Adding some new things
This commit is contained in:
parent
02a66cfb33
commit
ab4e7b9a22
328
DPI/models.py
328
DPI/models.py
@ -23,23 +23,24 @@ class ObservationEncoder(nn.Module):
|
||||
|
||||
self.convs = nn.Sequential(*layers)
|
||||
|
||||
self.fc = nn.Linear(256 * 3 * 3, 2 * state_size)
|
||||
self.fc = nn.Linear(256 * obs_shape[0], 2 * state_size) # 9 if 3 frames stacked
|
||||
|
||||
def forward(self, x):
|
||||
x = self.convs(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
x_reshaped = x.reshape(-1, *x.shape[-3:])
|
||||
x_embed = self.convs(x_reshaped)
|
||||
x_embed = torch.reshape(x_embed, (*x.shape[:-3], -1))
|
||||
x = self.fc(x_embed)
|
||||
|
||||
# Mean and standard deviation
|
||||
mean, std = torch.chunk(x, 2, dim=-1)
|
||||
mean = nn.ELU()(mean)
|
||||
std = F.softplus(std)
|
||||
std = torch.clamp(std, min=0.0, max=1e5)
|
||||
std = torch.clamp(std, min=0.0, max=1e1)
|
||||
|
||||
# Normal Distribution
|
||||
dist = self.get_dist(mean, std)
|
||||
|
||||
# Sampling via reparameterization Trick
|
||||
#x = dist.rsample()
|
||||
x = self.reparameterize(mean, std)
|
||||
|
||||
encoded_output = {"sample": x, "distribution": dist}
|
||||
@ -63,7 +64,7 @@ class ObservationDecoder(nn.Module):
|
||||
self.output_shape = output_shape
|
||||
self.input_size = 256 * 3 * 3
|
||||
self.in_channels = [self.input_size, 256, 128, 64]
|
||||
self.out_channels = [256, 128, 64, 3]
|
||||
self.out_channels = [256, 128, 64, 9]
|
||||
|
||||
if output_shape[1] == 84:
|
||||
self.kernels = [5, 7, 5, 6]
|
||||
@ -94,43 +95,50 @@ class ObservationDecoder(nn.Module):
|
||||
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, num_layers=5):
|
||||
def __init__(self, state_size, hidden_size, action_size, num_layers=4, min_std=1e-4, init_std=5, mean_scale=5):
|
||||
super().__init__()
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.num_layers = num_layers
|
||||
|
||||
self._min_std=torch.Tensor([1e-4])[0]
|
||||
self._init_std=torch.Tensor([5])[0]
|
||||
self._mean_scale=torch.Tensor([5])[0]
|
||||
self._min_std = min_std
|
||||
self._init_std = init_std
|
||||
self._mean_scale = mean_scale
|
||||
|
||||
layers = []
|
||||
for i in range(self.num_layers):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 2*action_size
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.LeakyReLU())
|
||||
layers.append(nn.Linear(input_channels, self.hidden_size))
|
||||
layers.append(nn.ReLU())
|
||||
layers.append(nn.Linear(self.hidden_size, 2*self.action_size))
|
||||
self.action_model = nn.Sequential(*layers)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.transformed_distribution.TransformedDistribution(distribution, TanhBijector())
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
distribution = SampleDist(distribution)
|
||||
return distribution
|
||||
|
||||
def add_exploration(self, action, action_noise=0.3):
|
||||
return torch.clamp(torch.distributions.Normal(action, action_noise).rsample(), -1, 1)
|
||||
|
||||
def forward(self, features):
|
||||
out = self.action_model(features)
|
||||
mean, std = torch.chunk(out, 2, dim=-1)
|
||||
|
||||
raw_init_std = torch.log(torch.exp(self._init_std) - 1)
|
||||
raw_init_std = np.log(np.exp(self._init_std) - 1)
|
||||
action_mean = self._mean_scale * torch.tanh(mean / self._mean_scale)
|
||||
action_std = F.softplus(std + raw_init_std) + self._min_std
|
||||
|
||||
dist = self.get_dist(action_mean, action_std)
|
||||
sample = dist.rsample()
|
||||
sample = dist.rsample() #self.reparameterize(action_mean, action_std)
|
||||
return sample
|
||||
|
||||
def reparameterize(self, mu, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps * std
|
||||
|
||||
class ValueModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, num_layers=4):
|
||||
@ -140,11 +148,12 @@ class ValueModel(nn.Module):
|
||||
self.num_layers = num_layers
|
||||
|
||||
layers = []
|
||||
for i in range(self.num_layers):
|
||||
for i in range(self.num_layers-1):
|
||||
input_channels = state_size if i == 0 else self.hidden_size
|
||||
output_channels = self.hidden_size if i!= self.num_layers-1 else 1
|
||||
output_channels = self.hidden_size
|
||||
layers.append(nn.Linear(input_channels, output_channels))
|
||||
layers.append(nn.LeakyReLU())
|
||||
layers.append(nn.Linear(self.hidden_size, int(np.prod(1))))
|
||||
self.value_model = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, state):
|
||||
@ -169,6 +178,7 @@ class RewardModel(nn.Module):
|
||||
return torch.distributions.independent.Independent(
|
||||
torch.distributions.Normal(reward, 1), 1)
|
||||
|
||||
"""
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
@ -180,6 +190,7 @@ class TransitionModel(nn.Module):
|
||||
self.act_fn = nn.LeakyReLU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.ln = nn.LayerNorm(hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size + history_size, history_size)
|
||||
self.fc_state_prior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
self.fc_state_posterior = nn.Linear(history_size + state_size + action_size, 2 * state_size)
|
||||
@ -194,12 +205,25 @@ class TransitionModel(nn.Module):
