Completing initial model and treating memory leak

This commit is contained in:
Vedant Dave 2023-04-13 18:39:55 +02:00
parent 3e9d8f7a9c
commit 233ca77aa4

View File

@ -1,15 +1,12 @@
import numpy as np
import torch
import argparse
import os import os
import gym import gc
import time
import json
import dmc2gym
import copy import copy
import tqdm import tqdm
import wandb import wandb
import random
import argparse
import numpy as np
import utils import utils
from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image from utils import ReplayBuffer, FreezeParameters, make_env, preprocess_obs, soft_update_params, save_image
from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample from models import ObservationEncoder, ObservationDecoder, TransitionModel, Actor, ValueModel, RewardModel, ProjectionHead, ContrastiveHead, CLUBSample
@ -17,13 +14,12 @@ from logger import Logger
from video import VideoRecorder from video import VideoRecorder
from dmc2gym.wrappers import set_global_var from dmc2gym.wrappers import set_global_var
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torchvision.transforms as T import torchvision.transforms as T
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
#from agent.baseline_agent import BaselineAgent #from agent.baseline_agent import BaselineAgent
#from agent.bisim_agent import BisimAgent #from agent.bisim_agent import BisimAgent
#from agent.deepmdp_agent import DeepMDPAgent #from agent.deepmdp_agent import DeepMDPAgent
@ -38,8 +34,9 @@ def parse_args():
parser.add_argument('--task_name', default='run') parser.add_argument('--task_name', default='run')
parser.add_argument('--image_size', default=84, type=int) parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--channels', default=3, type=int) parser.add_argument('--channels', default=3, type=int)
parser.add_argument('--action_repeat', default=1, type=int) parser.add_argument('--action_repeat', default=2, type=int)
parser.add_argument('--frame_stack', default=3, type=int) parser.add_argument('--frame_stack', default=3, type=int)
parser.add_argument('--collection_interval', default=100, type=int)
parser.add_argument('--resource_files', type=str) parser.add_argument('--resource_files', type=str)
parser.add_argument('--eval_resource_files', type=str) parser.add_argument('--eval_resource_files', type=str)
parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none']) parser.add_argument('--img_source', default=None, type=str, choices=['color', 'noise', 'images', 'video', 'none'])
@ -52,11 +49,11 @@ def parse_args():
parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc']) parser.add_argument('--agent', default='dpi', type=str, choices=['baseline', 'bisim', 'deepmdp', 'db', 'dpi', 'rpc'])
parser.add_argument('--init_steps', default=10000, type=int) parser.add_argument('--init_steps', default=10000, type=int)
parser.add_argument('--num_train_steps', default=10000, type=int) parser.add_argument('--num_train_steps', default=10000, type=int)
parser.add_argument('--batch_size', default=20, type=int) #512 parser.add_argument('--batch_size', default=30, type=int) #512
parser.add_argument('--state_size', default=256, type=int) parser.add_argument('--state_size', default=256, type=int)
parser.add_argument('--hidden_size', default=128, type=int) parser.add_argument('--hidden_size', default=128, type=int)
parser.add_argument('--history_size', default=128, type=int) parser.add_argument('--history_size', default=128, type=int)
parser.add_argument('--num-units', type=int, default=200, help='num hidden units for reward/value/discount models') parser.add_argument('--num-units', type=int, default=50, help='num hidden units for reward/value/discount models')
parser.add_argument('--load_encoder', default=None, type=str) parser.add_argument('--load_encoder', default=None, type=str)
parser.add_argument('--imagine_horizon', default=15, type=str) parser.add_argument('--imagine_horizon', default=15, type=str)
parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm') parser.add_argument('--grad_clip_norm', type=float, default=100.0, help='Gradient clipping norm')
@ -64,15 +61,13 @@ def parse_args():
parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000 parser.add_argument('--eval_freq', default=10, type=int) # TODO: master had 10000
parser.add_argument('--num_eval_episodes', default=20, type=int) parser.add_argument('--num_eval_episodes', default=20, type=int)
# value # value
parser.add_argument('--value_lr', default=1e-4, type=float) parser.add_argument('--value_lr', default=8e-5, type=float)
parser.add_argument('--value_beta', default=0.9, type=float) parser.add_argument('--value_beta', default=0.9, type=float)
