Compare commits
4 Commits
4ac714c151
...
ca334452a0
Author | SHA1 | Date | |
---|---|---|---|
ca334452a0 | |||
2762254803 | |||
23f7c14c8e | |||
fdd13b956d |
106
encoder.py
106
encoder.py
@ -109,6 +109,10 @@ class PixelEncoder(nn.Module):
|
|||||||
out_dim = OUT_DIM[num_layers]
|
out_dim = OUT_DIM[num_layers]
|
||||||
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
|
self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim * 2)
|
||||||
self.ln = nn.LayerNorm(self.feature_dim * 2)
|
self.ln = nn.LayerNorm(self.feature_dim * 2)
|
||||||
|
<<<<<<< HEAD
|
||||||
|
self.combine = nn.Linear(self.feature_dim + 6, self.feature_dim)
|
||||||
|
=======
|
||||||
|
>>>>>>> origin/tester_1
|
||||||
|
|
||||||
self.outputs = dict()
|
self.outputs = dict()
|
||||||
|
|
||||||
@ -153,7 +157,11 @@ class PixelEncoder(nn.Module):
|
|||||||
|
|
||||||
out = self.reparameterize(mu, logstd)
|
out = self.reparameterize(mu, logstd)
|
||||||
self.outputs['tanh'] = out
|
self.outputs['tanh'] = out
|
||||||
|
<<<<<<< HEAD
|
||||||
|
return out, mu, logstd
|
||||||
|
=======
|
||||||
return out
|
return out
|
||||||
|
>>>>>>> origin/tester_1
|
||||||
|
|
||||||
def copy_conv_weights_from(self, source):
|
def copy_conv_weights_from(self, source):
|
||||||
"""Tie convolutional layers"""
|
"""Tie convolutional layers"""
|
||||||
@ -202,3 +210,101 @@ def make_encoder(
|
|||||||
return _AVAILABLE_ENCODERS[encoder_type](
|
return _AVAILABLE_ENCODERS[encoder_type](
|
||||||
obs_shape, feature_dim, num_layers, num_filters
|
obs_shape, feature_dim, num_layers, num_filters
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||||
|
sample_size = x_samples.shape[0]
|
||||||
|
random_index = torch.randperm(sample_size).long()
|
||||||
|
|
||||||
|
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
|
||||||
|
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
|
||||||
|
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||||
|
return upper_bound/2.
|
||||||
|
|
||||||
|
|
||||||
|
class TransitionModel(nn.Module):
|
||||||
|
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.state_size = state_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.action_size = action_size
|
||||||
|
self.history_size = history_size
|
||||||
|
self.act_fn = nn.ELU()
|
||||||
|
|
||||||
|
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||||
|
self.fc_hidden = nn.Linear(hidden_size, hidden_size)
|
||||||
|
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
||||||
|
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
||||||
|
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
||||||
|
|
||||||
|
self.min_sigma = 1e-4
|
||||||
|
self.max_sigma = 1e0
|
||||||
|
|
||||||
|
def init_states(self, batch_size, device):
|
||||||
|
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
||||||
|
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
||||||
|
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
||||||
|
|
||||||
|
def get_dist(self, mean, std):
|
||||||
|
distribution = torch.distributions.Normal(mean, std)
|
||||||
|
return distribution
|
||||||
|
|
||||||
|
def stack_states(self, states, dim=0):
|
||||||
|
s = dict(
|
||||||
|
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||||
|
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||||
|
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||||
|
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||||
