From 7400ed0e17d2190310c0573a019b50b78d16ea66 Mon Sep 17 00:00:00 2001 From: Denis Yarats Date: Mon, 23 Sep 2019 15:00:08 -0400 Subject: [PATCH] Update README.md --- README.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index b859b41..d1f7d56 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,10 @@ # SAC+AE implementaiton in PyTorch ## Requirements +The simplest way to install all required dependencies is to create an anaconda environment by running: +``` +conda env create -f conda_env.yml +``` ## Instructions To train an SAC+AE agent on the `cheetah run` task from image-based observations run: @@ -13,7 +17,7 @@ python train.py \ --action_repeat 4 \ --save_video \ --save_tb \ - --work_dir ./runs/cheetah_run/sac_ae \ + --work_dir ./log \ --seed 1 ``` This will produce a folder (`./save`) by default, where all the output is going to be stored including train/eval logs, tensorboard blobs, evaluation videos, and model snapshots. It is possible to attach tensorboard to a particular run using the following command: