170 lines
5.2 KiB
Python
170 lines
5.2 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import os
|
|
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
|
|
import gym
|
|
import dmc2gym
|
|
|
|
import random
|
|
from collections import deque
|
|
|
|
|
|
class eval_mode(object):
|
|
def __init__(self, *models):
|
|
self.models = models
|
|
|
|
def __enter__(self):
|
|
self.prev_states = []
|
|
for model in self.models:
|
|
self.prev_states.append(model.training)
|
|
model.train(False)
|
|
|
|
def __exit__(self, *args):
|
|
for model, state in zip(self.models, self.prev_states):
|
|
model.train(state)
|
|
return False
|
|
|
|
|
|
def soft_update_params(net, target_net, tau):
|
|
for param, target_param in zip(net.parameters(), target_net.parameters()):
|
|
target_param.data.copy_(
|
|
tau * param.data + (1 - tau) * target_param.data
|
|
)
|
|
|
|
|
|
def set_seed_everywhere(seed):
|
|
torch.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
def module_hash(module):
|
|
result = 0
|
|
for tensor in module.state_dict().values():
|
|
result += tensor.sum().item()
|
|
return result
|
|
|
|
|
|
def make_dir(dir_path):
|
|
try:
|
|
os.mkdir(dir_path)
|
|
except OSError:
|
|
pass
|
|
return dir_path
|
|
|
|
|
|
def preprocess_obs(obs, bits=5):
|
|
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
|
|
bins = 2**bits
|
|
assert obs.dtype == torch.float32
|
|
if bits < 8:
|
|
obs = torch.floor(obs / 2**(8 - bits))
|
|
obs = obs / bins
|
|
obs = obs + torch.rand_like(obs) / bins
|
|
obs = obs - 0.5
|
|
return obs
|
|
|
|
|
|
class FrameStack(gym.Wrapper):
|
|
def __init__(self, env, k):
|
|
gym.Wrapper.__init__(self, env)
|
|
self._k = k
|
|
self._frames = deque([], maxlen=k)
|
|
shp = env.observation_space.shape
|
|
self.observation_space = gym.spaces.Box(
|
|
low=0,
|
|
high=1,
|
|
shape=((shp[0] * k,) + shp[1:]),
|
|
dtype=env.observation_space.dtype
|
|
)
|
|
self._max_episode_steps = env._max_episode_steps
|
|
|
|
def reset(self):
|
|
obs = self.env.reset()
|
|
for _ in range(self._k):
|
|
self._frames.append(obs)
|
|
return self._get_obs()
|
|
|
|
def step(self, action):
|
|
obs, reward, done, info = self.env.step(action)
|
|
self._frames.append(obs)
|
|
return self._get_obs(), reward, done, info
|
|
|
|
def _get_obs(self):
|
|
assert len(self._frames) == self._k
|
|
return np.concatenate(list(self._frames), axis=0)
|
|
|
|
|
|
class ReplayBuffer:
|
|
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
|
|
self.size = size
|
|
self.obs_shape = obs_shape
|
|
self.action_size = action_size
|
|
self.seq_len = seq_len
|
|
self.batch_size = batch_size
|
|
self.idx = 0
|
|
self.full = False
|
|
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
|
self.actions = np.empty((size, action_size), dtype=np.float32)
|
|
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
|
self.episode_count = np.zeros((size,), dtype=np.uint8)
|
|
self.terminals = np.empty((size,), dtype=np.float32)
|
|
self.steps, self.episodes = 0, 0
|
|
|
|
def add(self, obs, ac, next_obs, episode_count, done):
|
|
self.observations[self.idx] = obs
|
|
self.actions[self.idx] = ac
|
|
self.next_observations[self.idx] = next_obs
|
|
self.episode_count[self.idx] = episode_count
|
|
self.terminals[self.idx] = done
|
|
self.idx = (self.idx + 1) % self.size
|
|
self.full = self.full or self.idx == 0
|
|
self.steps += 1
|
|
self.episodes = self.episodes + (1 if done else 0)
|
|
|
|
def _sample_idx(self, L):
|
|
valid_idx = False
|
|
while not valid_idx:
|
|
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
|
idxs = np.arange(idx, idx + L) % self.size
|
|
valid_idx = not self.idx in idxs[1:]
|
|
return idxs
|
|
|
|
def _retrieve_batch(self, idxs, n, L):
|
|
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
|
observations = self.observations[vec_idxs]
|
|
next_observations = self.next_observations[vec_idxs]
|
|
return observations.reshape(L, n, *observations.shape[1:]), self.actions[vec_idxs].reshape(L, n, -1), observations.reshape(L, n, *next_observations.shape[1:]), \
|
|
self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
|
|
|
|
def sample(self):
|
|
n = self.batch_size
|
|
l = self.seq_len
|
|
obs,acs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
|
return obs,acs,rews,terms
|
|
|
|
|
|
def make_env(args):
|
|
env = dmc2gym.make(
|
|
domain_name=args.domain_name,
|
|
task_name=args.task_name,
|
|
resource_files=args.resource_files,
|
|
img_source=args.img_source,
|
|
total_frames=args.total_frames,
|
|
seed=args.seed,
|
|
visualize_reward=False,
|
|
from_pixels=(args.encoder_type == 'pixel'),
|
|
height=args.image_size,
|
|
width=args.image_size,
|
|
frame_skip=args.action_repeat
|
|
)
|
|
return env |