|
if 'distribution' in states:
|
||||||
|
dist = dict(distribution = [state['distribution'] for state in states])
|
||||||
|
s.update(dist)
|
||||||
|
return s
|
||||||
|
|
||||||
|
def seq_to_batch(self, state, name):
|
||||||
|
return dict(
|
||||||
|
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||||
|
|
||||||
|
def transition_step(self, state, action, hist, not_done):
|
||||||
|
state = state * not_done
|
||||||
|
hist = hist * not_done
|
||||||
|
|
||||||
|
state_action_enc = self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1)))
|
||||||
|
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||||
|
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||||
|
state_action_enc = self.act_fn(self.fc_hidden(state_action_enc))
|
||||||
|
|
||||||
|
current_hist = self.history_cell(state_action_enc, hist)
|
||||||
|
next_state_mu = self.act_fn(self.fc_state_mu(torch.cat([state_action_enc, hist], dim=-1)))
|
||||||
|
next_state_sigma = torch.tanh(self.fc_state_sigma(torch.cat([state_action_enc, hist], dim=-1)))
|
||||||
|
next_state = next_state_mu + torch.randn_like(next_state_mu) * next_state_sigma.exp()
|
||||||
|
|
||||||
|
state_enc = {"mean": next_state_mu, "logvar": next_state_sigma, "sample": next_state, "history": current_hist}
|
||||||
|
return state_enc
|
||||||
|
|
||||||
|
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||||
|
observed_rollout = []
|
||||||
|
for i in range(rollout_states.shape[0]):
|
||||||
|
rollout_states_ = rollout_states[i]
|
||||||
|
rollout_actions_ = rollout_actions[i]
|
||||||
|
init_history_ = nonterms[i] * init_history
|
||||||
|
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
|
||||||
|
init_history = state_enc["history"]
|
||||||
|
observed_rollout.append(state_enc)
|
||||||
|
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||||
|
return observed_rollout
|
||||||
|
|
||||||
|
def forward(self, state, action, hist, not_done):
|
||||||
|
return self.transition_step(state, action, hist, not_done)
|
||||||
|
|
||||||
|
def reparameterize(self, mean, std):
|
||||||
|
eps = torch.randn_like(mean)
|
||||||
|
return mean + eps * std
|
||||||
|
|
||||||
|
def club_loss(x_samples, x_mu, x_logvar, y_samples):
|
||||||
|
sample_size = x_samples.shape[0]
|
||||||
|
random_index = torch.randperm(sample_size).long()
|
||||||
|
|
||||||
|
positive = -(x_mu - y_samples)**2 / x_logvar.exp()
|
||||||
|
negative = - (x_mu - y_samples[random_index])**2 / x_logvar.exp()
|
||||||
|
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||||
|
return upper_bound/2.0
|
49
graphs_plot.py
Normal file
49
graphs_plot.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
|
||||||
|
|
||||||
|
|
||||||
|
def tabulate_events(dpath):
|
||||||
|
files = os.listdir(dpath)[0]
|
||||||
|
summary_iterators = [EventAccumulator(os.path.join(dpath, files)).Reload()]
|
||||||
|
|
||||||
|
tags = summary_iterators[0].Tags()['scalars']
|
||||||
|
|
||||||
|
for it in summary_iterators:
|
||||||
|
assert it.Tags()['scalars'] == tags
|
||||||
|
|
||||||
|
out = {t: [] for t in tags}
|
||||||
|
steps = []
|
||||||
|
|
||||||
|
for tag in tags:
|
||||||
|
steps = [e.step for e in summary_iterators[0].Scalars(tag)]
|
||||||
|
|
||||||
|
for events in zip(*[acc.Scalars(tag) for acc in summary_iterators]):
|
||||||
|
assert len(set(e.step for e in events)) == 1
|
||||||
|
|
||||||
|
