Compare commits

..

No commits in common. "9aa07fed6af3dea505ab65a77154663e38c6432f" and "3e9d8f7a9c5022a59a5db1403bf0e29fb449866a" have entirely different histories.

2 changed files with 214 additions and 315 deletions

View File

@ -1,12 +1,15 @@
import numpy as np
import torch
import argparse
import os import os
import gc import gym
import time
import json
import dmc2gym
import copy import copy
import tqdm import tqdm
import wandb import wandb
import random
import argparse
import numpy as np
import utils import utils
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
@ -14,12 +17,13 @@ from logger import Logger
from video import VideoRecorder from video import VideoRecorder
from dmc2gym.wrappers import set_global_var from dmc2gym.wrappers import set_global_var
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torchvision.transforms as T import torchvision.transforms as T
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
#from agent.baseline_agent import BaselineAgent #from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent #from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent #from agent.deepmdp_agent import DeepMDPAgent
@ -34,9 +38,8 @@ def parse_args():
parser.add_argument('--task_name', default='run') parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int) parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int) parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=2, type=int) parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--frame_stack', default=3, type=int) parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--collection_interval', default=100, type=int)
parser.add_argument('--resource_files', type=str) parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str) parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none']) parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
@ -49,11 +52,11 @@ def parse_args():
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc']) parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=10000, type=int) parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int) parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=30, type=int) #512 parser.add_argument('--batch_size', default=20, type=int) #512
parser.add_argument('--state_size', default=256, type=int) parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int) parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int) parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models') parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str) parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str) parser.add_argument('--imagine_horizon', default=15, type=str)
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm') parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
@ -61,13 +64,15 @@ def parse_args():
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000 parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int) parser.add_argument('--num_eval_episodes', default=20, type=int)
# value # value
parser.add_argument('--value_lr', default=8e-5, type=float) parser.add_argument('--value_lr', default=1e-4, type=float)
parser.add_argument('--value_beta', default=0.9, type=float) parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float) parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int) parser.add_argument('--value_target_update_freq', default=100, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int) parser.add_argument('--td_lambda', default=0.95, type=int)
# reward
parser.add_argument('--reward_lr', default=1e-4, type=float)
# actor # actor
parser.add_argument('--actor_lr', default=8e-5, type=float) parser.add_argument('--actor_lr', default=1e-4, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float) parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float) parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float) parser.add_argument('--actor_log_std_max', default=2, type=float)
@ -75,7 +80,7 @@ def parse_args():
# world/encoder/decoder # world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity']) parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int) parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=6e-4, type=float) parser.add_argument('--world_model_lr', default=1e-3, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float) parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float) parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float) parser.add_argument('--encoder_tau', default=0.001, type=float)
@ -95,7 +100,6 @@ def parse_args():
# misc # misc
parser.add_argument('--seed', default=1, type=int) parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int) parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=1000, type=int)
parser.add_argument('--work_dir', default='.', type=str) parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true') parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true') parser.add_argument('--save_model', default=False, action='store_true')
@ -103,6 +107,8 @@ def parse_args():
parser.add_argument('--save_video', default=False, action='store_true') parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble']) parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true') parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
parser.add_argument('--num_likelihood_updates', default=5, type=int)
args = parser.parse_args() args = parser.parse_args()
return args return args
@ -113,7 +119,7 @@ def parse_args():
class DPI: class DPI:
def __init__(self, args): def __init__(self, args, writer):
# wandb config # wandb config
#run = wandb.init(project="dpi") #run = wandb.init(project="dpi")
@ -135,8 +141,6 @@ class DPI:
# stack several consecutive frames together # stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'): if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack) self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
# create replay buffer # create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity, self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
@ -160,64 +164,64 @@ class DPI:
self.obs_encoder = ObservationEncoder( self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84) obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128 state_size=self.args.state_size # 128
).to(device) )
self.obs_encoder_momentum = ObservationEncoder( self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84) obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128 state_size=self.args.state_size # 128
).to(device) )
self.obs_decoder = ObservationDecoder( self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84) output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
).to(device) )
self.transition_model = TransitionModel( self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128 history_size=self.args.history_size, # 128
).to(device) )
# Actor Model # Actor Model
self.actor_model = Actor( self.actor_model = Actor(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256, hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
).to(device) )
# Value Models # Value Models
self.value_model = ValueModel( self.value_model = ValueModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
self.target_value_model = ValueModel( self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
self.reward_model = RewardModel( self.reward_model = RewardModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
# Contrastive Models # Contrastive Models
self.prjoection_head = ProjectionHead( self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
self.prjoection_head_momentum = ProjectionHead( self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
self.contrastive_head = ContrastiveHead( self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
).to(device) )
# model parameters # model parameters
@ -233,7 +237,7 @@ class DPI:
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr) self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules # Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head] self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head]
self.value_modules = [self.value_model] self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model] self.actor_modules = [self.actor_model]
@ -245,27 +249,21 @@ class DPI:
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt'))) self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt'))) self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None): def collect_sequences(self, episodes):
obs = self.env.reset() obs = self.env.reset()
done = False done = False
all_rews = []
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files) #video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'): for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video: if args.save_video:
self.env.video.init(enabled=True) self.env.video.init(enabled=True)
epi_reward = 0
for i in range(self.args.episode_length): for i in range(self.args.episode_length):
if random:
action = self.env.action_space.sample() action = self.env.action_space.sample()
else:
with torch.no_grad():
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
next_obs, rew, done, _ = self.env.step(action) next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done) self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video: if args.save_video:
@ -276,222 +274,184 @@ class DPI:
done=False done=False
else: else:
obs = next_obs obs = next_obs
epi_reward += rew
all_rews.append(epi_reward)
if args.save_video: if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count) self.env.video.save('noisy/%d.mp4' % episode_count)
print("Collected {} random episodes".format(episode_count+1)) print("Collected {} random episodes".format(episode_count+1))
return all_rews
def train(self, step, total_steps): def train(self):
counter = 0 # collect experience
self.collect_sequences(self.args.batch_size)
# Group observations and next_observations by steps from past to present
last_observations = torch.tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1]
current_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[:self.args.episode_length-1]
next_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[1:]
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:]
# Preprocessing
last_observations = preprocess_obs(last_observations)
current_observations = preprocess_obs(current_observations)
next_observations = preprocess_obs(next_observations)
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
self.history = self.transition_model.prev_history # (N,128)
# Train encoder
step = 0
total_steps = 10000
metrics = {}
while step < total_steps: while step < total_steps:
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.get_features(last_observations[i])
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
self.next_action = next_actions[i] # (N,6)
history = self.transition_model.prev_history
# collect experience # Encode negative observations
if step !=0: idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch
encoder = self.obs_encoder random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index
actor = self.actor_model negative_current_observations = current_observations[random_time_index][idx]
#all_rews = self.collect_sequences(self.args.batch_size, random=True) self.negative_current_states_dict = self.obs_encoder(negative_current_observations)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else:
all_rews = self.collect_sequences(self.args.batch_size, random=True)
# Group by steps and sample random batch # Predict current state from past state with transition model
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch last_states_sample = self.last_states_dict["sample"]
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1)) predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history)
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices) self.history = predicted_current_state_dict["history"]
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
# Preprocessing # Calculate upper bound loss
last_observations = preprocess_obs(last_observations).to(device) likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict,
current_observations = preprocess_obs(current_observations).to(device) self.current_states_dict,
next_observations = preprocess_obs(next_observations).to(device) self.negative_current_states_dict,
predicted_current_state_dict
)
#likeli_loss = torch.tensor(likeli_loss.numpy(),dtype=torch.float32, requires_grad=True)
#ikeli_loss = likeli_loss.mean()
# Initialize transition model states # Calculate encoder loss
self.transition_model.init_states(self.args.batch_size, device) # (N,128) encoder_loss = self._past_encoder_loss(self.current_states_dict,
self.history = self.transition_model.prev_history # (N,128) predicted_current_state_dict)
# Train encoder #total_ub_loss += ub_loss
if step == 0: #total_encoder_loss += encoder_loss
step += 1
for _ in range(self.args.collection_interval // self.args.episode_length+1):
counter += 1
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
self.last_states_dict = self.get_features(last_observations[i])
self.current_states_dict = self.get_features(current_observations[i])
self.next_states_dict = self.get_features(next_observations[i], momentum=True)
self.action = actions[i] # (N,6)
self.next_action = next_actions[i] # (N,6)
history = self.transition_model.prev_history
# Encode negative observations # contrastive projection
idx = torch.randperm(current_observations[i].shape[0]) # random permutation on batch vec_anchor = predicted_current_state_dict["sample"]
random_time_index = torch.randint(0, self.args.episode_length-2, (1,)).item() # random time index vec_positive = self.next_states_dict["sample"].detach()
negative_current_observations = current_observations[random_time_index][idx] z_anchor = self.prjoection_head(vec_anchor, self.action)
self.negative_current_states_dict = self.obs_encoder(negative_current_observations) z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
# Predict current state from past state with transition model # contrastive loss
last_states_sample = self.last_states_dict["sample"] logits = self.contrastive_head(z_anchor, z_positive)
predicted_current_state_dict = self.transition_model.imagine_step(last_states_sample, self.action, self.history) labels = labels = torch.arange(logits.shape[0]).long()
self.history = predicted_current_state_dict["history"] lb_loss = F.cross_entropy(logits, labels)
# Calculate upper bound loss # behaviour learning
likeli_loss, ub_loss = self._upper_bound_minimization(self.last_states_dict, with FreezeParameters(self.world_model_modules):
self.current_states_dict, imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
self.negative_current_states_dict, imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
predicted_current_state_dict self.next_action, self.history.detach(),
) imagine_horizon)
