89 lines
2.9 KiB
Python
Executable File
89 lines
2.9 KiB
Python
Executable File
# Copyright 2017 The dm_control Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""Tests specific to the LQR domain."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import unittest
|
|
|
|
# Internal dependencies.
|
|
from absl import logging
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
from local_dm_control_suite import lqr
|
|
from local_dm_control_suite import lqr_solver
|
|
|
|
import numpy as np
|
|
from six.moves import range
|
|
|
|
|
|
class LqrTest(parameterized.TestCase):
|
|
|
|
@parameterized.named_parameters(
|
|
('lqr_2_1', lqr.lqr_2_1),
|
|
('lqr_6_2', lqr.lqr_6_2))
|
|
def test_lqr_optimal_policy(self, make_env):
|
|
env = make_env()
|
|
p, k, beta = lqr_solver.solve(env)
|
|
self.assertPolicyisOptimal(env, p, k, beta)
|
|
|
|
@parameterized.named_parameters(
|
|
('lqr_2_1', lqr.lqr_2_1),
|
|
('lqr_6_2', lqr.lqr_6_2))
|
|
@unittest.skipUnless(
|
|
condition=lqr_solver.sp,
|
|
reason='scipy is not available, so non-scipy DARE solver is the default.')
|
|
def test_lqr_optimal_policy_no_scipy(self, make_env):
|
|
env = make_env()
|
|
old_sp = lqr_solver.sp
|
|
try:
|
|
lqr_solver.sp = None # Force the solver to use the non-scipy code path.
|
|
p, k, beta = lqr_solver.solve(env)
|
|
finally:
|
|
lqr_solver.sp = old_sp
|
|
self.assertPolicyisOptimal(env, p, k, beta)
|
|
|
|
def assertPolicyisOptimal(self, env, p, k, beta):
|
|
tolerance = 1e-3
|
|
n_steps = int(math.ceil(math.log10(tolerance) / math.log10(beta)))
|
|
logging.info('%d timesteps for %g convergence.', n_steps, tolerance)
|
|
total_loss = 0.0
|
|
|
|
timestep = env.reset()
|
|
initial_state = np.hstack((timestep.observation['position'],
|
|
timestep.observation['velocity']))
|
|
logging.info('Measuring total cost over %d steps.', n_steps)
|
|
for _ in range(n_steps):
|
|
x = np.hstack((timestep.observation['position'],
|
|
timestep.observation['velocity']))
|
|
# u = k*x is the optimal policy
|
|
u = k.dot(x)
|
|
total_loss += 1 - (timestep.reward or 0.0)
|
|
timestep = env.step(u)
|
|
|
|
logging.info('Analytical expected total cost is .5*x^T*p*x.')
|
|
expected_loss = .5 * initial_state.T.dot(p).dot(initial_state)
|
|
logging.info('Comparing measured and predicted costs.')
|
|
np.testing.assert_allclose(expected_loss, total_loss, rtol=tolerance)
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|