Adding target value function updates and momentum updates
This commit is contained in:
parent
9085abe684
commit
7d7387bd5d
126
DPI/train.py
126
DPI/train.py
@ -7,10 +7,11 @@ import time
|
|||||||
import json
|
import json
|
||||||
import dmc2gym
|
import dmc2gym
|
||||||
|
|
||||||
|
import copy
|
||||||
import tqdm
|
import tqdm
|
||||||
import wandb
|
import wandb
|
||||||
import utils
|
import utils
|
||||||
from utils import ReplayBuffer, FreezeParameters, make_env, soft_update_params, save_image
|
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
|
||||||
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
|
||||||
from logger import Logger
|
from logger import Logger
|
||||||
from video import VideoRecorder
|
from video import VideoRecorder
|
||||||
@ -19,6 +20,8 @@ from dmc2gym.wrappers import set_global_var
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchvision.transforms as T
|
import torchvision.transforms as T
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#from agent.baseline_agent import BaselineAgent
|
#from agent.baseline_agent import BaselineAgent
|
||||||
@ -64,7 +67,7 @@ def parse_args():
|
|||||||
parser.add_argument('--value_lr', default=1e-4, type=float)
|
parser.add_argument('--value_lr', default=1e-4, type=float)
|
||||||
parser.add_argument('--value_beta', default=0.9, type=float)
|
parser.add_argument('--value_beta', default=0.9, type=float)
|
||||||
parser.add_argument('--value_tau', default=0.005, type=float)
|
parser.add_argument('--value_tau', default=0.005, type=float)
|
||||||
parser.add_argument('--value_target_update_freq', default=2, type=int)
|
parser.add_argument('--value_target_update_freq', default=100, type=int)
|
||||||
parser.add_argument('--td_lambda', default=0.95, type=int)
|
parser.add_argument('--td_lambda', default=0.95, type=int)
|
||||||
# reward
|
# reward
|
||||||
parser.add_argument('--reward_lr', default=1e-4, type=float)
|
parser.add_argument('--reward_lr', default=1e-4, type=float)
|
||||||
@ -80,7 +83,7 @@ def parse_args():
|
|||||||
parser.add_argument('--world_model_lr', default=1e-3, type=float)
|
parser.add_argument('--world_model_lr', default=1e-3, type=float)
|
||||||
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
|
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
|
||||||
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
parser.add_argument('--encoder_lr', default=1e-3, type=float)
|
||||||
parser.add_argument('--encoder_tau', default=0.005, type=float)
|
parser.add_argument('--encoder_tau', default=0.001, type=float)
|
||||||
parser.add_argument('--encoder_stride', default=1, type=int)
|
parser.add_argument('--encoder_stride', default=1, type=int)
|
||||||
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
parser.add_argument('--decoder_type', default='pixel', type=str, choices=['pixel', 'identity', 'contrastive', 'reward', 'inverse', 'reconstruction'])
|
||||||
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
parser.add_argument('--decoder_lr', default=1e-3, type=float)
|
||||||
@ -116,7 +119,7 @@ def parse_args():
|
|||||||
|
|
||||||
|
|
||||||
class DPI:
|
class DPI:
|
||||||
def __init__(self, args):
|
def __init__(self, args, writer):
|
||||||
# wandb config
|
# wandb config
|
||||||
#run = wandb.init(project="dpi")
|
#run = wandb.init(project="dpi")
|
||||||
|
|
||||||
@ -134,13 +137,10 @@ class DPI:
|
|||||||
self.args.version = 2 # env_id changes to v2
|
self.args.version = 2 # env_id changes to v2
|
||||||
self.args.img_source = None # no image noise
|
self.args.img_source = None # no image noise
|
||||||
self.args.resource_files = None
|
self.args.resource_files = None
|
||||||
self.env_clean = make_env(self.args)
|
|
||||||
self.env_clean.seed(self.args.seed)
|
|
||||||
|
|
||||||
# stack several consecutive frames together
|
# stack several consecutive frames together
|
||||||
if self.args.encoder_type.startswith('pixel'):
|
if self.args.encoder_type.startswith('pixel'):
|
||||||
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
|
||||||
self.env_clean = utils.FrameStack(self.env_clean, k=self.args.frame_stack)
|
|
||||||
|
|
||||||
# create replay buffer
|
# create replay buffer
|
||||||
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
|
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
|
||||||
@ -162,18 +162,18 @@ class DPI:
|
|||||||
def build_models(self, use_saved, saved_model_dir=None):
|
def build_models(self, use_saved, saved_model_dir=None):
|
||||||
# World Models
|
# World Models
|
||||||
self.obs_encoder = ObservationEncoder(
|
self.obs_encoder = ObservationEncoder(
|
||||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
|
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||||
state_size=self.args.state_size # 128
|
state_size=self.args.state_size # 128
|
||||||
)
|
)
|
||||||
|
|
||||||
self.obs_encoder_momentum = ObservationEncoder(
|
self.obs_encoder_momentum = ObservationEncoder(
|
||||||
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (12,84,84)
|
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
|
||||||
state_size=self.args.state_size # 128
|
state_size=self.args.state_size # 128
|
||||||
)
|
)
|
||||||
|
|
||||||
self.obs_decoder = ObservationDecoder(
|
self.obs_decoder = ObservationDecoder(
|
||||||
state_size=self.args.state_size, # 128
|
state_size=self.args.state_size, # 128
|
||||||
output_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size) # (12,84,84)
|
output_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size) # (9,84,84)
|
||||||
)
|
)
|
||||||
|
|
||||||
self.transition_model = TransitionModel(
|
self.transition_model = TransitionModel(
|
||||||
@ -251,41 +251,31 @@ class DPI:
|
|||||||
|
|
||||||
def collect_sequences(self, episodes):
|
def collect_sequences(self, episodes):
|
||||||
obs = self.env.reset()
|
obs = self.env.reset()
|
||||||
self.ob_mean = np.mean(obs, 0).astype(np.float32)
|
|
||||||
self.ob_std = np.std(obs, 0).mean().astype(np.float32)
|
|
||||||
#obs_clean = self.env_clean.reset()
|
|
||||||
done = False
|
done = False
|
||||||
|
|
||||||
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
|
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
|
||||||
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
|
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
|
||||||
if args.save_video:
|
if args.save_video:
|
||||||
self.env.video.init(enabled=True)
|
self.env.video.init(enabled=True)
|
||||||
#self.env_clean.video.init(enabled=True)
|
|
||||||
|
|
||||||
for i in range(self.args.episode_length):
|
for i in range(self.args.episode_length):
|
||||||
|
|
||||||
action = self.env.action_space.sample()
|
action = self.env.action_space.sample()
|
||||||
|
|
||||||
next_obs, rew, done, _ = self.env.step(action)
|
next_obs, rew, done, _ = self.env.step(action)
|
||||||
#next_obs_clean, _, done, _ = self.env_clean.step(action)
|
|
||||||
|
|
||||||
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
|
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
|
||||||
#self.data_buffer_clean.add(obs_clean, action, next_obs_clean, episode_count+1, done)
|
|
||||||
|
|
||||||
if args.save_video:
|
if args.save_video:
|
||||||
self.env.video.record(self.env)
|
self.env.video.record(self.env)
|
||||||
#self.env_clean.video.record(self.env_clean)
|
|
||||||
|
|
||||||
if done or i == self.args.episode_length-1:
|
if done or i == self.args.episode_length-1:
|
||||||
obs = self.env.reset()
|
obs = self.env.reset()
|
||||||
#obs_clean = self.env_clean.reset()
|
|
||||||
done=False
|
done=False
|
||||||
else:
|
else:
|
||||||
obs = next_obs
|
obs = next_obs
|
||||||
#obs_clean = next_obs_clean
|
|
||||||
if args.save_video:
|
if args.save_video:
|
||||||
self.env.video.save('noisy/%d.mp4' % episode_count)
|
self.env.video.save('noisy/%d.mp4' % episode_count)
|
||||||
#self.env_clean.video.save('clean/%d.mp4' % episode_count)
|
|
||||||
print("Collected {} random episodes".format(episode_count+1))
|
print("Collected {} random episodes".format(episode_count+1))
