3
|
||||
|
||||
self.feature_dim = feature_dim
|
||||
self.num_layers = num_layers
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)]
|
||||
)
|
||||
for i in range(num_layers - 1):
|
||||
self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1))
|
||||
|
||||
out_dim = OUT_DIM[num_layers]
|
||||
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
|
||||
self.ln = nn.LayerNorm(self.feature_dim * 2)
|
||||
self.combine = nn.Linear(self.feature_dim + 6, self.feature_dim)
|
||||
|
||||
self.outputs = dict()
|
||||
|
||||
def reparameterize(self, mu, logstd):
|
||||
std = torch.exp(logstd)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
def forward_conv(self, obs):
|
||||
obs = obs / 255.
|
||||
self.outputs['obs'] = obs
|
||||
|
||||
conv = torch.relu(self.convs[0](obs))
|
||||
self.outputs['conv1'] = conv
|
||||
|
||||
for i in range(1, self.num_layers):
|
||||
conv = torch.relu(self.convs[i](conv))
|
||||
self.outputs['conv%s' % (i + 1)] = conv
|
||||
|
||||
h = conv.view(conv.size(0), -1)
|
||||
return h
|
||||
|
||||
def forward(self, obs, detach=False):
|
||||
h = self.forward_conv(obs)
|
||||
|
||||
if detach:
|
||||
h = h.detach()
|
||||
|
||||
h_fc = self.fc(h)
|
||||
self.outputs['fc'] = h_fc
|
||||
|
||||
h_norm = self.ln(h_fc)
|
||||
self.outputs['ln'] = h_norm
|
||||
|
||||
#out = torch.tanh(h_norm)
|
||||
|
||||
mu, logstd = torch.chunk(h_norm, 2, dim=-1)
|
||||
logstd = torch.tanh(logstd)
|
||||
self.outputs['mu'] = mu
|
||||
self.outputs['logstd'] = logstd
|
||||
|
||||
std = torch.tanh(h_norm)
|
||||
self.outputs['std'] = std
|
||||
self.outputs['std'] = logstd.exp()
|
||||
|
||||
out = self.reparameterize(mu, logstd)
|
||||
self.outputs['tanh'] = out
|
||||
return out, mu, logstd
|
||||
|
||||
def copy_conv_weights_from(self, source):
|
||||
@ -97,7 +176,6 @@ class PixelEncoder(nn.Module):
|
||||
L.log_param('train_encoder/fc', self.fc, step)
|
||||
L.log_param('train_encoder/ln', self.ln, step)
|
||||
|
||||
|
||||
class IdentityEncoder(nn.Module):
|
||||
def __init__(self, obs_shape, feature_dim, num_layers, num_filters):
|
||||
super().__init__()
|
||||
@ -115,6 +193,27 @@ class IdentityEncoder(nn.Module):
|
||||
pass
|
||||
|
||||
|
||||
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder}
|
||||
|
||||
|
||||
def make_encoder(
|
||||
encoder_type, obs_shape, feature_dim, num_layers, num_filters
|
||||
):
|
||||
assert encoder_type in _AVAILABLE_ENCODERS
|
||||
return _AVAILABLE_ENCODERS[encoder_type](
|
||||
obs_shape, feature_dim, num_layers, num_filters
|
||||
)
|
||||
|
||||
def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||
sample_size = x_samples.shape[0]
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
|
||||
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
@ -126,13 +225,11 @@ class TransitionModel(nn.Module):
|
||||
self.act_fn = nn.ELU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.fc_hidden = nn.Linear(hidden_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
||||
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
||||
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
||||
|
||||
self.batch_norm = nn.BatchNorm1d(hidden_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(state_size)
|
||||
|
||||
self.min_sigma = 1e-4
|
||||
self.max_sigma = 1e0
|
||||
|
||||
@ -143,7 +240,6 @@ class TransitionModel(nn.Module):
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
@ -161,29 +257,21 @@ class TransitionModel(nn.Module):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def transition_step(self, prev_state, prev_action, prev_hist, prev_not_done):
|
||||
prev_state = prev_state.detach() * prev_not_done
|
||||
prev_hist = prev_hist * prev_not_done
|
||||
def transition_step(self, state, action, hist, not_done):
|
||||
state = state * not_done
|
||||
hist = hist * not_done
|
||||
|
||||
state_action_enc = self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))
|
||||
state_action_enc = self.act_fn(self.batch_norm(state_action_enc))
|
||||
state_action_enc = self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1)))
|
||||