# Calculate encoder loss # decoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict, horizon = np.minimum(50-i, imagine_horizon)
predicted_current_state_dict) obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# contrastive projection # reward loss
vec_anchor = predicted_current_state_dict["sample"] reward_dist = self.reward_model(self.current_states_dict["sample"])
vec_positive = self.next_states_dict["sample"].detach() reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
z_anchor = self.prjoection_head(vec_anchor, self.action)
z_positive = self.prjoection_head_momentum(vec_positive, next_actions[i]).detach()
# contrastive loss # update models
logits = self.contrastive_head(z_anchor, z_positive) world_model_loss = encoder_loss + ub_loss + lb_loss + decoder_loss * 1e-2
labels = torch.arange(logits.shape[0]).long().to(device) self.world_model_opt.zero_grad()
lb_loss = F.cross_entropy(logits, labels) world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
# behaviour learning # actor loss
with FreezeParameters(self.world_model_modules): with FreezeParameters(self.world_model_modules + self.value_modules):
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i) imag_rew_dist = self.reward_model(imagined_rollout["sample"])
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(), target_imag_val_dist = self.target_value_model(imagined_rollout["sample"])
self.next_action, self.history.detach(),
imagine_horizon)
# decoder loss imag_rews = imag_rew_dist.mean
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i) target_imag_vals = target_imag_val_dist.mean
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
# reward loss discounts = self.args.discount * torch.ones_like(imag_rews).detach()
reward_dist = self.reward_model(self.current_states_dict["sample"])
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
# update models self.target_returns = self._compute_lambda_return(imag_rews[:-1],
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2 target_imag_vals[:-1],
self.world_model_opt.zero_grad() discounts[:-1] ,
world_model_loss.backward() self.args.td_lambda,
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm) target_imag_vals[-1])
self.world_model_opt.step()
# update momentum encoder discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0)
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau) self.discounts = torch.cumprod(discounts, 0).detach()
actor_loss = -torch.mean(self.discounts * self.target_returns)
# update momentum projection head # update actor
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau) self.actor_opt.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
# actor loss # value loss
with FreezeParameters(self.world_model_modules + self.value_modules): with torch.no_grad():
imag_rew_dist = self.reward_model(imagined_rollout["sample"]) value_feat = imagined_rollout["sample"][:-1].detach()
target_imag_val_dist = self.target_value_model(imagined_rollout["sample"]) value_targ = self.target_returns.detach()
imag_rews = imag_rew_dist.mean value_dist = self.value_model(value_feat)
target_imag_vals = target_imag_val_dist.mean value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
discounts = self.args.discount * torch.ones_like(imag_rews).detach() # update value
self.value_opt.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
self.value_opt.step()
self.target_returns = self._compute_lambda_return(imag_rews[:-1], # update target value
target_imag_vals[:-1], if step % self.args.value_target_update_freq == 0:
discounts[:-1] , self.target_value_model = copy.deepcopy(self.value_model)
self.args.td_lambda,
target_imag_vals[-1])
discounts = torch.cat([torch.ones_like(discounts[:1]), discounts[1:-1]], 0) # update momentum encoder
self.discounts = torch.cumprod(discounts, 0).detach() soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
actor_loss = -torch.mean(self.discounts * self.target_returns)
# update actor # update momentum projection head
self.actor_opt.zero_grad() soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
actor_loss.backward()
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
self.actor_opt.step()
# value loss step += 1
with torch.no_grad():
value_feat = imagined_rollout["sample"][:-1].detach()
value_targ = self.target_returns.detach()
value_dist = self.value_model(value_feat) if step % self.args.logging_freq:
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1)) writer.add_scalar('Main Loss/World Loss', world_model_loss, step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss, step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss, step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss, step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss, step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss, step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss, step)
# update value """
self.value_opt.zero_grad() if step % self.args.logging_freq:
value_loss.backward() metrics['Upper Bound Loss'] = ub_loss.item()
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm) metrics['Encoder Loss'] = encoder_loss.item()
self.value_opt.step() metrics['Decoder Loss'] = decoder_loss.item()
metrics["Lower Bound Loss"] = lb_loss.item()
metrics["World Model Loss"] = world_model_loss.item()
wandb.log(metrics)
"""
# update target value if step>total_steps:
if step % self.args.value_target_update_freq == 0: print("Training finished")
self.target_value_model = copy.deepcopy(self.value_model) break
# counter for reward
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
step += 1
if step>total_steps:
print("Training finished")
break
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
#torch.cuda.empty_cache() # memory leak issues
for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
def evaluate(self, env, eval_episodes, render=False):
episode_rew = np.zeros((eval_episodes))
video_images = [[] for _ in range(eval_episodes)]
for i in range(eval_episodes):
obs = env.reset()
done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
while not done:
with torch.no_grad():
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
action = action[0].cpu().numpy()
next_obs, rew, done, _ = env.step(action)
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
episode_rew[i] += rew
if render:
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states): def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states, club_sample = CLUBSample(last_states,
@ -509,6 +469,8 @@ class DPI:
# predicted current state distribution # predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"] predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss # KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean() loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
@ -540,26 +502,10 @@ class DPI:
returns = torch.flip(torch.stack(rets), [0]) returns = torch.flip(torch.stack(rets), [0])
return returns return returns
def save_models(self, save_path):
torch.save(
{'rssm' : self.transition_model.state_dict(),
'actor': self.actor_model.state_dict(),
'reward_model': self.reward_model.state_dict(),
'obs_encoder': self.obs_encoder.state_dict(),
'obs_decoder': self.obs_decoder.state_dict(),
'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args() args = parse_args()
writer = SummaryWriter() writer = SummaryWriter()
dpi = DPI(args, writer)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dpi.train()
step = 0
total_steps = 10000
dpi = DPI(args)
dpi.train(step,total_steps)

