Update README.md
This commit is contained in:
parent
f2e39f7a68
commit
7400ed0e17
@ -1,6 +1,10 @@
|
||||
# SAC+AE implementaiton in PyTorch
|
||||
|
||||
## Requirements
|
||||
The simplest way to install all required dependencies is to create an anaconda environment by running:
|
||||
```
|
||||
conda env create -f conda_env.yml
|
||||
```
|
||||
|
||||
## Instructions
|
||||
To train an SAC+AE agent on the `cheetah run` task from image-based observations run:
|
||||
@ -13,7 +17,7 @@ python train.py \
|
||||
--action_repeat 4 \
|
||||
--save_video \
|
||||
--save_tb \
|
||||
--work_dir ./runs/cheetah_run/sac_ae \
|
||||
--work_dir ./log \
|
||||
--seed 1
|
||||
```
|
||||
This will produce a folder (`./save`) by default, where all the output is going to be stored including train/eval logs, tensorboard blobs, evaluation videos, and model snapshots. It is possible to attach tensorboard to a particular run using the following command:
|
||||
|
Loading…
Reference in New Issue
Block a user