out[tag].append([e.value for e in events])
|
||||||
|
|
||||||
|
return out, steps
|
||||||
|
|
||||||
|
events, steps = tabulate_events('/home/vedant/pytorch_sac_ae/log/runs')
|
||||||
|
|
||||||
|
data = []
|
||||||
|
|
||||||
|
for tag, values in events.items():
|
||||||
|
for run_idx, run_values in enumerate(values):
|
||||||
|
for step_idx, value in enumerate(run_values):
|
||||||
|
data.append({
|
||||||
|
'tag': tag,
|
||||||
|
'run': run_idx,
|
||||||
|
'step': steps[step_idx],
|
||||||
|
'value': value,
|
||||||
|
})
|
||||||
|
|
||||||
|
df = pd.DataFrame(data)
|
||||||
|
print(df.head())
|
||||||
|
|
||||||
|
plt.figure(figsize=(10,6))
|
||||||
|
sns.lineplot(data=df, x='step', y='value', hue='tag', ci='sd')
|
||||||
|
plt.show()
|
95
sac_ae.py
95
sac_ae.py
@ -6,7 +6,7 @@ import copy
|
|||||||
import math
|
import math
|
||||||
|
|
||||||
import utils
|
import utils
|
||||||
from encoder import make_encoder
|
from encoder import make_encoder, club_loss, TransitionModel
|
||||||
from decoder import make_decoder
|
from decoder import make_decoder
|
||||||
|
|
||||||
LOG_FREQ = 10000
|
LOG_FREQ = 10000
|
||||||
@ -73,7 +73,7 @@ class Actor(nn.Module):
|
|||||||
def forward(
|
def forward(
|
||||||
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
|
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
|
||||||
):
|
):
|
||||||
obs = self.encoder(obs, detach=detach_encoder)
|
obs,_,_ = self.encoder(obs, detach=detach_encoder)
|
||||||
|
|
||||||
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
|
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
|
||||||
|
|
||||||
@ -159,7 +159,7 @@ class Critic(nn.Module):
|
|||||||
|
|
||||||
def forward(self, obs, action, detach_encoder=False):
|
def forward(self, obs, action, detach_encoder=False):
|
||||||
# detach_encoder allows to stop gradient propogation to encoder
|
# detach_encoder allows to stop gradient propogation to encoder
|
||||||
obs = self.encoder(obs, detach=detach_encoder)
|
obs,_,_ = self.encoder(obs, detach=detach_encoder)
|
||||||
|
|
||||||
q1 = self.Q1(obs, action)
|
q1 = self.Q1(obs, action)
|
||||||
q2 = self.Q2(obs, action)
|
q2 = self.Q2(obs, action)
|
||||||
@ -182,6 +182,26 @@ class Critic(nn.Module):
|
|||||||
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
|
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
|
||||||
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
|
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
|
||||||
|
|
||||||
|
class LBLoss(nn.Module):
|
||||||
|
def __init__(self, z_dim):
|
||||||
|
super(LBLoss, self).__init__()
|
||||||
|
self.z_dim = z_dim
|
||||||
|
|
||||||
|
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
|
||||||
|
|
||||||
|
def compute_logits(self, z_a, z_pos):
|
||||||
|
"""
|
||||||
|
Uses logits trick for CURL:
|
||||||
|
- compute (B,B) matrix z_a (W z_pos.T)
|
||||||
|
- positives are all diagonal elements
|
||||||
|
- negatives are all other elements
|
||||||
|
- to compute loss use multiclass cross entropy with identity matrix for labels
|
||||||
|
"""
|
||||||
|
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
|
||||||
|
logits = torch.matmul(z_a, Wz) # (B,B)
|
||||||
|
logits = logits - torch.max(logits, 1)[0][:, None]
|
||||||
|
return logits
|
||||||
|
|
||||||
|
|
||||||
class SacAeAgent(object):
|
class SacAeAgent(object):
|
||||||
"""SAC+AE algorithm."""
|
"""SAC+AE algorithm."""