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
@ -299,7 +289,12 @@ class DPI:
|
|||||||
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
|
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
|
||||||
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
|
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
|
||||||
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:]
|
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:]
|
||||||
|
|
||||||
|
# Preprocessing
|
||||||
|
last_observations = preprocess_obs(last_observations)
|
||||||
|
current_observations = preprocess_obs(current_observations)
|
||||||
|
next_observations = preprocess_obs(next_observations)
|
||||||
|
|
||||||
# Initialize transition model states
|
# Initialize transition model states
|
||||||
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
|
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
|
||||||
self.history = self.transition_model.prev_history # (N,128)
|
self.history = self.transition_model.prev_history # (N,128)
|
||||||
@ -357,42 +352,29 @@ class DPI:
|
|||||||
labels = labels = torch.arange(logits.shape[0]).long()
|
labels = labels = torch.arange(logits.shape[0]).long()
|
||||||
lb_loss = F.cross_entropy(logits, labels)
|
lb_loss = F.cross_entropy(logits, labels)
|
||||||
|
|
||||||
|
|
||||||
# update models
|
|
||||||
"""
|
|
||||||
print(likeli_loss)
|
|
||||||
for i in range(self.args.num_likelihood_updates):
|
|
||||||
self.past_transition_opt.zero_grad()
|
|
||||||
print(likeli_loss)
|
|
||||||
likeli_loss.backward()
|
|
||||||
nn.utils.clip_grad_norm_(self.past_transition_parameters, self.args.grad_clip_norm)
|
|
||||||
self.past_transition_opt.step()
|
|
||||||
print(encoder_loss, ub_loss, lb_loss, step)
|
|
||||||
"""
|
|
||||||
|
|
||||||
world_model_loss = encoder_loss + ub_loss + lb_loss
|
|
||||||
self.world_model_opt.zero_grad()
|
|
||||||
world_model_loss.backward()
|
|
||||||
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
|
||||||
self.world_model_opt.step()
|
|
||||||
|
|
||||||
"""
|
|
||||||
if step % self.args.logging_freq:
|
|
||||||
metrics['Upper Bound Loss'] = ub_loss.item()
|
|
||||||
metrics['Encoder Loss'] = encoder_loss.item()
|
|
||||||
metrics["Lower Bound Loss"] = lb_loss.item()
|
|
||||||
metrics["World Model Loss"] = world_model_loss.item()
|
|
||||||
wandb.log(metrics)
|
|
||||||
"""
|
|
||||||
|
|
||||||
# behaviour learning
|
# behaviour learning
|
||||||
with FreezeParameters(self.world_model_modules):
|
with FreezeParameters(self.world_model_modules):
|
||||||
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
imagine_horizon = self.args.imagine_horizon #np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
|
||||||
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
|
imagined_rollout = self.transition_model.imagine_rollout(self.current_states_dict["sample"].detach(),
|
||||||
self.next_action, self.history.detach(),
|
self.next_action, self.history.detach(),
|
||||||
imagine_horizon)
|
imagine_horizon)
|
||||||
#print(imagined_rollout["sample"].shape, imagined_rollout["distribution"][0].sample().shape)
|
|
||||||
|
|
||||||
|
# decoder loss
|
||||||
|
horizon = np.minimum(50-i, imagine_horizon)
|
||||||
|
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
|
||||||
|
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon]))
|
||||||
|
|
||||||
|
# reward loss
|
||||||
|
reward_dist = self.reward_model(self.current_states_dict["sample"])
|
||||||
|
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
|
||||||
|
|
||||||
|
# update models
|
||||||
|
world_model_loss = encoder_loss + ub_loss + lb_loss + decoder_loss * 1e-2
|
||||||
|
self.world_model_opt.zero_grad()
|
||||||
|
world_model_loss.backward()
|
||||||
|
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
|
||||||
|
self.world_model_opt.step()
|
||||||
|
|
||||||
# actor loss
|
# actor loss
|
||||||
with FreezeParameters(self.world_model_modules + self.value_modules):
|