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def imagine_step(self, prev_state, prev_action, prev_history):
|
||||
state_action = self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1)))
|
||||
prev_hist = prev_history.detach()
|
||||
history = self.history_cell(torch.cat([state_action, prev_hist], dim=-1), prev_hist)
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
if 'distribution' in states:
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
state_prior = self.fc_state_prior(torch.cat([history, prev_state, prev_action], dim=-1))
|
||||
def seq_to_batch(self, state, name):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def imagine_step(self, state, action, history):
|
||||
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
||||
imag_hist = self.history_cell(torch.cat([state_action, history], dim=-1), history)
|
||||
state_prior = self.fc_state_prior(torch.cat([imag_hist, state, action], dim=-1))
|
||||
state_prior_mean, state_prior_std = torch.chunk(state_prior, 2, dim=-1)
|
||||
state_prior_std = F.softplus(state_prior_std)
|
||||
|
||||
@ -208,19 +232,9 @@ class TransitionModel(nn.Module):
|
||||
|
||||
# Sampling via reparameterization Trick
|
||||
sample_state_prior = self.reparemeterize(state_prior_mean, state_prior_std)
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": history, "distribution": state_prior_dist}
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": imag_hist, "distribution": state_prior_dist}
|
||||
return prior
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
def imagine_rollout(self, state, action, history, horizon):
|
||||
imagined_priors = []
|
||||
for i in range(horizon):
|
||||
@ -231,9 +245,125 @@ class TransitionModel(nn.Module):
|
||||
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
||||
return imagined_priors
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history, nonterms):
|
||||
state_action = self.ln(self.act_fn(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(torch.cat([state_action, prev_history], dim=-1), prev_history)
|
||||
state_prior = self.fc_state_prior(torch.cat([prev_history, prev_state, prev_action], dim=-1))
|
||||
state_prior_mean, state_prior_std = torch.chunk(state_prior*nonterms, 2, dim=-1)
|
||||
state_prior_std = F.softplus(state_prior_std) + 0.1
|
||||
sample_state_prior = state_prior_mean + torch.randn_like(state_prior_mean) * state_prior_std
|
||||
prior = {"mean": state_prior_mean, "std": state_prior_std, "sample": sample_state_prior, "history": current_history}
|
||||
return prior
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
observed_rollout = []
|
||||
for i in range(rollout_states.shape[0]):
|
||||
actions = rollout_actions[i] * nonterms[i]
|
||||
prior = self.observe_step(rollout_states[i], actions, init_history, nonterms[i])
|
||||
init_history = prior["history"]
|
||||
observed_rollout.append(prior)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(std)
|
||||
return mean + eps * std
|
||||
"""
|
||||
|
||||
class TransitionModel(nn.Module):
|
||||
def __init__(self, state_size, hidden_size, action_size, history_size):
|
||||
super().__init__()
|
||||
|
||||
self.state_size = state_size
|
||||
self.hidden_size = hidden_size
|
||||
self.action_size = action_size
|
||||
self.history_size = history_size
|
||||
self.act_fn = nn.ELU()
|
||||
|
||||
self.fc_state_action = nn.Linear(state_size + action_size, hidden_size)
|
||||
self.history_cell = nn.GRUCell(hidden_size, history_size)
|
||||
self.fc_state_mu = nn.Linear(history_size + hidden_size, state_size)
|
||||
self.fc_state_sigma = nn.Linear(history_size + hidden_size, state_size)
|
||||
|
||||
self.batch_norm = nn.BatchNorm1d(hidden_size)
|
||||
self.batch_norm2 = nn.BatchNorm1d(state_size)
|
||||
|
||||
self.min_sigma = 1e-4
|
||||
self.max_sigma = 1e0
|
||||
|
||||
def init_states(self, batch_size, device):
|
||||
self.prev_state = torch.zeros(batch_size, self.state_size).to(device)
|
||||
self.prev_action = torch.zeros(batch_size, self.action_size).to(device)
|
||||
self.prev_history = torch.zeros(batch_size, self.history_size).to(device)
|
||||
|
||||
def get_dist(self, mean, std):
|
||||
distribution = torch.distributions.Normal(mean, std)
|
||||
distribution = torch.distributions.independent.Independent(distribution, 1)
|
||||
return distribution
|
||||
|
||||
def stack_states(self, states, dim=0):
|
||||
s = dict(
|
||||
mean = torch.stack([state['mean'] for state in states], dim=dim),
|
||||
std = torch.stack([state['std'] for state in states], dim=dim),
|
||||
sample = torch.stack([state['sample'] for state in states], dim=dim),
|
||||
history = torch.stack([state['history'] for state in states], dim=dim),)
|
||||
if 'distribution' in states:
|
||||
dist = dict(distribution = [state['distribution'] for state in states])
|
||||
s.update(dist)
|
||||
return s
|
||||
|
||||
def seq_to_batch(self, state, name):
|
||||
return dict(
|
||||
sample = torch.reshape(state[name], (state[name].shape[0]* state[name].shape[1], *state[name].shape[2:])))
|
||||
|
||||
def imagine_step(self, state, action, history):
|
||||
next_state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([state, action], dim=-1))))