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||
|
||||
current_hist = self.history_cell(state_action_enc, prev_hist)
|
||||
state_mu = self.act_fn(self.fc_state_mu(torch.cat([state_action_enc, prev_hist], dim=-1)))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_hist], dim=-1)))
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
current_hist = self.history_cell(state_action_enc, hist)
|
||||
next_state_mu = self.act_fn(self.fc_state_mu(torch.cat([state_action_enc, hist], dim=-1)))
|
||||
next_state_sigma = torch.tanh(self.fc_state_sigma(torch.cat([state_action_enc, hist], dim=-1)))
|
||||
next_state = next_state_mu + torch.randn_like(next_state_mu) * next_state_sigma.exp()
|
||||
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_hist}
|
||||
return state_enc
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history):
|
||||
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(state_action_enc, prev_history)
|
||||
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
|
||||
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
|
||||
state_enc = {"mean": next_state_mu, "logvar": next_state_sigma, "sample": next_state, "history": current_hist}
|
||||
return state_enc
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
@ -197,12 +285,14 @@ class TransitionModel(nn.Module):
|
||||
observed_rollout.append(state_enc)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def forward(self, state, action, hist, not_done):
|
||||
return self.transition_step(state, action, hist, not_done)
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
def reparameterize(self, mean, std):
|
||||
eps = torch.randn_like(mean)
|
||||
return mean + eps * std
|
||||
|
||||
|
||||
def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||
sample_size = x_samples.shape[0]
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
@ -210,15 +300,4 @@ def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
|
||||
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
_AVAILABLE_ENCODERS = {'pixel': PixelEncoder, 'identity': IdentityEncoder}
|
||||
|
||||
|
||||
def make_encoder(
|
||||
encoder_type, obs_shape, feature_dim, num_layers, num_filters
|
||||
):
|
||||
assert encoder_type in _AVAILABLE_ENCODERS
|
||||
return _AVAILABLE_ENCODERS[encoder_type](
|
||||
obs_shape, feature_dim, num_layers, num_filters
|
||||
)
|
||||
return upper_bound/2.0
|
86
graphs_plot.py
Normal file
86
graphs_plot.py
Normal file
@ -0,0 +1,86 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
||||
|
||||
"""
|
||||
def tabulate_events(dpath):
|
||||
files = os.listdir(dpath)[0]
|
||||
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
|
||||
|
||||
tags = summary_iterators[0].Tags()['scalars']
|
||||
|
||||
for it in summary_iterators:
|
||||
assert it.Tags()['scalars'] == tags
|
||||
|
||||
out = {t: [] for t in tags}
|
||||
steps = []
|
||||
|
||||
for tag in tags:
|
||||
steps = [e.step for e in summary_iterators[0].Scalars(tag)]
|
||||
|
||||
for events in zip(*[acc.Scalars(tag) for acc in summary_iterators]):
|
||||
assert len(set(e.step for e in events)) == 1
|
||||
|
||||
out[tag].append([e.value for e in events])
|
||||
|
||||
return out, steps
|
||||
|
||||
events, steps = tabulate_events('/home/vedant/pytorch_sac_ae/log/runs')
|
||||
|
||||
data = []
|
||||
|
||||
for tag, values in events.items():
|
||||
for run_idx, run_values in enumerate(values):
|
||||
for step_idx, value in enumerate(run_values):
|
||||
data.append({
|
||||
'tag': tag,
|
||||
'run': run_idx,
|
||||
'step': steps[step_idx],
|
||||
'value': value,
|
||||
})
|
||||
|
||||
df = pd.DataFrame(data)
|
||||
print(df.head())
|
||||
exit()
|
||||
|
||||
plt.figure(figsize=(10,6))
|
||||
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
|
||||
plt.show()
|
||||
"""
|
||||
|
||||
|
||||
from tensorboard.backend.event_processing import event_accumulator
|
||||
|
||||
|
||||
|
||||
def data_from_tb(files):
|
||||
all_steps, all_rewards = [], []
|
||||
for file in files:
|
||||
ea = event_accumulator.EventAccumulator(file, size_guidance={'scalars': 0})
|
||||