parser.add_argument('--value_tau', default=0.005, type=float) parser.add_argument('--value_tau', default=0.005, type=float)
parser.add_argument('--value_target_update_freq', default=100, type=int) parser.add_argument('--value_target_update_freq', default=100, type=int)
parser.add_argument('--td_lambda', default=0.95, type=int) parser.add_argument('--td_lambda', default=0.95, type=int)
# reward
parser.add_argument('--reward_lr', default=1e-4, type=float)
# actor # actor
parser.add_argument('--actor_lr', default=1e-4, type=float) parser.add_argument('--actor_lr', default=8e-5, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float) parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float) parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float) parser.add_argument('--actor_log_std_max', default=2, type=float)
@ -80,7 +75,7 @@ def parse_args():
# world/encoder/decoder # world/encoder/decoder
parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity']) parser.add_argument('--encoder_type', default='pixel', type=str, choices=['pixel', 'pixelCarla096', 'pixelCarla098', 'identity'])
parser.add_argument('--encoder_feature_dim', default=50, type=int) parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--world_model_lr', default=1e-3, type=float) parser.add_argument('--world_model_lr', default=6e-4, type=float)
parser.add_argument('--past_transition_lr', default=1e-3, type=float) parser.add_argument('--past_transition_lr', default=1e-3, type=float)
parser.add_argument('--encoder_lr', default=1e-3, type=float) parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.001, type=float) parser.add_argument('--encoder_tau', default=0.001, type=float)
@ -100,6 +95,7 @@ def parse_args():
# misc # misc
parser.add_argument('--seed', default=1, type=int) parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--logging_freq', default=100, type=int) parser.add_argument('--logging_freq', default=100, type=int)
parser.add_argument('--saving_interval', default=1000, type=int)
parser.add_argument('--work_dir', default='.', type=str) parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true') parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true') parser.add_argument('--save_model', default=False, action='store_true')
@ -107,8 +103,6 @@ def parse_args():
parser.add_argument('--save_video', default=False, action='store_true') parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble']) parser.add_argument('--transition_model_type', default='', type=str, choices=['', 'deterministic', 'probabilistic', 'ensemble'])
parser.add_argument('--render', default=False, action='store_true') parser.add_argument('--render', default=False, action='store_true')
parser.add_argument('--port', default=2000, type=int)
parser.add_argument('--num_likelihood_updates', default=5, type=int)
args = parser.parse_args() args = parser.parse_args()
return args return args
@ -119,7 +113,7 @@ def parse_args():
class DPI: class DPI:
def __init__(self, args, writer): def __init__(self, args):
# wandb config # wandb config
#run = wandb.init(project="dpi") #run = wandb.init(project="dpi")
@ -141,6 +135,8 @@ class DPI:
# stack several consecutive frames together # stack several consecutive frames together
if self.args.encoder_type.startswith('pixel'): if self.args.encoder_type.startswith('pixel'):
self.env = utils.FrameStack(self.env, k=self.args.frame_stack) self.env = utils.FrameStack(self.env, k=self.args.frame_stack)
self.env = utils.ActionRepeat(self.env, self.args.action_repeat)
self.env = utils.NormalizeActions(self.env)
# create replay buffer # create replay buffer
self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity, self.data_buffer = ReplayBuffer(size=self.args.replay_buffer_capacity,
@ -164,64 +160,64 @@ class DPI:
self.obs_encoder = ObservationEncoder( self.obs_encoder = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84) obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128 state_size=self.args.state_size # 128
) ).to(device)
self.obs_encoder_momentum = ObservationEncoder( self.obs_encoder_momentum = ObservationEncoder(
obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84) obs_shape=(self.args.frame_stack*self.args.channels,self.args.image_size,self.args.image_size), # (9,84,84)
state_size=self.args.state_size # 128 state_size=self.args.state_size # 128
) ).to(device)
self.obs_decoder = ObservationDecoder( self.obs_decoder = ObservationDecoder(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84) output_shape=(self.args.channels,self.args.image_size,self.args.image_size) # (3,84,84)
) ).to(device)
self.transition_model = TransitionModel( self.transition_model = TransitionModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