|
||||
imag_history = self.history_cell(next_state_action_enc, history)
|
||||
next_state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([next_state_action_enc, imag_history], dim=-1))))
|
||||
next_state_sigma = torch.sigmoid(self.fc_state_sigma(torch.cat([next_state_action_enc, imag_history], dim=-1)))
|
||||
next_state_sigma = self.min_sigma + (self.max_sigma - self.min_sigma) * next_state_sigma
|
||||
|
||||
# Normal Distribution
|
||||
next_state_dist = self.get_dist(next_state_mu, next_state_sigma)
|
||||
next_state_sample = self.reparemeterize(next_state_mu, next_state_sigma)
|
||||
prior = {"mean": next_state_mu, "std": next_state_sigma, "sample": next_state_sample, "history": imag_history, "distribution": next_state_dist}
|
||||
return prior
|
||||
|
||||
def imagine_rollout(self, state, action, history, horizon):
|
||||
imagined_priors = []
|
||||
for i in range(horizon):
|
||||
prior = self.imagine_step(state, action, history)
|
||||
state = prior["sample"]
|
||||
history = prior["history"]
|
||||
imagined_priors.append(prior)
|
||||
imagined_priors = self.stack_states(imagined_priors, dim=0)
|
||||
return imagined_priors
|
||||
|
||||
def observe_step(self, prev_state, prev_action, prev_history):
|
||||
state_action_enc = self.act_fn(self.batch_norm(self.fc_state_action(torch.cat([prev_state, prev_action], dim=-1))))
|
||||
current_history = self.history_cell(state_action_enc, prev_history)
|
||||
state_mu = self.act_fn(self.batch_norm2(self.fc_state_mu(torch.cat([state_action_enc, prev_history], dim=-1))))
|
||||
state_sigma = F.softplus(self.fc_state_sigma(torch.cat([state_action_enc, prev_history], dim=-1)))
|
||||
|
||||
sample_state = state_mu + torch.randn_like(state_mu) * state_sigma
|
||||
state_enc = {"mean": state_mu, "std": state_sigma, "sample": sample_state, "history": current_history}
|
||||
return state_enc
|
||||
|
||||
def observe_rollout(self, rollout_states, rollout_actions, init_history, nonterms):
|
||||
observed_rollout = []
|
||||
for i in range(rollout_states.shape[0]):
|
||||
rollout_states_ = rollout_states[i]
|
||||
rollout_actions_ = rollout_actions[i]
|
||||
init_history_ = nonterms[i] * init_history
|
||||
state_enc = self.observe_step(rollout_states_, rollout_actions_, init_history_)
|
||||
init_history = state_enc["history"]
|
||||
observed_rollout.append(state_enc)
|
||||
observed_rollout = self.stack_states(observed_rollout, dim=0)
|
||||
return observed_rollout
|
||||
|
||||
def reparemeterize(self, mean, std):
|
||||
eps = torch.randn_like(mean)
|
||||
return mean + eps * std
|
||||
|
||||
|
||||
class TanhBijector(torch.distributions.Transform):
|
||||
@ -300,6 +430,7 @@ class ContrastiveHead(nn.Module):
|
||||
return logits
|
||||
|
||||
|
||||
"""
|
||||
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
def __init__(self, last_states, current_states, negative_current_states, predicted_current_states):
|
||||
super(CLUBSample, self).__init__()
|
||||
@ -313,7 +444,7 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
sample = state_dict["sample"] #dist.sample() # Use state_dict["sample"] if you want to use the same sample for all the losses
|
||||
mu = dist.mean
|
||||
var = dist.variance
|
||||
return mu, var, sample
|
||||
return mu.detach(), var.detach(), sample.detach()
|
||||
|
||||
def loglikeli(self):
|
||||
_, _, pred_sample = self.get_mu_var_samples(self.predicted_current_states)
|
||||
@ -330,15 +461,136 @@ class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
pos = (-(mu_curr - pred_sample)**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
#neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
|
||||
#neg = (-(mu_curr - pred_sample[random_index])**2 /var_curr).sum(dim=1).mean(dim=0)
|
||||
neg = (-(mu_neg - pred_sample)**2 /var_neg).sum(dim=1).mean(dim=0)
|
||||
upper_bound = pos - neg
|
||||
|
||||
return upper_bound/2
|
||||
|
||||
def learning_loss(self):
|
||||
return - self.loglikeli()
|
||||
"""
|
||||
|
||||
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
|
||||
def __init__(self, x_dim, y_dim, hidden_size):
|
||||
super(CLUBSample, self).__init__()
|
||||
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim))
|
||||
|
||||
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size//2, y_dim),
|
||||
nn.Tanh())
|
||||
|
||||
def get_mu_logvar(self, x_samples):
|
||||
mu = self.p_mu(x_samples)
|
||||
logvar = self.p_logvar(x_samples)
|
||||
return mu, logvar
|
||||
|
||||
|
||||
def loglikeli(self, x_samples, y_samples):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
|
||||
|
||||
|
||||
def forward(self, x_samples, y_samples, y_negatives):
|
||||
mu, logvar = self.get_mu_logvar(x_samples)
|
||||
|
||||
sample_size = x_samples.shape[0]
|
||||
#random_index = torch.randint(sample_size, (sample_size,)).long()
|
||||
random_index = torch.randperm(sample_size).long()
|
||||
|
||||
positive = -(mu - y_samples)**2 / logvar.exp()
|
||||
#negative = - (mu - y_samples[random_index])**2 / logvar.exp()
|
||||
negative = -(mu - y_negatives)**2 / logvar.exp()
|
||||
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
|
||||
return upper_bound/2.