ea.Reload()
|
||||
|
||||
episode_rewards = ea.Scalars('train/episode_reward')
|
||||
steps = [event.step for event in episode_rewards][:990000]
|
||||
rewards = [event.value for event in episode_rewards][:990000]
|
||||
all_steps.append(steps)
|
||||
all_rewards.append(rewards)
|
||||
return all_steps, all_rewards
|
||||
|
||||
|
||||
files = ['/home/vedant/pytorch_sac_ae/log/runs/tb_21_05_2023-13_19_36/events.out.tfevents.1684667976.cpswkstn6-nvidia4090.1749060.0',
|
||||
'/home/vedant/pytorch_sac_ae/log/runs/tb_22_05_2023-09_56_30/events.out.tfevents.1684742190.cpswkstn6-nvidia4090.1976229.0']
|
||||
|
||||
all_steps, all_rewards = data_from_tb(files)
|
||||
mean_rewards = np.mean(all_rewards, axis=0)
|
||||
std_rewards = np.std(all_rewards, axis=0)
|
||||
mean_steps = np.mean(all_steps, axis=0)
|
||||
|
||||
df = pd.DataFrame({'Steps': mean_steps,'Rewards': mean_rewards,'Standard Deviation': std_rewards})
|
||||
|
||||
sns.relplot(x='Steps', y='Rewards', kind='line', data=df, ci="sd")
|
||||
plt.fill_between(df['Steps'], df['Rewards'] - df['Standard Deviation'], df['Rewards'] + df['Standard Deviation'], color='b', alpha=.1)
|
||||
plt.title("Mean Rewards vs Steps with Standard Deviation")
|
||||
plt.show()
|
@ -163,4 +163,4 @@ class Logger(object):
|
||||
|
||||
def dump(self, step):
|
||||
self._train_mg.dump(step, 'train')
|
||||
self._eval_mg.dump(step, 'eval')
|
||||
self._eval_mg.dump(step, 'eval')
|
166
sac_ae.py
166
sac_ae.py
@ -70,8 +70,10 @@ class Actor(nn.Module):
|
||||
self.outputs = dict()
|
||||
self.apply(weight_init)
|
||||
|
||||
def forward(self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False):
|
||||
obs, _, _ = self.encoder(obs, detach=detach_encoder)
|
||||
def forward(
|
||||
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
|
||||
):
|
||||
obs,_,_ = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
|
||||
|
||||
@ -98,6 +100,7 @@ class Actor(nn.Module):
|
||||
log_pi = None
|
||||
|
||||
mu, pi, log_pi = squash(mu, pi, log_pi)
|
||||
|
||||
return mu, pi, log_pi, log_std
|
||||
|
||||
def log(self, L, step, log_freq=LOG_FREQ):
|
||||
@ -156,7 +159,7 @@ class Critic(nn.Module):
|
||||
|
||||
def forward(self, obs, action, detach_encoder=False):
|
||||
# detach_encoder allows to stop gradient propogation to encoder
|
||||
obs, _ , _ = self.encoder(obs, detach=detach_encoder)
|
||||
obs,_,_ = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
q1 = self.Q1(obs, action)
|
||||
q2 = self.Q2(obs, action)
|
||||
@ -179,39 +182,12 @@ class Critic(nn.Module):
|
||||
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
|
||||
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
|
||||
|
||||
class CURL(nn.Module):
|
||||
"""
|
||||
CURL
|
||||
"""
|
||||
|
||||
def __init__(self, obs_shape, z_dim, a_dim, batch_size, critic, critic_target, output_type="continuous"):
|
||||
super(CURL, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
self.encoder = critic.encoder
|
||||
|
||||
self.encoder_target = critic_target.encoder
|
||||
class LBLoss(nn.Module):
|
||||
def __init__(self, z_dim):
|
||||
super(LBLoss, self).__init__()
|
||||
self.z_dim = z_dim
|
||||
|
||||
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
|
||||
self.combine = nn.Linear(z_dim + a_dim, z_dim)
|
||||
self.output_type = output_type
|
||||
|
||||
def encode(self, x, a=None, detach=False, ema=False):
|
||||
"""
|
||||
Encoder: z_t = e(x_t)
|
||||
:param x: x_t, x y coordinates
|
||||
:return: z_t, value in r2
|
||||
"""
|
||||
if ema:
|
||||
with torch.no_grad():
|
||||
z_out = self.encoder_target(x)[0]
|
||||
z_out = self.combine(torch.concat((z_out,a), dim=-1))
|
||||
else:
|
||||
z_out = self.encoder(x)[0]
|
||||
|
||||
if detach:
|
||||
z_out = z_out.detach()
|
||||
return z_out
|
||||
|
||||
def compute_logits(self, z_a, z_pos):
|
||||
"""
|
||||
@ -225,7 +201,8 @@ class CURL(nn.Module):
|
||||
logits = torch.matmul(z_a, Wz) # (B,B)
|
||||
logits = logits - torch.max(logits, 1)[0][:, None]
|
||||
return logits
|
||||
|
||||
|
||||
|
||||
class SacAeAgent(object):
|
||||
"""SAC+AE algorithm."""