|
||||||
@ -240,7 +260,13 @@ class SacAeAgent(object):
|
|||||||
obs_shape, action_shape, hidden_dim, encoder_type,
|
obs_shape, action_shape, hidden_dim, encoder_type,
|
||||||
encoder_feature_dim, num_layers, num_filters
|
encoder_feature_dim, num_layers, num_filters
|
||||||
).to(device)
|
).to(device)
|
||||||
|
|
||||||
|
self.transition_model = TransitionModel(
|
||||||
|
encoder_feature_dim, hidden_dim, action_shape[0], history_size=256
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
self.lb_loss = LBLoss(encoder_feature_dim).to(device)
|
||||||
|
|
||||||
self.critic_target.load_state_dict(self.critic.state_dict())
|
self.critic_target.load_state_dict(self.critic.state_dict())
|
||||||
|
|
||||||
# tie encoders between actor and critic
|
# tie encoders between actor and critic
|
||||||
@ -262,7 +288,10 @@ class SacAeAgent(object):
|
|||||||
|
|
||||||
# optimizer for critic encoder for reconstruction loss
|
# optimizer for critic encoder for reconstruction loss
|
||||||
self.encoder_optimizer = torch.optim.Adam(
|
self.encoder_optimizer = torch.optim.Adam(
|
||||||
self.critic.encoder.parameters(), lr=encoder_lr
|
list(self.critic.encoder.parameters()) +
|
||||||
|
list(self.transition_model.parameters()), #+
|
||||||
|
#list(self.lb_loss.parameters()),
|
||||||
|
lr=encoder_lr
|
||||||
)
|
)
|
||||||
|
|
||||||
# optimizer for decoder
|
# optimizer for decoder
|
||||||
@ -366,32 +395,70 @@ class SacAeAgent(object):
|
|||||||
alpha_loss.backward()
|
alpha_loss.backward()
|
||||||
self.log_alpha_optimizer.step()
|
self.log_alpha_optimizer.step()
|
||||||
|
|
||||||
def update_decoder(self, obs, target_obs, L, step):
|
def update_decoder(self, obs, target_obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list):
|
||||||
h = self.critic.encoder(obs)
|
with torch.no_grad():
|
||||||
|
hist = torch.zeros((target_obs.shape[0], 256)).to(self.device)
|
||||||
|
for i in range(len(obs_list)-1):
|
||||||
|
state, _, _ = self.critic.encoder(obs_list[i])
|
||||||
|
action = action_list[i]
|
||||||
|
not_done = not_done_list[i]
|
||||||
|
state_enc = self.transition_model(state, action, hist, not_done)
|
||||||
|
hist = state_enc["history"]
|
||||||
|
|
||||||
|
h, h_mu, h_logvar = self.critic.encoder(obs_list[-1])
|
||||||
|
h_clone = h.clone()
|
||||||
|
|
||||||
|
action = action_list[-1]
|
||||||
|
not_done = not_done_list[-1]
|
||||||
|
state_enc = self.transition_model(h, action, hist, not_done)
|
||||||
|
mean, std = state_enc["mean"], state_enc["logvar"].exp()
|
||||||
|
|
||||||
|
h_dist_enc = torch.distributions.Normal(h_mu, h_logvar.exp())
|
||||||
|
h_dist_pred = torch.distributions.Normal(mean, std)
|
||||||
|
enc_loss = torch.distributions.kl.kl_divergence(h_dist_enc, h_dist_pred).mean() * 1e-2
|
||||||
|
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
z_pos, _ , _ = self.critic_target.encoder(next_obs_list[-1])
|
||||||
|
z_out = self.critic_target.encoder.combine(torch.concat((z_pos, action), dim=-1))
|
||||||
|
logits = self.lb_loss.compute_logits(h, z_out)
|
||||||
|
labels = torch.arange(logits.shape[0]).long().to(self.device)
|
||||||
|
lb_loss = nn.CrossEntropyLoss()(logits, labels) * 1e-2
|
||||||
|
"""
|
||||||
|
#with torch.no_grad():
|
||||||
|
# z_pos, _ , _ = self.critic.encoder(next_obs_list[-1])
|
||||||
|
#ub_loss = club_loss(state_enc["sample"], mean, state_enc["logvar"], h) * 1e-1
|
||||||
|
|
||||||