|
||||
|
||||
def learning_loss(self, x_samples, y_samples):
|
||||
return -self.loglikeli(x_samples, y_samples)
|
||||
|
||||
|
||||
class QFunction(nn.Module):
|
||||
"""MLP for q-function."""
|
||||
def __init__(self, obs_dim, action_dim, hidden_dim):
|
||||
super().__init__()
|
||||
|
||||
self.trunk = nn.Sequential(
|
||||
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
def forward(self, obs, action):
|
||||
assert obs.size(0) == action.size(0)
|
||||
|
||||
obs_action = torch.cat([obs, action], dim=1)
|
||||
return self.trunk(obs_action)
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
"""Critic network, employes two q-functions."""
|
||||
def __init__(
|
||||
self, obs_shape, action_shape, hidden_dim, encoder_feature_dim):
|
||||
super().__init__()
|
||||
|
||||
self.Q1 = QFunction(
|
||||
self.encoder.feature_dim, action_shape[0], hidden_dim
|
||||
)
|
||||
self.Q2 = QFunction(
|
||||
self.encoder.feature_dim, action_shape[0], hidden_dim
|
||||
)
|
||||
|
||||
self.outputs = dict()
|
||||
|
||||
def forward(self, obs, action, detach_encoder=False):
|
||||
# detach_encoder allows to stop gradient propogation to encoder
|
||||
obs = self.encoder(obs, detach=detach_encoder)
|
||||
|
||||
q1 = self.Q1(obs, action)
|
||||
q2 = self.Q2(obs, action)
|
||||
|
||||
self.outputs['q1'] = q1
|
||||
self.outputs['q2'] = q2
|
||||
|
||||
return q1, q2
|
||||
|
||||
class SampleDist:
|
||||
def __init__(self, dist, samples=100):
|
||||
self._dist = dist
|
||||
self._samples = samples
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return 'SampleDist'
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._dist, name)
|
||||
|
||||
def mean(self):
|
||||
sample = self._dist.rsample(self._samples)
|
||||
return torch.mean(sample, 0)
|
||||
|
||||
def mode(self):
|
||||
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
||||
sample = dist.rsample()
|
||||
logprob = dist.log_prob(sample)
|
||||
batch_size = sample.size(1)
|
||||
feature_size = sample.size(2)
|
||||
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
|
||||
return torch.gather(sample, 0, indices).squeeze(0)
|
||||
|
||||
def entropy(self):
|
||||
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
|
||||
sample = dist.rsample()
|
||||
logprob = dist.log_prob(sample)
|
||||
return -torch.mean(logprob, 0)
|
||||
|
||||
def sample(self):
|
||||
return self._dist.sample()
|
||||
|
||||
|
||||
if "__name__ == __main__":
|
||||
pass
|
||||
tr = TransitionModel(50, 512, 1, 256)
|
||||
|
||||
|
51
DPI/replay_buffer.py
Normal file
51
DPI/replay_buffer.py
Normal file
@ -0,0 +1,51 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, size, obs_shape, action_size, seq_len, batch_size):
|
||||
self.size = size
|
||||
self.obs_shape = obs_shape
|
||||
self.action_size = action_size
|
||||
self.seq_len = seq_len
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.full = False
|
||||
self.observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.next_observations = np.empty((size, *obs_shape), dtype=np.uint8)
|
||||
self.actions = np.empty((size, action_size), dtype=np.float32)
|
||||
self.rewards = np.empty((size,), dtype=np.float32)
|
||||
self.terminals = np.empty((size,), dtype=np.float32)
|
||||
self.steps, self.episodes = 0, 0
|
||||
|
||||
def add(self, obs, ac, next_obs, rew, done):
|
||||
self.observations[self.idx] = obs
|
||||
self.next_observations[self.idx] = next_obs
|
||||
self.actions[self.idx] = ac
|
||||
self.rewards[self.idx] = rew
|
||||
self.terminals[self.idx] = done
|
||||
self.idx = (self.idx + 1) % self.size
|
||||
self.full = self.full or self.idx == 0
|
||||
self.steps += 1
|
||||
self.episodes = self.episodes + (1 if done else 0)
|
||||
|
||||
def _sample_idx(self, L):
|
||||
valid_idx = False
|
||||
while not valid_idx:
|
||||
idx = np.random.randint(0, self.size if self.full else self.idx - L)
|
||||
idxs = np.arange(idx, idx + L) % self.size
|
||||
valid_idx = not self.idx in idxs[1:]
|
||||
return idxs
|
||||
|
||||
def _retrieve_batch(self, idxs, n, L):
|
||||
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
|
||||
observations = self.observations[vec_idxs]
|
||||
next_observations = self.next_observations[vec_idxs]
|
||||
return observations.reshape(L, n, *observations.shape[1:]),self.actions[vec_idxs].reshape(L, n, -1), next_observations.reshape(L, n, *next_observations.shape[1:]), self.rewards[vec_idxs].reshape(L, n), self.terminals[vec_idxs].reshape(L, n)
|
||||
|