|
||||
def __init__(
|
||||
@ -267,12 +244,6 @@ class SacAeAgent(object):
|
||||
self.critic_target_update_freq = critic_target_update_freq
|
||||
self.decoder_update_freq = decoder_update_freq
|
||||
self.decoder_latent_lambda = decoder_latent_lambda
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
encoder_feature_dim,
|
||||
hidden_dim,
|
||||
action_shape[0],
|
||||
encoder_feature_dim).to(device)
|
||||
|
||||
self.actor = Actor(
|
||||
obs_shape, action_shape, hidden_dim, encoder_type,
|
||||
@ -289,7 +260,13 @@ class SacAeAgent(object):
|
||||
obs_shape, action_shape, hidden_dim, encoder_type,
|
||||
encoder_feature_dim, num_layers, num_filters
|
||||
).to(device)
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
encoder_feature_dim, hidden_dim, action_shape[0], history_size=256
|
||||
).to(device)
|
||||
|
||||
self.lb_loss = LBLoss(encoder_feature_dim).to(device)
|
||||
|
||||
self.critic_target.load_state_dict(self.critic.state_dict())
|
||||
|
||||
# tie encoders between actor and critic
|
||||
@ -300,11 +277,6 @@ class SacAeAgent(object):
|
||||
# set target entropy to -|A|
|
||||
self.target_entropy = -np.prod(action_shape)
|
||||
|
||||
self.CURL = CURL(obs_shape, encoder_feature_dim, action_shape[0],
|
||||
obs_shape[0], self.critic,self.critic_target, output_type='continuous').to(self.device)
|
||||
|
||||
self.cross_entropy_loss = nn.CrossEntropyLoss()
|
||||
|
||||
self.decoder = None
|
||||
if decoder_type != 'identity':
|
||||
# create decoder
|
||||
@ -316,7 +288,10 @@ class SacAeAgent(object):
|
||||
|
||||
# optimizer for critic encoder for reconstruction loss
|
||||
self.encoder_optimizer = torch.optim.Adam(
|
||||
self.critic.encoder.parameters(), lr=encoder_lr
|
||||
list(self.critic.encoder.parameters()) +
|
||||
list(self.transition_model.parameters()), #+
|
||||
#list(self.lb_loss.parameters()),
|
||||
lr=encoder_lr
|
||||
)
|
||||
|
||||
# optimizer for decoder
|
||||
@ -335,10 +310,6 @@ class SacAeAgent(object):
|
||||
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
|
||||
)
|
||||
|
||||
self.cpc_optimizer = torch.optim.Adam(
|
||||
self.CURL.parameters(), lr=encoder_lr
|
||||
)
|
||||
|
||||
self.log_alpha_optimizer = torch.optim.Adam(
|
||||
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
|
||||
)
|
||||
@ -387,6 +358,7 @@ class SacAeAgent(object):
|
||||
target_Q) + F.mse_loss(current_Q2, target_Q)
|
||||
L.log('train_critic/loss', critic_loss, step)
|
||||
|
||||
|
||||
# Optimize the critic
|
||||
self.critic_optimizer.zero_grad()
|
||||
critic_loss.backward()
|
||||
@ -423,74 +395,76 @@ class SacAeAgent(object):
|
||||
alpha_loss.backward()
|
||||
self.log_alpha_optimizer.step()
|
||||
|
||||
def update_decoder(self, last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, target_obs, L, step):
|
||||
h_curr, mu_h_curr, std_h_curr = self.critic.encoder(curr_obs)
|
||||
|
||||
def update_decoder(self, obs, target_obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list):
|
||||
with torch.no_grad():
|
||||
h_last, _, _ = self.critic.encoder(last_obs)
|
||||
self.transition_model.init_states(last_obs.shape[0], self.device)
|
||||
curr_state = self.transition_model.transition_step(h_last, last_action, self.transition_model.prev_history, last_not_done)
|
||||
|
||||
hist = curr_state["history"]
|
||||
next_state = self.transition_model.transition_step(h_curr, action, hist, not_done)
|
||||
|
||||
next_state_mu = next_state["mean"]
|
||||
next_state_sigma = next_state["std"]
|
||||
next_state_sample = next_state["sample"]
|
||||
pred_dist = torch.distributions.Normal(next_state_mu, next_state_sigma)
|
||||
hist = torch.zeros((target_obs.shape[0], 256)).to(self.device)
|
||||
for i in range(len(obs_list)-1):
|
||||
state, _, _ = self.critic.encoder(obs_list[i])
|
||||
action = action_list[i]
|
||||
not_done = not_done_list[i]
|
||||
