Completing initial model and treating memory leak

This commit is contained in:
Vedant Dave 2023-04-13 18:39:55 +02:00
parent 3e9d8f7a9c
commit 233ca77aa4

View File

@ -1,15 +1,12 @@
import numpy as np
import torch
import argparse
import os
import gym
import time
import json
import dmc2gym
import gc
import copy
import tqdm
import wandb
import random
import argparse
import numpy as np
import utils
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
@ -17,13 +14,12 @@ from logger import Logger
from video import VideoRecorder
from dmc2gym.wrappers import set_global_var
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torch.utils.tensorboard import SummaryWriter
#from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent
@ -38,8 +34,9 @@ def parse_args():
parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--action_repeat', default=2, type=int)
parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--collection_interval', default=100, type=int)
parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
@ -52,11 +49,11 @@ def parse_args():
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=20, type=int) #512
parser.add_argument('--batch_size', default=30, type=int) #512
parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models')
parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str)
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
@ -64,15 +61,13 @@ def parse_args():
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int)
# value
parser.add_argument('--value_lr', default=1e-4, type=float)
parser.add_argument('--value_lr', default=8e-5, type=float)
parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int)
# reward
parser.add_argument('--reward_lr', default=1e-4, type=float)
# actor
parser.add_argument('--actor_lr', default=1e-4, type=float)
parser.add_argument('--actor_lr', default=8e-5, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
@ -80,7 +75,7 @@ def parse_args():
# world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=1e-3, type=float)
parser.add_argument('--world_model_lr', default=6e-4, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float)
@ -100,6 +95,7 @@ def parse_args():
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=1000, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
@ -107,8 +103,6 @@ def parse_args():
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
parser.add_argument('--num_likelihood_updates', default=5, type=int)
args = parser.parse_args()
return args
@ -119,7 +113,7 @@ def parse_args():
class DPI:
def __init__(self, args, writer):
def __init__(self, args):
# wandb config
#run = wandb.init(project="dpi")
@ -141,6 +135,8 @@ class DPI:
# stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
# create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
@ -164,64 +160,64 @@ class DPI:
self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128
)
).to(device)
self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128
)
).to(device)
self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
)
).to(device)
self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128
)
).to(device)
# Actor Model
self.actor_model = Actor(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6
)
).to(device)
# Value Models
self.value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
)
).to(device)
self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
)
).to(device)
self.reward_model = RewardModel(
state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256
)
).to(device)
# Contrastive Models
self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
)
).to(device)
self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256
)
).to(device)
self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256
)
).to(device)
# model parameters
@ -237,7 +233,7 @@ class DPI:
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head]
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head]
self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model]
@ -249,21 +245,27 @@ class DPI:
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_sequences(self, episodes):
def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None):
obs = self.env.reset()
done = False
all_rews = []
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video:
self.env.video.init(enabled=True)
epi_reward = 0
for i in range(self.args.episode_length):
if random:
action = self.env.action_space.sample()
else:
with torch.no_grad():
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video:
@ -274,36 +276,50 @@ class DPI:
done=False
else:
obs = next_obs
epi_reward += rew
all_rews.append(epi_reward)
if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count)
print("Collected {} random episodes".format(episode_count+1))
return all_rews
def train(self, step, total_steps):
counter = 0
while step < total_steps:
def train(self):
# collect experience
self.collect_sequences(self.args.batch_size)
if step !=0:
encoder = self.obs_encoder
actor = self.actor_model
#all_rews = self.collect_sequences(self.args.batch_size, random=True)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else:
all_rews = self.collect_sequences(self.args.batch_size, random=True)
# Group observations and next_observations by steps from past to present
last_observations = torch.tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1]
current_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[:self.args.episode_length-1]
next_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[1:]
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1]
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:]
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:]
# Group by steps and sample random batch
random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
#random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1))
last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
# Preprocessing
last_observations = preprocess_obs(last_observations)
current_observations = preprocess_obs(current_observations)
next_observations = preprocess_obs(next_observations)
last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations).to(device)
# Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128)
self.transition_model.init_states(self.args.batch_size, device) # (N,128)
self.history = self.transition_model.prev_history # (N,128)
# Train encoder
step = 0
total_steps = 10000
metrics = {}
while step < total_steps:
if step == 0:
step += 1
for _ in range(self.args.collection_interval // self.args.episode_length+1):
counter += 1
for i in range(self.args.episode_length-1):
if i > 0:
# Encode observations and next_observations
@ -331,16 +347,11 @@ class DPI:
self.negative_current_states_dict,
predicted_current_state_dict
)
#likeli_loss = torch.tensor(likeli_loss.numpy(),dtype=torch.float32, requires_grad=True)
#ikeli_loss = likeli_loss.mean()
# Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict)
#total_ub_loss += ub_loss
#total_encoder_loss += encoder_loss
# contrastive projection
vec_anchor = predicted_current_state_dict["sample"]
vec_positive = self.next_states_dict["sample"].detach()
@ -349,7 +360,7 @@ class DPI:
# contrastive loss
logits = self.contrastive_head(z_anchor, z_positive)
labels = labels = torch.arange(logits.shape[0]).long()
labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels)
# behaviour learning
@ -360,7 +371,7 @@ class DPI:
imagine_horizon)
# decoder loss
horizon = np.minimum(50-i, imagine_horizon)
horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
@ -369,12 +380,18 @@ class DPI:
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
# update models
world_model_loss = encoder_loss + ub_loss + lb_loss + decoder_loss * 1e-2
world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2
self.world_model_opt.zero_grad()
world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step()
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# actor loss
with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"])
@ -419,39 +436,62 @@ class DPI:
if step % self.args.value_target_update_freq == 0:
self.target_value_model = copy.deepcopy(self.value_model)
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
# counter for reward
count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
step += 1
if step % self.args.logging_freq:
writer.add_scalar('Main Loss/World Loss', world_model_loss, step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss, step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss, step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss, step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss, step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss, step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss, step)
"""
if step % self.args.logging_freq:
metrics['Upper Bound Loss'] = ub_loss.item()
metrics['Encoder Loss'] = encoder_loss.item()
metrics['Decoder Loss'] = decoder_loss.item()
metrics["Lower Bound Loss"] = lb_loss.item()
metrics["World Model Loss"] = world_model_loss.item()
wandb.log(metrics)
"""
if step>total_steps:
print("Training finished")
break
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
#torch.cuda.empty_cache() # memory leak issues
for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
def evaluate(self, env, eval_episodes, render=False):
episode_rew = np.zeros((eval_episodes))
video_images = [[] for _ in range(eval_episodes)]
for i in range(eval_episodes):
obs = env.reset()
done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
while not done:
with torch.no_grad():
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
action = action[0].cpu().numpy()
next_obs, rew, done, _ = env.step(action)
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
episode_rew[i] += rew
if render:
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states,
@ -469,8 +509,6 @@ class DPI:
# predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
@ -502,10 +540,26 @@ class DPI:
returns = torch.flip(torch.stack(rets), [0])
return returns
def save_models(self, save_path):
torch.save(
{'rssm' : self.transition_model.state_dict(),
'actor': self.actor_model.state_dict(),
'reward_model': self.reward_model.state_dict(),
'obs_encoder': self.obs_encoder.state_dict(),
'obs_decoder': self.obs_decoder.state_dict(),
'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
if __name__ == '__main__':
args = parse_args()
writer = SummaryWriter()
dpi = DPI(args, writer)
dpi.train()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
step = 0
total_steps = 10000
dpi = DPI(args)
dpi.train(step,total_steps)