||||
def sample(self):
|
||||
n = self.batch_size
|
||||
l = self.seq_len
|
||||
obs,acs,nxt_obs,rews,terms= self._retrieve_batch(np.asarray([self._sample_idx(l) for _ in range(n)]), n, l)
|
||||
return obs,acs,nxt_obs,rews,terms
|
117
DPI/train.py
117
DPI/train.py
@ -48,10 +48,10 @@ def parse_args():
|
||||
parser.add_argument('--episode_length', default=51, type=int)
|
||||
# train
|
||||
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
|
||||
parser.add_argument('--init_steps', default=10000, type=int)
|
||||
parser.add_argument('--init_steps', default=5000, type=int)
|
||||
parser.add_argument('--num_train_steps', default=100000, type=int)
|
||||
parser.add_argument('--update_steps', default=100, type=int)
|
||||
parser.add_argument('--batch_size', default=64, type=int) #512
|
||||
parser.add_argument('--batch_size', default=64, type=int)
|
||||
parser.add_argument('--state_size', default=50, type=int)
|
||||
parser.add_argument('--hidden_size', default=512, type=int)
|
||||
parser.add_argument('--history_size', default=256, type=int)
|
||||
@ -66,20 +66,20 @@ def parse_args():
|
||||
parser.add_argument('--num_eval_episodes', default=20, type=int)
|
||||
parser.add_argument('--evaluation_interval', default=10000, type=int) # TODO: master had 10000
|
||||
# value
|
||||
parser.add_argument('--value_lr', default=1e-6, type=float)
|
||||
parser.add_argument('--value_lr', default=8e-5, type=float)
|
||||
parser.add_argument('--value_target_update_freq', default=100, type=int)
|
||||
parser.add_argument('--td_lambda', default=0.95, type=int)
|
||||
# actor
|
||||
parser.add_argument('--actor_lr', default=1e-6, type=float)
|
||||
parser.add_argument('--actor_lr', default=8e-5, type=float)
|
||||
parser.add_argument('--actor_beta', default=0.9, type=float)
|
||||
parser.add_argument('--actor_log_std_min', default=-10, type=float)
|
||||
parser.add_argument('--actor_log_std_max', default=2, type=float)
|
||||
parser.add_argument('--actor_update_freq', default=2, type=int)
|
||||
# world/encoder/decoder
|
||||
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
|
||||
parser.add_argument('--world_model_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--decoder_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--reward_lr', default=1e-5, type=float)
|
||||
parser.add_argument('--world_model_lr', default=6e-5, type=float)
|
||||
parser.add_argument('--decoder_lr', default=6e-4, type=float)
|
||||
parser.add_argument('--reward_lr', default=6e-5, type=float)
|
||||
parser.add_argument('--encoder_tau', default=0.001, type=float)
|
||||
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
||||
parser.add_argument('--num_layers', default=4, type=int)
|
||||
@ -157,16 +157,19 @@ class DPI:
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
).to(device)
|
||||
self.obs_encoder.apply(self.init_weights)
|
||||
|
||||
self.obs_encoder_momentum = ObservationEncoder(
|
||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||
state_size=self.args.state_size # 128
|
||||
).to(device)
|
||||
self.obs_encoder_momentum.apply(self.init_weights)
|
||||
|
||||
self.obs_decoder = ObservationDecoder(
|
||||
state_size=self.args.state_size, # 128
|
||||
output_shape=(self.args.channels*self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
|
||||
).to(device)
|
||||
self.obs_decoder.apply(self.init_weights)
|
||||
|
||||
self.transition_model = TransitionModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
@ -174,6 +177,7 @@ class DPI:
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
history_size=self.args.history_size, # 128
|
||||
).to(device)
|
||||
self.transition_model.apply(self.init_weights)
|
||||
|
||||
# Actor Model
|
||||
self.actor_model = Actor(
|
||||
@ -181,7 +185,7 @@ class DPI:
|
||||
hidden_size=self.args.hidden_size, # 256,
|
||||
action_size=self.env.action_space.shape[0], # 6
|
||||
).to(device)
|
||||
#self.actor_model.apply(self.init_weights)
|
||||
self.actor_model.apply(self.init_weights)
|
||||
|
||||
|
||||
# Value Models
|
||||
@ -189,16 +193,19 @@ class DPI:
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.value_model.apply(self.init_weights)
|
||||
|
||||
self.target_value_model = ValueModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.target_value_model.apply(self.init_weights)
|
||||
|
||||
self.reward_model = RewardModel(
|
||||
state_size=self.args.state_size, # 128
|
||||
hidden_size=self.args.hidden_size, # 256
|
||||
).to(device)
|
||||
self.reward_model.apply(self.init_weights)
|
||||
|
||||
# Contrastive Models
|
||||
self.prjoection_head = ProjectionHead(
|
||||
@ -228,22 +235,21 @@ class DPI:
|
||||
self.world_model_parameters = list(self.obs_encoder.parameters()) + list(self.prjoection_head.parameters()) + \
|
||||
list(self.transition_model.parameters()) + list(self.club_sample.parameters()) + \
|
||||
list(self.contrastive_head.parameters())
|
||||
self.past_transition_parameters = self.transition_model.parameters()
|
||||
|
||||
# optimizers
|
||||
self.world_model_opt = torch.optim.Adam(self.world_model_parameters, self.args.world_model_lr,eps=1e-6)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6)
|
||||
self.value_opt = torch.optim.Adam(self.value_model.parameters(), self.args.value_lr,eps=1e-6, weight_decay=1e-5)
|
||||
self.actor_opt = torch.optim.Adam(self.actor_model.parameters(), self.args.actor_lr,eps=1e-6)
|
||||
self.decoder_opt = torch.optim.Adam(self.obs_decoder.parameters(), self.args.decoder_lr,eps=1e-6)
|
||||
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6)
|
||||
self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), self.args.reward_lr,eps=1e-6, weight_decay=1e-5)
|
||||
|
||||
# Create Modules
|
||||
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head]
|
||||
self.world_model_modules = [self.obs_encoder, self.prjoection_head, self.transition_model, self.club_sample, self.contrastive_head,
|
||||
self.obs_encoder_momentum, self.prjoection_head_momentum]
|
||||
self.value_modules = [self.value_model]
|
||||
self.actor_modules = [self.actor_model]
|
||||
self.decoder_modules = [self.obs_decoder]
|
||||
self.reward_modules = [self.reward_model]
|
||||
#self.decoder_modules = [self.obs_decoder]
|
||||
|
||||
if use_saved:
|
||||
self._use_saved_models(saved_model_dir)
|
||||
@ -282,7 +288,8 @@ class DPI:
|
||||
with torch.no_grad():
|
||||
obs_ = torch.tensor(obs.copy(), dtype=torch.float32)
|
||||
obs_ = preprocess_obs(obs_).to(device)
|
||||
state = self.get_features(obs_)["distribution"].rsample().unsqueeze(0)
|
||||
#state = self.get_features(obs_)["sample"].unsqueeze(0)
|
||||
state = self.get_features(obs_)["distribution"].rsample()
|
||||
action = actor_model(state)
|
||||
action = actor_model.add_exploration(action)
|
||||
action = action.cpu().numpy()[0]
|
||||
@ -307,7 +314,7 @@ class DPI:
|
||||
initial_logs = OrderedDict()
|
||||
logger = Logger(logdir)
|
||||
|
||||
episodic_rews = self.collect_random_sequences(5000//args.action_repeat)
|
||||
episodic_rews = self.collect_random_sequences(self.args.init_steps//args.action_repeat)
|
||||
self.global_step = self.data_buffer.steps
|
||||
|
||||
initial_logs.update({
|
||||
@ -362,6 +369,7 @@ class DPI:
|
||||
|
||||
def collect_batch(self):
|
||||
obs_, acs_, nxt_obs_, rews_, terms_ = self.data_buffer.sample()
|
||||
|
||||
obs = torch.tensor(obs_, dtype=torch.float32)[1:]
|
||||
last_obs = torch.tensor(obs_, dtype=torch.float32)[:-1]
|
||||
nxt_obs = torch.tensor(nxt_obs_, dtype=torch.float32)[1:]
|
||||
@ -427,7 +435,7 @@ class DPI:
|
||||
if step % self.args.logging_freq:
|
||||
writer.add_scalar('World Loss/World Loss', world_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Encoder Loss', enc_loss.detach().item(), step)
|
||||
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss, step)
|
||||
writer.add_scalar('Main Models Loss/Decoder Loss', dec_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
|
||||
writer.add_scalar('Actor Critic Loss/Reward Loss', rew_loss.detach().item(), step)
|
||||
@ -440,31 +448,28 @@ class DPI:
|
||||
# get features
|
||||
self.last_state_feat = self.get_features(last_obs)
|
||||
self.curr_state_feat = self.get_features(curr_obs)
|
||||
self.nxt_state_feat = self.get_features(nxt_obs, momentum=True)
|
||||
self.nxt_state_feat = self.get_features(nxt_obs)
|
||||
self.nxt_state_feat_lb = self.get_features(nxt_obs, momentum=True)
|
||||
|
||||
# states
|
||||
self.last_state_enc = self.last_state_feat["sample"]
|
||||
self.curr_state_enc = self.curr_state_feat["sample"]
|
||||
self.nxt_state_enc = self.nxt_state_feat["sample"]
|
||||
|
||||
# actions
|
||||
actions = actions.clone()
|
||||
nxt_actions = nxt_actions.clone()
|
||||
|
||||
# rewards
|
||||
rewards = rewards.clone()
|
||||
self.last_state_enc = self.last_state_feat["distribution"].rsample() #self.last_state_feat["sample"]
|
||||
self.curr_state_enc = self.curr_state_feat["distribution"].rsample() #self.curr_state_feat["sample"]
