Go to file
2020-11-19 10:40:34 -08:00
agent Initial commit 2020-10-12 15:39:25 -07:00
CARLA_0.9.6/PythonAPI/carla/agents/navigation Initial commit 2020-10-12 15:39:25 -07:00
CARLA_0.9.8/PythonAPI/carla/agents/navigation Initial commit 2020-10-12 15:39:25 -07:00
distractors Initial commit 2020-10-12 15:39:25 -07:00
dmc2gym Initial commit 2020-10-12 15:39:25 -07:00
local_dm_control_suite Initial commit 2020-10-12 15:39:25 -07:00
CODE_OF_CONDUCT.md Initial commit 2020-10-12 15:39:25 -07:00
conda_env.yml Initial commit 2020-10-12 15:39:25 -07:00
CONTRIBUTING.md Initial commit 2020-10-12 15:39:25 -07:00
decoder.py Initial commit 2020-10-12 15:39:25 -07:00
encoder.py Initial commit 2020-10-12 15:39:25 -07:00
graph_utils.py Initial commit 2020-10-12 15:39:25 -07:00
LICENSE Initial commit 2020-10-12 15:39:25 -07:00
logger.py Initial commit 2020-10-12 15:39:25 -07:00
README.md Update README.md 2020-11-19 10:40:34 -08:00
run_all.sh Initial commit 2020-10-12 15:39:25 -07:00
run_cluster_nobg.sh Initial commit 2020-10-12 15:39:25 -07:00
run_cluster.sh Initial commit 2020-10-12 15:39:25 -07:00
run_local_carla096.sh Initial commit 2020-10-12 15:39:25 -07:00
run_local_carla098.sh Initial commit 2020-10-12 15:39:25 -07:00
run_local.sh Initial commit 2020-10-12 15:39:25 -07:00
sac_ae.py Initial commit 2020-10-12 15:39:25 -07:00
train_vae.py Initial commit 2020-10-12 15:39:25 -07:00
train.py Update train.py 2020-10-20 13:10:49 -07:00
transition_model.py Initial commit 2020-10-12 15:39:25 -07:00
utils.py Initial commit 2020-10-12 15:39:25 -07:00
video.py Initial commit 2020-10-12 15:39:25 -07:00

Learning Invariant Representations for Reinforcement Learning without Reconstruction

Requirements

We assume you have access to a gpu that can run CUDA 9.2. Then, the simplest way to install all required dependencies is to create an anaconda environment by running:

conda env create -f conda_env.yml

After the installation ends you can activate your environment with:

source activate dbc

Instructions

To train a DBC agent on the cheetah run task from image-based observations run:

python train.py \
    --domain_name cheetah \
    --task_name run \
    --encoder_type pixel \
    --decoder_type identity \
    --action_repeat 4 \
    --save_video \
    --save_tb \
    --work_dir ./log \
    --seed 1

This will produce 'log' folder, where all the outputs are going to be stored including train/eval logs, tensorboard blobs, and evaluation episode videos. One can attacha tensorboard to monitor training by running:

tensorboard --logdir log

and opening up tensorboad in your browser.

The console output is also available in a form:

| train | E: 1 | S: 1000 | D: 0.8 s | R: 0.0000 | BR: 0.0000 | ALOSS: 0.0000 | CLOSS: 0.0000 | RLOSS: 0.0000

a training entry decodes as:

train - training episode
E - total number of episodes 
S - total number of environment steps
D - duration in seconds to train 1 episode
R - episode reward
BR - average reward of sampled batch
ALOSS - average loss of actor
CLOSS - average loss of critic
RLOSS - average reconstruction loss (only if it is trained from pixels and decoder)

while an evaluation entry:

| eval | S: 0 | ER: 21.1676

which just tells the expected reward ER evaluating current policy after S steps. Note that ER is average evaluation performance over num_eval_episodes episodes (usually 10).

Running the natural video setting

You can download the Kinetics 400 dataset and grab the driving_car label from the train dataset to replicate our setup. Some instructions for downloading the dataset can be found here: https://github.com/Showmax/kinetics-downloader.

CARLA

Download CARLA from https://github.com/carla-simulator/carla/releases, e.g.:

  1. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/CARLA_0.9.8.tar.gz
  2. https://carla-releases.s3.eu-west-3.amazonaws.com/Linux/AdditionalMaps_0.9.8.tar.gz

Add to your python path:

export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI/carla
export PYTHONPATH=$PYTHONPATH:/home/rmcallister/code/bisim_metric/CARLA_0.9.8/PythonAPI/carla/dist/carla-0.9.8-py3.5-linux-x86_64.egg

and merge the directories.

Then pull altered carla branch files:

git fetch
git checkout carla

Install:

pip install pygame
pip install networkx

Terminal 1:

cd CARLA_0.9.6
bash CarlaUE4.sh -fps 20

Terminal 2:

cd CARLA_0.9.6
# can run expert autopilot (uses privileged game-state information):
python PythonAPI/carla/agents/navigation/carla_env.py
# or can run bisim:
./run_local_carla096.sh --agent bisim --transition_model_type probabilistic --domain_name carla

License

This project is CC-BY-NC 4.0 licensed, as found in the LICENSE file.