if target_obs.dim() == 4:
|
if target_obs.dim() == 4:
|
||||||
# preprocess images to be in [-0.5, 0.5] range
|
# preprocess images to be in [-0.5, 0.5] range
|
||||||
target_obs = utils.preprocess_obs(target_obs)
|
target_obs = utils.preprocess_obs(target_obs)
|
||||||
rec_obs = self.decoder(h)
|
rec_obs = self.decoder(h_clone)
|
||||||
rec_loss = F.mse_loss(target_obs, rec_obs)
|
rec_loss = F.mse_loss(target_obs, rec_obs)
|
||||||
|
|
||||||
# add L2 penalty on latent representation
|
ub_loss = torch.tensor(0.0)
|
||||||
# see https://arxiv.org/pdf/1903.12436.pdf
|
#enc_loss = torch.tensor(0.0)
|
||||||
latent_loss = (0.5 * h.pow(2).sum(1)).mean()
|
lb_loss = torch.tensor(0.0)
|
||||||
|
#rec_loss = torch.tensor(0.0)
|
||||||
loss = rec_loss + self.decoder_latent_lambda * latent_loss
|
loss = rec_loss + enc_loss + lb_loss + ub_loss
|
||||||
self.encoder_optimizer.zero_grad()
|
self.encoder_optimizer.zero_grad()
|
||||||
self.decoder_optimizer.zero_grad()
|
self.decoder_optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
|
||||||
self.encoder_optimizer.step()
|
self.encoder_optimizer.step()
|
||||||
self.decoder_optimizer.step()
|
self.decoder_optimizer.step()
|
||||||
|
|
||||||
|
#enc_loss = torch.tensor(0.0)
|
||||||
L.log('train_ae/ae_loss', loss, step)
|
L.log('train_ae/ae_loss', loss, step)
|
||||||
|
L.log('train_ae/rec_loss', rec_loss, step)
|
||||||
|
L.log('train_ae/enc_loss', enc_loss, step)
|
||||||
|
L.log('train_ae/lb_loss', lb_loss, step)
|
||||||
|
L.log('train_ae/ub_loss', ub_loss, step)
|
||||||
|
|
||||||
self.decoder.log(L, step, log_freq=LOG_FREQ)
|
self.decoder.log(L, step, log_freq=LOG_FREQ)
|
||||||
|
|
||||||
def update(self, replay_buffer, L, step):
|
def update(self, replay_buffer, L, step):
|
||||||
obs, action, reward, next_obs, not_done = replay_buffer.sample()
|
obs_list, action_list, reward_list, next_obs_list, not_done_list = replay_buffer.sample()
|
||||||
|
obs, action, reward, next_obs, not_done = obs_list[-1], action_list[-1], reward_list[-1], next_obs_list[-1], not_done_list[-1]
|
||||||
|
|
||||||
L.log('train/batch_reward', reward.mean(), step)
|
L.log('train/batch_reward', reward.mean(), step)
|
||||||
|
|
||||||
@ -413,7 +480,7 @@ class SacAeAgent(object):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if self.decoder is not None and step % self.decoder_update_freq == 0:
|
if self.decoder is not None and step % self.decoder_update_freq == 0:
|
||||||
self.update_decoder(obs, obs, L, step)
|
self.update_decoder(obs, obs, L, step, obs_list, action_list, reward_list, next_obs_list, not_done_list)
|
||||||
|
|
||||||
def save(self, model_dir, step):
|
def save(self, model_dir, step):
|
||||||
torch.save(
|
torch.save(
|
||||||
|
38
train.py
38
train.py
@ -28,36 +28,40 @@ def parse_args():
|
|||||||
parser.add_argument('--frame_stack', default=3, type=int)
|
parser.add_argument('--frame_stack', default=3, type=int)
|
||||||
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
|
||||||
parser.add_argument('--resource_files', type=str)
|
parser.add_argument('--resource_files', type=str)
|
||||||
|
<<<<<<< HEAD
|
||||||
|
parser.add_argument('--resource_files_test', type=str)
|
||||||
|
=======
|
||||||
|
>>>>>>> origin/tester_1
|
||||||
parser.add_argument('--total_frames', default=10000, type=int)
|
parser.add_argument('--total_frames', default=10000, type=int)
|
||||||
# replay buffer
|
# replay buffer
|
||||||
parser.add_argument('--replay_buffer_capacity', default=1000000, type=int)
|
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)
|
||||||
# train
|
# train
|
||||||
parser.add_argument('--agent', default='sac_ae', type=str)
|
parser.add_argument('--agent', default='sac_ae', type=str)
|
||||||
parser.add_argument('--init_steps', default=1000, type=int)
|
parser.add_argument('--init_steps', default=1000, type=int)
|
||||||
parser.add_argument('--num_train_steps', default=1000000, type=int)
|
parser.add_argument('--num_train_steps', default=2000000, type=int)
|
||||||
parser.add_argument('--batch_size', default=128, type=int)
|
parser.add_argument('--batch_size', default=32, type=int)
|
||||||
parser.add_argument('--hidden_dim', default=1024, type=int)
|
parser.add_argument('--hidden_dim', default=1024, type=int)
|
||||||
# eval
|
# eval
|
||||||
parser.add_argument('--eval_freq', default=10000, type=int)
|
parser.add_argument('--eval_freq', default=10000, type=int)
|
||||||
parser.add_argument('--num_eval_episodes', default=10, type=int)
|
parser.add_argument('--num_eval_episodes', default=10, type=int)
|
||||||
# critic
|
# critic
|
||||||
parser.add_argument('--critic_lr', default=1e-3, type=float)
|
parser.add_argument('--critic_lr', default=1e-4, type=float)
|
||||||
parser.add_argument('--critic_beta', default=0.9, type=float)
|
parser.add_argument('--critic_beta', default=0.9, type=float)
|
||||||
parser.add_argument('--critic_tau', default=0.01, type=float)
|
parser.add_argument('--critic_tau', default=0.01, type=float)
|
||||||
parser.add_argument('--critic_target_update_freq', default=2, type=int)
|
parser.add_argument('--critic_target_update_freq', default=2, type=int)
|
||||||
# actor
|
# actor
|
||||||
parser.add_argument('--actor_lr', default=1e-3, type=float)
|
parser.add_argument('--actor_lr', default=1e-4, type=float)
|
||||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||||
# encoder/decoder
|
# encoder/decoder
|
||||||
parser.add_argument('--encoder_type', default='pixel', type=str)
|
parser.add_argument('--encoder_type', default='pixel', type=str)
|
||||||
parser.add_argument('--encoder_feature_dim', default=50, type=int)
|
parser.add_argument('--encoder_feature_dim', default=250, type=int)
|
||||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
parser.add_argument('--encoder_lr', default=1e-4, type=float)
|
||||||
parser.add_argument('--encoder_tau', default=0.05, type=float)
|
parser.add_argument('--encoder_tau', default=0.05, type=float)
|
||||||
parser.add_argument('--decoder_type', default='pixel', type=str)
|
parser.add_argument('--decoder_type', default='pixel', type=str)
|
||||||
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
parser.add_argument('--decoder_lr', default=1e-4, type=float)
|
||||||
parser.add_argument('--decoder_update_freq', default=1, type=int)
|
parser.add_argument('--decoder_update_freq', default=1, type=int)
|
||||||
parser.add_argument('--decoder_latent_lambda', default=1e-6, type=float)
|
parser.add_argument('--decoder_latent_lambda', default=1e-6, type=float)
|
||||||
parser.add_argument('--decoder_weight_lambda', default=1e-7, type=float)
|
parser.add_argument('--decoder_weight_lambda', default=1e-7, type=float)
|
||||||
@ -153,9 +157,25 @@ def main():
|
|||||||
)
|
)
|
||||||
env.seed(args.seed)
|
env.seed(args.seed)
|
||||||
|
|
||||||
|
env_test = dmc2gym.make(
|