history_size=self.args.history_size, # 128 history_size=self.args.history_size, # 128
) ).to(device)
# Actor Model # Actor Model
self.actor_model = Actor( self.actor_model = Actor(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256, hidden_size=self.args.hidden_size, # 256,
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
) ).to(device)
# Value Models # Value Models
self.value_model = ValueModel( self.value_model = ValueModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
self.target_value_model = ValueModel( self.target_value_model = ValueModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
self.reward_model = RewardModel( self.reward_model = RewardModel(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
# Contrastive Models # Contrastive Models
self.prjoection_head = ProjectionHead( self.prjoection_head = ProjectionHead(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
self.prjoection_head_momentum = ProjectionHead( self.prjoection_head_momentum = ProjectionHead(
state_size=self.args.state_size, # 128 state_size=self.args.state_size, # 128
action_size=self.env.action_space.shape[0], # 6 action_size=self.env.action_space.shape[0], # 6
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
self.contrastive_head = ContrastiveHead( self.contrastive_head = ContrastiveHead(
hidden_size=self.args.hidden_size, # 256 hidden_size=self.args.hidden_size, # 256
) ).to(device)
# model parameters # model parameters
@ -237,7 +233,7 @@ class DPI:
self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr) self.past_transition_opt = torch.optim.Adam(self.past_transition_parameters, self.args.past_transition_lr)
# Create Modules # Create Modules
self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.value_model, self.transition_model, self.prjoection_head] self.world_model_modules = [self.obs_encoder, self.obs_decoder, self.reward_model, self.transition_model, self.prjoection_head]
self.value_modules = [self.value_model] self.value_modules = [self.value_model]
self.actor_modules = [self.actor_model] self.actor_modules = [self.actor_model]
@ -249,21 +245,27 @@ class DPI:
self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt'))) self.obs_decoder.load_state_dict(torch.load(os.path.join(saved_model_dir, 'obs_decoder.pt')))
self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt'))) self.transition_model.load_state_dict(torch.load(os.path.join(saved_model_dir, 'transition_model.pt')))
def collect_sequences(self, episodes): def collect_sequences(self, episodes, random=True, actor_model=None, encoder_model=None):
obs = self.env.reset() obs = self.env.reset()
done = False done = False
all_rews = []
#video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files) #video = VideoRecorder(self.video_dir if args.save_video else None, resource_files=args.resource_files)
for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'): for episode_count in tqdm.tqdm(range(episodes), desc='Collecting episodes'):
if args.save_video: if args.save_video:
self.env.video.init(enabled=True) self.env.video.init(enabled=True)
epi_reward = 0
for i in range(self.args.episode_length): for i in range(self.args.episode_length):
if random:
action = self.env.action_space.sample() action = self.env.action_space.sample()
else:
with torch.no_grad():
obs_torch = torch.unsqueeze(torch.tensor(obs).float(),0).to(device)
state = self.obs_encoder(obs_torch)["distribution"].sample()
action = self.actor_model(state).cpu().detach().numpy().squeeze()
next_obs, rew, done, _ = self.env.step(action) next_obs, rew, done, _ = self.env.step(action)
self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done) self.data_buffer.add(obs, action, next_obs, rew, episode_count+1, done)
if args.save_video: if args.save_video:
@ -274,36 +276,50 @@ class DPI:
done=False done=False
else: else:
obs = next_obs obs = next_obs
epi_reward += rew
all_rews.append(epi_reward)
if args.save_video: if args.save_video:
self.env.video.save('noisy/%d.mp4' % episode_count) self.env.video.save('noisy/%d.mp4' % episode_count)
print("Collected {} random episodes".format(episode_count+1)) print("Collected {} random episodes".format(episode_count+1))
return all_rews
def train(self, step, total_steps):
counter = 0
while step < total_steps:
def train(self):
# collect experience # collect experience
self.collect_sequences(self.args.batch_size) if step !=0:
encoder = self.obs_encoder
actor = self.actor_model
#all_rews = self.collect_sequences(self.args.batch_size, random=True)
all_rews = self.collect_sequences(self.args.batch_size, random=False, actor_model=actor, encoder_model=encoder)
else:
all_rews = self.collect_sequences(self.args.batch_size, random=True)