state_enc = self.transition_model(state, action, hist, not_done)
|
||||
hist = state_enc["history"]
|
||||
|
||||
h, mu_h_next, logstd_h_next = self.critic.encoder(next_obs)
|
||||
std_h_next = torch.exp(logstd_h_next)
|
||||
enc_dist = torch.distributions.Normal(mu_h_next, std_h_next)
|
||||
enc_loss = torch.mean(torch.distributions.kl.kl_divergence(enc_dist,pred_dist)) * 0.1
|
||||
h, h_mu, h_logvar = self.critic.encoder(obs_list[-1])
|
||||
h_clone = h.clone()
|
||||
|
||||
action = action_list[-1]
|
||||
not_done = not_done_list[-1]
|
||||
state_enc = self.transition_model(h, action, hist, not_done)
|
||||
mean, std = state_enc["mean"], state_enc["logvar"].exp()
|
||||
|
||||
z_pos = self.CURL.encode(next_obs, action.detach(), ema=True)
|
||||
logits = self.CURL.compute_logits(h_curr, z_pos)
|
||||
h_dist_enc = torch.distributions.Normal(h_mu, h_logvar.exp())
|
||||
h_dist_pred = torch.distributions.Normal(mean, std)
|
||||
enc_loss = torch.distributions.kl.kl_divergence(h_dist_enc, h_dist_pred).mean() * 1e-2
|
||||
|
||||
with torch.no_grad():
|
||||
z_pos, _ , _ = self.critic_target.encoder(next_obs_list[-1])
|
||||
z_out = self.critic_target.encoder.combine(torch.concat((z_pos, action), dim=-1))
|
||||
logits = self.lb_loss.compute_logits(h, z_out)
|
||||
labels = torch.arange(logits.shape[0]).long().to(self.device)
|
||||
lb_loss = self.cross_entropy_loss(logits, labels) * 0.1
|
||||
|
||||
ub_loss = club_loss(h, mu_h_next, logstd_h_next, next_state_sample) * 0.1
|
||||
|
||||
lb_loss = nn.CrossEntropyLoss()(logits, labels) * 1e-2
|
||||
|
||||
#with torch.no_grad():
|
||||
# z_pos, _ , _ = self.critic.encoder(next_obs_list[-1])
|
||||
#ub_loss = club_loss(state_enc["sample"], mean, state_enc["logvar"], h) * 1e-1
|
||||
|
||||
if target_obs.dim() == 4:
|
||||
# preprocess images to be in [-0.5, 0.5] range
|
||||
target_obs = utils.preprocess_obs(target_obs)
|
||||
|
||||
rec_obs = self.decoder(h)
|
||||
rec_obs = self.decoder(h_clone)
|
||||
rec_loss = F.mse_loss(target_obs, rec_obs)
|
||||
|
||||
# add L2 penalty on latent representation
|
||||
# see https://arxiv.org/pdf/1903.12436.pdf
|
||||
latent_loss = (0.5 * h.pow(2).sum(1)).mean()
|
||||
|
||||
loss = rec_loss + enc_loss + lb_loss + ub_loss #self.decoder_latent_lambda * latent_loss
|
||||
ub_loss = torch.tensor(0.0)
|
||||
#enc_loss = torch.tensor(0.0)
|
||||
#lb_loss = torch.tensor(0.0)
|
||||
#rec_loss = torch.tensor(0.0)
|
||||
loss = rec_loss + enc_loss + lb_loss + ub_loss
|
||||
self.encoder_optimizer.zero_grad()
|
||||
self.decoder_optimizer.zero_grad()
|
||||
self.cpc_optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
self.encoder_optimizer.step()
|
||||
|
||||
self.encoder_optimizer.step()
|
||||
self.decoder_optimizer.step()
|
||||
self.cpc_optimizer.step()
|
||||
|
||||
#enc_loss = torch.tensor(0.0)
|
||||
L.log('train_ae/ae_loss', loss, step)
|
||||
L.log('train_ae/rec_loss', rec_loss, step)
|
||||
L.log('train_ae/enc_loss', enc_loss, step)
|
||||
L.log('train_ae/lb_loss', lb_loss, step)
|
||||
L.log('train_ae/ub_loss', ub_loss, step)
|
||||
L.log('train_ae/enc_loss', enc_loss, step)
|
||||
L.log('train_ae/dec_loss', rec_loss, step)
|
||||
|
||||
self.decoder.log(L, step, log_freq=LOG_FREQ)
|
||||
|
||||
def update(self, replay_buffer, L, step):
|
||||
last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done = replay_buffer.sample()
|
||||
#obs, action, reward, next_obs, not_done = replay_buffer.sample()
|
||||
obs_list, action_list, reward_list, next_obs_list, not_done_list = replay_buffer.sample()
|
||||
obs, action, reward, next_obs, not_done = obs_list[-1], action_list[-1], reward_list[-1], next_obs_list[-1], not_done_list[-1]
|
||||
|
||||
L.log('train/batch_reward', last_reward.mean(), step)
|
||||
L.log('train/batch_reward', reward.mean(), step)
|
||||
|
||||
#self.update_critic(last_obs, last_action, last_reward, curr_obs, last_not_done, L, step)
|
||||