with FreezeParameters(self.world_model_modules + self.value_modules):
|
||||||
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
|
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
|
||||||
@ -413,6 +395,7 @@ class DPI:
|
|||||||
self.discounts = torch.cumprod(discounts, 0).detach()
|
self.discounts = torch.cumprod(discounts, 0).detach()
|
||||||
actor_loss = -torch.mean(self.discounts * self.target_returns)
|
actor_loss = -torch.mean(self.discounts * self.target_returns)
|
||||||
|
|
||||||
|
# update actor
|
||||||
self.actor_opt.zero_grad()
|
self.actor_opt.zero_grad()
|
||||||
actor_loss.backward()
|
actor_loss.backward()
|
||||||
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
|
nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm)
|
||||||
@ -425,18 +408,48 @@ class DPI:
|
|||||||
|
|
||||||
value_dist = self.value_model(value_feat)
|
value_dist = self.value_model(value_feat)
|
||||||
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
value_loss = -torch.mean(self.discounts * value_dist.log_prob(value_targ).unsqueeze(-1))
|
||||||
|
|
||||||
|
# update value
|
||||||
self.value_opt.zero_grad()
|
self.value_opt.zero_grad()
|
||||||
value_loss.backward()
|
value_loss.backward()
|
||||||
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
|
nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm)
|
||||||
self.value_opt.step()
|
self.value_opt.step()
|
||||||
|
|
||||||
|
# update target value
|
||||||
|
if step % self.args.value_target_update_freq == 0:
|
||||||
|
self.target_value_model = copy.deepcopy(self.value_model)
|
||||||
|
|
||||||
|
# update momentum encoder
|
||||||
|
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
|
||||||
|
|
||||||
|
# update momentum projection head
|
||||||
|
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
|
||||||
|
|
||||||
step += 1
|
step += 1
|
||||||
|
|
||||||
|
if step % self.args.logging_freq:
|
||||||
|
writer.add_scalar('Main Loss/World Loss', world_model_loss, step)
|
||||||
|
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss, step)
|
||||||
|
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
|
||||||
|
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss, step)
|
||||||
|
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss, step)
|
||||||
|
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss, step)
|
||||||
|
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss, step)
|
||||||
|
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss, step)
|
||||||
|
|
||||||
|
"""
|
||||||
|
if step % self.args.logging_freq:
|
||||||
|
metrics['Upper Bound Loss'] = ub_loss.item()
|
||||||
|
metrics['Encoder Loss'] = encoder_loss.item()
|
||||||
|
metrics['Decoder Loss'] = decoder_loss.item()
|
||||||
|
metrics["Lower Bound Loss"] = lb_loss.item()
|
||||||
|
metrics["World Model Loss"] = world_model_loss.item()
|
||||||
|
wandb.log(metrics)
|
||||||
|
"""
|
||||||
|
|
||||||
if step>total_steps:
|
if step>total_steps:
|
||||||
print("Training finished")
|
print("Training finished")
|
||||||
break
|
break
|
||||||
#print(total_ub_loss, total_encoder_loss)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -463,10 +476,7 @@ class DPI:
|
|||||||
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def get_features(self, x, momentum=False):
|
def get_features(self, x, momentum=False):
|
||||||
import torchvision.transforms.functional as fn
|
|
||||||
x = x/255.0 - 0.5 # Preprocessing
|
|
||||||
|
|
||||||
if self.args.aug:
|
if self.args.aug:
|
||||||
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
|
x = T.RandomCrop((80, 80))(x) # (None,80,80,4)
|
||||||
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
|
x = T.functional.pad(x, (4, 4, 4, 4), "symmetric") # (None,88,88,4)
|
||||||
@ -494,6 +504,8 @@ class DPI:
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
|
|
||||||
|
writer = SummaryWriter()
|
||||||
|
|
||||||
dpi = DPI(args)
|
dpi = DPI(args, writer)
|
||||||
dpi.train()
|
dpi.train()
|
Loading…
Reference in New Issue
Block a user