View File

@ -1,3 +1,9 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os import os
import random import random
import numpy as np import numpy as np
@ -102,49 +108,6 @@ class FrameStack(gym.Wrapper):
return np.concatenate(list(self._frames), axis=0) return np.concatenate(list(self._frames), axis=0)
class ActionRepeat:
def __init__(self, env, amount):
self._env = env
self._amount = amount
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
done = False
total_reward = 0
current_step = 0
while current_step < self._amount and not done:
obs, reward, done, info = self._env.step(action)
total_reward += reward
current_step += 1
return obs, total_reward, done, info
class NormalizeActions:
def __init__(self, env):
self._env = env
self._mask = np.logical_and(
np.isfinite(env.action_space.low),
np.isfinite(env.action_space.high))
self._low = np.where(self._mask, env.action_space.low, -1)
self._high = np.where(self._mask, env.action_space.high, 1)
def __getattr__(self, name):
return getattr(self._env, name)
@property
def action_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
return gym.spaces.Box(low, high, dtype=np.float32)
def step(self, action):
original = (action + 1) / 2 * (self._high - self._low) + self._low
original = np.where(self._mask, original, action)
return self._env.step(original)
class ReplayBuffer: class ReplayBuffer:
def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args): def __init__(self, size, obs_shape, action_size, seq_len, batch_size, args):
self.size = size self.size = size
@ -201,11 +164,11 @@ class ReplayBuffer:
non_zero_indices = np.nonzero(buffer.episode_count)[0] non_zero_indices = np.nonzero(buffer.episode_count)[0]
variable = variable[non_zero_indices] variable = variable[non_zero_indices]
if obs: if obs:
variable = variable.reshape(-1, self.args.episode_length, variable = variable.reshape(self.args.batch_size, self.args.episode_length,
self.args.frame_stack*self.args.channels, self.args.frame_stack*self.args.channels,
self.args.image_size,self.args.image_size).transpose(1, 0, 2, 3, 4) self.args.image_size,self.args.image_size).transpose(1, 0, 2, 3, 4)
else: else:
variable = variable.reshape(variable.shape[0]//self.args.episode_length, self.args.episode_length, -1).transpose(1, 0, 2) variable = variable.reshape(self.args.batch_size, self.args.episode_length, -1).transpose(1, 0, 2)
return variable return variable
def transform_grouped_steps(self, variable): def transform_grouped_steps(self, variable):
@ -214,16 +177,6 @@ class ReplayBuffer:
self.args.image_size,self.args.image_size) self.args.image_size,self.args.image_size)
return variable return variable
def sample_random_idx(self, buffer_length):
random_indices = random.sample(range(0, buffer_length), self.args.batch_size)
return random_indices
def group_and_sample_random_batch(self, buffer, variable_name, device, random_indices, is_obs=True, offset=0):
if offset == 0:
variable_tensor = torch.tensor(self.group_steps(buffer,variable_name, is_obs)).float()[:self.args.episode_length-1].to(device)
else:
variable_tensor = torch.tensor(self.group_steps(buffer,variable_name, is_obs)).float()[offset:].to(device)
return variable_tensor[:,random_indices,:,:,:] if is_obs else variable_tensor[:,random_indices,:]
def make_env(args): def make_env(args):
# For making ground plane transparent, change rgba to (0, 0, 0, 0) in local_dm_control_suite/{domain_name}.xml, # For making ground plane transparent, change rgba to (0, 0, 0, 0) in local_dm_control_suite/{domain_name}.xml,