self.update_critic(curr_obs, action, reward, next_obs, not_done, L, step)
|
||||
self.update_critic(obs, action, reward, next_obs, not_done, L, step)
|
||||
|
||||
if step % self.actor_update_freq == 0:
|
||||
#self.update_actor_and_alpha(last_obs, L, step)
|
||||
self.update_actor_and_alpha(curr_obs, L, step)
|
||||
self.update_actor_and_alpha(obs, L, step)
|
||||
|
||||
if step % self.critic_target_update_freq == 0:
|
||||
utils.soft_update_params(
|
||||
@ -505,7 +479,7 @@ class SacAeAgent(object):
|
||||
)
|
||||
|
||||
if self.decoder is not None and step % self.decoder_update_freq == 0:
|
||||
self.update_decoder(last_obs, last_action, last_reward, curr_obs, last_not_done, action, reward, next_obs, not_done, next_obs, L, step)
|
||||
self.update_decoder(obs, obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list)
|
||||
|
||||
def save(self, model_dir, step):
|
||||
torch.save(
|
||||
|
84
train.py
84
train.py
@ -28,36 +28,37 @@ def parse_args():
|
||||
parser.add_argument('--frame_stack', default=3, type=int)
|
||||
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
||||
parser.add_argument('--resource_files', type=str)
|
||||
parser.add_argument('--resource_files_test', type=str)
|
||||
parser.add_argument('--total_frames', default=10000, type=int)
|
||||
# replay buffer
|
||||
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
|
||||
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)
|
||||
# train
|
||||
parser.add_argument('--agent', default='sac_ae', type=str)
|
||||
parser.add_argument('--init_steps', default=1000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=1000000, type=int)
|
||||
parser.add_argument('--batch_size', default=512, type=int)
|
||||
parser.add_argument('--num_train_steps', default=2000000, type=int)
|
||||
parser.add_argument('--batch_size', default=32, type=int)
|
||||
parser.add_argument('--hidden_dim', default=1024, type=int)
|
||||
# eval
|
||||
parser.add_argument('--eval_freq', default=10000, type=int)
|
||||
parser.add_argument('--num_eval_episodes', default=10, type=int)
|
||||
# critic
|
||||
parser.add_argument('--critic_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--critic_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--critic_beta', default=0.9, type=float)
|
||||
parser.add_argument('--critic_tau', default=0.01, type=float)
|
||||
parser.add_argument('--critic_target_update_freq', default=2, type=int)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--actor_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||
# encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str)
|
||||
parser.add_argument('--encoder_feature_dim', default=50, type=int)
|
||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--encoder_feature_dim', default=250, type=int)
|
||||
parser.add_argument('--encoder_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.05, type=float)
|
||||
parser.add_argument('--decoder_type', default='pixel', type=str)
|
||||
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
||||
parser.add_argument('--decoder_lr', default=1e-4, type=float)
|
||||
parser.add_argument('--decoder_update_freq', default=1, type=int)
|
||||
parser.add_argument('--decoder_latent_lambda', default=1e-6, type=float)
|
||||
parser.add_argument('--decoder_weight_lambda', default=1e-7, type=float)
|
||||
@ -153,9 +154,25 @@ def main():
|
||||
)
|
||||
env.seed(args.seed)
|
||||
|
||||
env_test = dmc2gym.make(
|
||||
domain_name=args.domain_name,
|
||||
task_name=args.task_name,
|
||||
seed=args.seed,
|
||||
visualize_reward=False,
|
||||
from_pixels=(args.encoder_type == 'pixel'),
|
||||
height=args.image_size,
|
||||
width=args.image_size,
|
||||
frame_skip=args.action_repeat,
|
||||
img_source=args.img_source,
|
||||
resource_files=args.resource_files_test,
|
||||
total_frames=args.total_frames
|
||||
)
|
||||
env_test.seed(args.seed)
|
||||
|
||||