||||||
|
domain_name=args.domain_name,
|
||||||
|
task_name=args.task_name,
|
||||||
|
seed=args.seed,
|
||||||
|
visualize_reward=False,
|
||||||
|
from_pixels=(args.encoder_type == 'pixel'),
|
||||||
|
height=args.image_size,
|
||||||
|
width=args.image_size,
|
||||||
|
frame_skip=args.action_repeat,
|
||||||
|
img_source=args.img_source,
|
||||||
|
resource_files=args.resource_files_test,
|
||||||
|
total_frames=args.total_frames
|
||||||
|
)
|
||||||
|
env_test.seed(args.seed)
|
||||||
|
|
||||||
# stack several consecutive frames together
|
# stack several consecutive frames together
|
||||||
if args.encoder_type == 'pixel':
|
if args.encoder_type == 'pixel':
|
||||||
env = utils.FrameStack(env, k=args.frame_stack)
|
env = utils.FrameStack(env, k=args.frame_stack)
|
||||||
|
env_test = utils.FrameStack(env_test, k=args.frame_stack)
|
||||||
|
|
||||||
utils.make_dir(args.work_dir)
|
utils.make_dir(args.work_dir)
|
||||||
video_dir = utils.make_dir(os.path.join(args.work_dir, 'video'))
|
video_dir = utils.make_dir(os.path.join(args.work_dir, 'video'))
|
||||||
@ -202,7 +222,7 @@ def main():
|
|||||||
# evaluate agent periodically
|
# evaluate agent periodically
|
||||||
if step % args.eval_freq == 0:
|
if step % args.eval_freq == 0:
|
||||||
L.log('eval/episode', episode, step)
|
L.log('eval/episode', episode, step)
|
||||||
evaluate(env, agent, video, args.num_eval_episodes, L, step)
|
evaluate(env_test, agent, video, args.num_eval_episodes, L, step)
|
||||||
if args.save_model:
|
if args.save_model:
|
||||||
agent.save(model_dir, step)
|
agent.save(model_dir, step)
|
||||||
if args.save_buffer:
|
if args.save_buffer:
|
||||||
|
16
utils.py
16
utils.py
@ -96,17 +96,17 @@ class ReplayBuffer(object):
|
|||||||
self.full = self.full or self.idx == 0
|
self.full = self.full or self.idx == 0
|
||||||
|
|
||||||
def sample(self):
|
def sample(self):
|
||||||
|
begin = 2
|
||||||
idxs = np.random.randint(
|
idxs = np.random.randint(
|
||||||
0, self.capacity if self.full else self.idx, size=self.batch_size
|
begin, self.capacity if self.full else self.idx, size=self.batch_size
|
||||||
)
|
)
|
||||||
|
past_idxs = idxs - begin
|
||||||
|
|
||||||
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
|
obses = torch.as_tensor(np.swapaxes(np.asarray([self.obses[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device).float()
|
||||||
actions = torch.as_tensor(self.actions[idxs], device=self.device)
|
actions = torch.as_tensor(np.swapaxes(np.asarray([self.actions[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||||
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
|
rewards = torch.as_tensor(np.swapaxes(np.asarray([self.rewards[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||||
next_obses = torch.as_tensor(
|
next_obses = torch.as_tensor(np.swapaxes(np.asarray([self.next_obses[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device).float()
|
||||||
self.next_obses[idxs], device=self.device
|
not_dones = torch.as_tensor(np.swapaxes(np.asarray([self.not_dones[past_idxs:idxs] for past_idxs, idxs in zip(past_idxs, idxs)]),0,1), device=self.device)
|
||||||
).float()
|
|
||||||
not_dones = torch.as_tensor(self.not_dones[idxs], device=self.device)
|
|
||||||
|
|
||||||
return obses, actions, rewards, next_obses, not_dones
|
return obses, actions, rewards, next_obses, not_dones
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user