|
||||
self.nxt_state_enc = self.nxt_state_feat["distribution"].rsample() #self.nxt_state_feat["sample"]
|
||||
self.nxt_state_enc_lb = self.nxt_state_feat_lb["distribution"].rsample() #self.nxt_state_feat_lb["sample"]
|
||||
|
||||
# predict next states
|
||||
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
|
||||
self.observed_rollout = self.transition_model.observe_rollout(self.last_state_enc, actions, self.transition_model.prev_history, nonterms)
|
||||
self.pred_curr_state_dist = self.transition_model.get_dist(self.observed_rollout["mean"], self.observed_rollout["std"])
|
||||
self.pred_curr_state_enc = self.pred_curr_state_dist.mean
|
||||
#print(self.observed_rollout["mean"][0][0])
|
||||
self.pred_curr_state_enc = self.pred_curr_state_dist.rsample() #self.observed_rollout["sample"]
|
||||
|
||||
# encoder loss
|
||||
enc_loss = self._encoder_loss(self.curr_state_feat["distribution"], self.pred_curr_state_dist)
|
||||
|
||||
# reward loss
|
||||
rew_dist = self.reward_model(self.curr_state_enc)
|
||||
#print(torch.cat([rew_dist.mean[0], rewards[0]],dim=-1))
|
||||
rew_loss = -torch.mean(rew_dist.log_prob(rewards))
|
||||
|
||||
# decoder loss
|
||||
@ -472,13 +477,19 @@ class DPI:
|
||||
dec_loss = -torch.mean(dec_dist.log_prob(nxt_obs))
|
||||
|
||||
# upper bound loss
|
||||
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc,
|
||||
self.pred_curr_state_enc)
|
||||
past_ub_loss = 0
|
||||
for i in range(self.curr_state_enc.shape[0]):
|
||||
_, ub_loss = self._upper_bound_minimization(self.curr_state_enc[i],
|
||||
self.pred_curr_state_enc[i])
|
||||
ub_loss = ub_loss + past_ub_loss
|
||||
past_ub_loss = ub_loss
|
||||
ub_loss = ub_loss / self.curr_state_enc.shape[0]
|
||||
ub_loss = 0.01 * ub_loss
|
||||
|
||||
# lower bound loss
|
||||
# contrastive projection
|
||||
vec_anchor = self.pred_curr_state_enc.detach()
|
||||
vec_positive = self.nxt_state_enc.detach()
|
||||
vec_positive = self.nxt_state_enc_lb.detach()
|
||||
z_anchor = self.prjoection_head(vec_anchor, nxt_actions)
|
||||
z_positive = self.prjoection_head_momentum(vec_positive, nxt_actions)
|
||||
|
||||
@ -489,7 +500,7 @@ class DPI:
|
||||
labels = torch.arange(logits.shape[0]).long().to(device)
|
||||
lb_loss = F.cross_entropy(logits, labels) + past_lb_loss
|
||||
past_lb_loss = lb_loss.detach().item()
|
||||
lb_loss = -0.1 * lb_loss/(z_anchor.shape[0])
|
||||
lb_loss = -0.01 * lb_loss/(z_anchor.shape[0])
|
||||
|
||||
world_loss = enc_loss + ub_loss + lb_loss
|
||||
|
||||
@ -497,19 +508,26 @@ class DPI:
|
||||
|
||||
def actor_model_losses(self):
|
||||
with torch.no_grad():
|
||||
curr_state_enc = self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
|
||||
curr_state_hist = self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
|
||||
#curr_state_enc = self.curr_state_enc.reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.curr_state_feat, "sample")["sample"]
|
||||
#curr_state_hist = self.observed_rollout["history"].reshape(self.args.episode_length-1,-1) #self.transition_model.seq_to_batch(self.observed_rollout, "history")["sample"]
|
||||
curr_state_enc = self.curr_state_enc.reshape(-1, self.args.state_size)
|
||||
curr_state_hist = self.observed_rollout["history"].reshape(-1, self.args.history_size)
|
||||
|
||||
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules):
|
||||
with FreezeParameters(self.world_model_modules + self.decoder_modules + self.reward_modules + self.value_modules):
|
||||
imagine_horizon = self.args.imagine_horizon
|
||||
action = self.actor_model(curr_state_enc)
|
||||
action = self.actor_model(curr_state_enc.detach())
|
||||
self.imagined_rollout = self.transition_model.imagine_rollout(curr_state_enc,
|
||||
action, curr_state_hist,
|
||||
action, curr_state_hist.detach(),
|
||||
imagine_horizon)
|
||||
self.pred_nxt_state_dist = self.transition_model.get_dist(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
||||
#print(self.imagined_rollout["mean"][0][0])
|
||||
self.pred_nxt_state_enc = self.pred_nxt_state_dist.rsample() #self.transition_model.reparemeterize(self.imagined_rollout["mean"], self.imagined_rollout["std"])
|
||||
|
||||
with FreezeParameters(self.world_model_modules + self.value_modules + self.decoder_modules + self.reward_modules):
|
||||
imag_rewards = self.reward_model(self.imagined_rollout["sample"]).mean
|
||||
imag_values = self.value_model(self.imagined_rollout["sample"]).mean