# stack several consecutive frames together
|
||||
if args.encoder_type == 'pixel':
|
||||
env = utils.FrameStack(env, k=args.frame_stack)
|
||||
env_test = utils.FrameStack(env_test, k=args.frame_stack)
|
||||
|
||||
utils.make_dir(args.work_dir)
|
||||
video_dir = utils.make_dir(os.path.join(args.work_dir, 'video'))
|
||||
@ -202,7 +219,7 @@ def main():
|
||||
# evaluate agent periodically
|
||||
if step % args.eval_freq == 0:
|
||||
L.log('eval/episode', episode, step)
|
||||
evaluate(env, agent, video, args.num_eval_episodes, L, step)
|
||||
evaluate(env_test, agent, video, args.num_eval_episodes, L, step)
|
||||
if args.save_model:
|
||||
agent.save(model_dir, step)
|
||||
if args.save_buffer:
|
||||
@ -218,65 +235,28 @@ def main():
|
||||
|
||||
L.log('train/episode', episode, step)
|
||||
|
||||
if episode_step == 0:
|
||||
last_obs = obs
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
last_action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
last_action = agent.sample_action(last_obs)
|
||||
|
||||
curr_obs, last_reward, last_done, _ = env.step(last_action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
last_done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(last_done)
|
||||
episode_reward += last_reward
|
||||
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
action = agent.sample_action(curr_obs)
|
||||
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
|
||||
episode_reward += reward
|
||||
|
||||
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
|
||||
|
||||
last_obs = curr_obs
|
||||
last_action = action
|
||||
last_reward = reward
|
||||
last_done = done
|
||||
curr_obs = next_obs
|
||||
|
||||
# sample action for data collection
|
||||
if step < args.init_steps:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
with utils.eval_mode(agent):
|
||||
action = agent.sample_action(curr_obs)
|
||||
action = agent.sample_action(obs)
|
||||
|
||||
|
||||
# run training update
|
||||
if step >= args.init_steps:
|
||||
#num_updates = args.init_steps if step == args.init_steps else 1
|
||||
num_updates = 1 if step == args.init_steps else 1
|
||||
num_updates = args.init_steps if step == args.init_steps else 1
|
||||
for _ in range(num_updates):
|
||||
agent.update(replay_buffer, L, step)
|
||||
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
|
||||
# allow infinit bootstrap
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done)
|
||||
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(
|
||||
done
|
||||
)
|
||||
episode_reward += reward
|
||||
|
||||
#replay_buffer.add(obs, action, reward, next_obs, done_bool)
|
||||
replay_buffer.add(last_obs, last_action, last_reward, curr_obs, last_done_bool, action, reward, next_obs, done_bool)
|
||||
replay_buffer.add(obs, action, reward, next_obs, done_bool)
|
||||
|
||||
obs = next_obs
|
||||
episode_step += 1
|
||||
|
50
utils.py
50
utils.py
@ -75,26 +75,18 @@ class ReplayBuffer(object):
|
||||
# the proprioceptive obs is stored as float32, pixels obs as uint8
|
||||
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
|
||||
|
||||
self.last_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.curr_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
|
||||
self.last_actions = np.empty((capacity, *action_shape), dtype=np.float32)
|
||||
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
|
||||
self.last_rewards = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.rewards = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.last_not_dones = np.empty((capacity, 1), dtype=np.float32)
|
||||
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
|
||||
|
||||
self.idx = 0
|
||||
self.last_save = 0
|
||||
self.full = False
|
||||
|
||||
def add(self, last_obs, last_action, last_reward, curr_obs, last_done, action, reward, next_obs, done):
|
||||
np.copyto(self.last_obses[self.idx], last_obs)
|
||||
np.copyto(self.last_actions[self.idx], last_action)
|
||||
np.copyto(self.last_rewards[self.idx], last_reward)
|
||||
np.copyto(self.curr_obses[self.idx], curr_obs)
|
||||
np.copyto(self.last_not_dones[self.idx], not last_done)
|
||||
def add(self, obs, action, reward, next_obs, done):
|
||||
np.copyto(self.obses[self.idx], obs)
|
||||
np.copyto(self.actions[self.idx], action)
|
||||
np.copyto(self.rewards[self.idx], reward)
|
||||
np.copyto(self.next_obses[self.idx], next_obs)
|
||||
@ -104,35 +96,29 @@ class ReplayBuffer(object):
|
||||
self.full = self.full or self.idx == 0
|
||||
|
||||
def sample(self):
|
||||
begin = 2
|
||||
idxs = np.random.randint(
|
||||
0, self.capacity if self.full else self.idx, size=self.batch_size
|
||||
begin, self.capacity if self.full else self.idx, size=self.batch_size
|
||||
)
|
||||
past_idxs = idxs - begin
|
||||
|
||||
last_obses = torch.as_tensor(self.last_obses[idxs], device=self.device).float()
|
||||
last_actions = torch.as_tensor(self.last_actions[idxs], device=self.device)
|
||||
last_rewards = torch.as_tensor(self.last_rewards[idxs], device=self.device)
|
||||
curr_obses = torch.as_tensor(self.curr_obses[idxs], device=self.device).float()
|
||||
last_not_dones = torch.as_tensor(self.last_not_dones[idxs], device=self.device)
|
||||
actions = torch.as_tensor(self.actions[idxs], device=self.device)
|
||||
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
|
||||
next_obses = torch.as_tensor(self.next_obses[idxs], device=self.device).float()
|
||||
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
|
||||
obses = torch.as_tensor(np.swapaxes(np.asarray([self.obses[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device).float()
|
||||
actions = torch.as_tensor(np.swapaxes(np.asarray([self.actions[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||
rewards = torch.as_tensor(np.swapaxes(np.asarray([self.rewards[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||
next_obses = torch.as_tensor(np.swapaxes(np.asarray([self.next_obses[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device).float()
|
||||
not_dones = torch.as_tensor(np.swapaxes(np.asarray([self.not_dones[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||
|
||||
return last_obses, last_actions, last_rewards, curr_obses, last_not_dones, actions, rewards, next_obses, not_dones
|
||||
return obses, actions, rewards, next_obses, not_dones
|
||||
|
||||
def save(self, save_dir):
|
||||
if self.idx == self.last_save:
|
||||
return
|
||||
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
|
||||
payload = [
|
||||
self.last_obses[self.last_save:self.idx],
|
||||
self.last_actions[self.last_save:self.idx],
|
||||
self.last_rewards[self.last_save:self.idx],
|
||||
self.curr_obses[self.last_save:self.idx],
|
||||
self.last_not_dones[self.last_save:self.idx],
|
||||
self.obses[self.last_save:self.idx],
|
||||
self.next_obses[self.last_save:self.idx],
|
||||
self.actions[self.last_save:self.idx],
|
||||
self.rewards[self.last_save:self.idx],
|
||||
self.next_obses[self.last_save:self.idx],
|
||||
self.not_dones[self.last_save:self.idx]
|
||||
]
|
||||
self.last_save = self.idx
|
||||
@ -146,14 +132,10 @@ class ReplayBuffer(object):
|
||||
path = os.path.join(save_dir, chunk)
|
||||
payload = torch.load(path)
|
||||
assert self.idx == start
|
||||
self.last_obses[start:end] = payload[0]
|
||||
self.last_actions[start:end] = payload[1]
|
||||
self.last_rewards[start:end] = payload[2]
|
||||
self.curr_obses[start:end] = payload[3]
|
||||
self.last_not_dones[start:end] = payload[4]
|
||||
self.obses[start:end] = payload[0]
|
||||
self.next_obses[start:end] = payload[1]
|
||||
self.actions[start:end] = payload[2]
|
||||
self.rewards[start:end] = payload[3]
|
||||
self.next_obses[start:end] = payload[4]
|
||||
self.not_dones[start:end] = payload[4]
|
||||
self.idx = end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user