|
||||
imag_rewards_dist = self.reward_model(self.pred_nxt_state_enc)
|
||||
imag_values_dist = self.value_model(self.pred_nxt_state_enc)
|
||||
imag_rewards = imag_rewards_dist.mean
|
||||
imag_values = imag_values_dist.mean
|
||||
discounts = self.args.discount * torch.ones_like(imag_rewards).detach()
|
||||
|
||||
self.returns = self._compute_lambda_return(imag_rewards[:-1],
|
||||
@ -525,7 +543,7 @@ class DPI:
|
||||
def value_model_losses(self):
|
||||
# value loss
|
||||
with torch.no_grad():
|
||||
value_feat = self.imagined_rollout["sample"][:-1].detach()
|
||||
value_feat = self.pred_nxt_state_enc[:-1].detach()
|
||||
value_targ = self.returns.detach()
|
||||
value_dist = self.value_model(value_feat)
|
||||
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
||||
@ -597,14 +615,13 @@ class DPI:
|
||||
obs_processed = preprocess_obs(obs).to(device)
|
||||
state = self.get_features(obs_processed)["distribution"].rsample()
|
||||
action = self.actor_model(state).cpu().detach().numpy().squeeze()
|
||||
|
||||
next_obs, rew, done, _ = self.env.step(action)
|
||||
rewards += rew
|
||||
obs = next_obs
|
||||
|
||||
if self.args.save_video:
|
||||
self.env.video.record(self.env)
|
||||
self.env.video.save('/home/vedant/Curiosity/Curiosity/DPI/log/video/learned_model.mp4')
|
||||
obs = next_obs
|
||||
obs = self.env.reset()
|
||||
episodic_rewards.append(rewards)
|
||||
print("Episodic rewards: ", episodic_rewards)
|
||||
@ -679,6 +696,19 @@ class DPI:
|
||||
return x
|
||||
|
||||
def _compute_lambda_return(self, rewards, values, discounts, td_lam, last_value):
|
||||
next_values = torch.cat([values[1:], last_value[None]], 0)
|
||||
target = rewards + discounts * next_values * (1 - td_lam)
|
||||
timesteps = list(range(rewards.shape[0] - 1, -1, -1))
|
||||
outputs = []
|
||||
accumulated_reward = last_value
|
||||
for t in timesteps:
|
||||
inp = target[t]
|
||||
discount_factor = discounts[t]
|
||||
accumulated_reward = inp + discount_factor * td_lam * accumulated_reward
|
||||
outputs.append(accumulated_reward)
|
||||
returns = torch.flip(torch.stack(outputs), [0])
|
||||
return returns
|
||||
"""
|
||||
next_values = torch.cat([values[1:], last_value.unsqueeze(0)],0)
|
||||
targets = rewards + discounts * next_values * (1-td_lam)
|
||||
rets =[]
|
||||
@ -690,6 +720,7 @@ class DPI:
|
||||
|
||||
returns = torch.flip(torch.stack(rets), [0])
|
||||
return returns
|
||||
"""
|
||||
|
||||
def lambda_return(self,imged_reward, value_pred, bootstrap, discount=0.99, lambda_=0.95):
|
||||
# Setting lambda=1 gives a discounted Monte Carlo return.
|
||||
@ -740,7 +771,7 @@ if __name__ == '__main__':
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
step = 0
|
||||
total_steps = 500000
|
||||
total_steps = 1000000
|
||||
dpi = DPI(args)
|
||||
dpi.train(step,total_steps)
|
||||
dpi.evaluate()
|
29
DPI/utils.py
29
DPI/utils.py
@ -63,17 +63,6 @@ def make_dir(dir_path):
|
||||
return dir_path
|
||||
|
||||
|
||||
def preprocess_obs(obs, bits=5):
|
||||
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
|
||||
bins = 2**bits
|
||||
assert obs.dtype == torch.float32
|
||||
if bits < 8:
|
||||
obs = torch.floor(obs / 2**(8 - bits))
|
||||
obs = obs / bins
|
||||
obs = obs + torch.rand_like(obs) / bins
|
||||
obs = obs - 0.5
|
||||
return obs
|
||||
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
@ -338,8 +327,8 @@ def make_env(args):
|
||||
return env
|
||||
|
||||
def shuffle_along_axis(a, axis):
|
||||
idx = np.random.rand(*a.shape).argsort(axis=axis)
|
||||
return np.take_along_axis(a,idx,axis=axis)
|
||||
idx = np.random.rand(*a.shape).argsort(axis=axis)
|
||||
return np.take_along_axis(a,idx,axis=axis)
|
||||
|
||||
def preprocess_obs(obs):
|
||||
obs = (obs/255.0) - 0.5
|
||||
@ -374,6 +363,20 @@ def video_from_array(arr, high_noise, filename):
|
||||
out.write(frame)
|
||||
out.release()
|
||||
|
||||
def save_video(images):
|
||||
"""
|
||||
Image shape is (T, C, H, W)
|
||||
Example:(50, 3, 84, 84)
|
||||
"""
|
||||
output_file = "output.avi"
|
||||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||||
fps = 2
|
||||
height, width, channels = 84,84,3
|
||||
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
||||
for image in images:
|
||||
image = np.uint8(image.transpose((1, 2, 0)))
|
||||
out.write(image)
|
||||
out.release()
|
||||
|
||||
class CorruptVideos:
|
||||
def __init__(self, dir_path):
|
||||
|
Loading…
Reference in New Issue
Block a user