# Group observations and next_observations by steps from past to present # Group by steps and sample random batch
last_observations = torch.tensor(self.data_buffer.group_steps(self.data_buffer,"observations")).float()[:self.args.episode_length-1] random_indices = self.data_buffer.sample_random_idx(self.args.batch_size * ((step//self.args.collection_interval)+1)) # random indices for batch
current_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[:self.args.episode_length-1] #random_indices = np.arange(self.args.batch_size * ((step//self.args.collection_interval)),self.args.batch_size * ((step//self.args.collection_interval)+1))
next_observations = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"next_observations")).float()[1:] last_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"observations", "cpu", random_indices=random_indices)
actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[:self.args.episode_length-1] current_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", random_indices=random_indices)
next_actions = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"actions",obs=False)).float()[1:] next_observations = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"next_observations", device="cpu", offset=1, random_indices=random_indices)
rewards = torch.Tensor(self.data_buffer.group_steps(self.data_buffer,"rewards",obs=False)).float()[1:] actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, random_indices=random_indices)
next_actions = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"actions", device=device, is_obs=False, offset=1, random_indices=random_indices)
rewards = self.data_buffer.group_and_sample_random_batch(self.data_buffer,"rewards", device=device, is_obs=False, offset=1, random_indices=random_indices)
# Preprocessing # Preprocessing
last_observations = preprocess_obs(last_observations) last_observations = preprocess_obs(last_observations).to(device)
current_observations = preprocess_obs(current_observations) current_observations = preprocess_obs(current_observations).to(device)
next_observations = preprocess_obs(next_observations) next_observations = preprocess_obs(next_observations).to(device)
# Initialize transition model states # Initialize transition model states
self.transition_model.init_states(self.args.batch_size, device="cpu") # (N,128) self.transition_model.init_states(self.args.batch_size, device) # (N,128)
self.history = self.transition_model.prev_history # (N,128) self.history = self.transition_model.prev_history # (N,128)
# Train encoder # Train encoder
step = 0 if step == 0:
total_steps = 10000 step += 1
metrics = {} for _ in range(self.args.collection_interval // self.args.episode_length+1):
while step < total_steps: counter += 1
for i in range(self.args.episode_length-1): for i in range(self.args.episode_length-1):
if i > 0: if i > 0:
# Encode observations and next_observations # Encode observations and next_observations
@ -331,16 +347,11 @@ class DPI:
self.negative_current_states_dict, self.negative_current_states_dict,
predicted_current_state_dict predicted_current_state_dict
) )
#likeli_loss = torch.tensor(likeli_loss.numpy(),dtype=torch.float32, requires_grad=True)
#ikeli_loss = likeli_loss.mean()
# Calculate encoder loss # Calculate encoder loss
encoder_loss = self._past_encoder_loss(self.current_states_dict, encoder_loss = self._past_encoder_loss(self.current_states_dict,
predicted_current_state_dict) predicted_current_state_dict)
#total_ub_loss += ub_loss
#total_encoder_loss += encoder_loss
# contrastive projection # contrastive projection
vec_anchor = predicted_current_state_dict["sample"] vec_anchor = predicted_current_state_dict["sample"]
vec_positive = self.next_states_dict["sample"].detach() vec_positive = self.next_states_dict["sample"].detach()
@ -349,7 +360,7 @@ class DPI:
# contrastive loss # contrastive loss
logits = self.contrastive_head(z_anchor, z_positive) logits = self.contrastive_head(z_anchor, z_positive)
labels = labels = torch.arange(logits.shape[0]).long() labels = torch.arange(logits.shape[0]).long().to(device)
lb_loss = F.cross_entropy(logits, labels) lb_loss = F.cross_entropy(logits, labels)
# behaviour learning # behaviour learning
@ -360,7 +371,7 @@ class DPI:
imagine_horizon) imagine_horizon)
# decoder loss # decoder loss
horizon = np.minimum(50-i, imagine_horizon) horizon = np.minimum(self.args.imagine_horizon, self.args.episode_length-1-i)
obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon]) obs_dist = self.obs_decoder(imagined_rollout["sample"][:horizon])
decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:])) decoder_loss = -torch.mean(obs_dist.log_prob(next_observations[i:i+horizon][:,:,:3,:,:]))
@ -369,12 +380,18 @@ class DPI:
reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1])) reward_loss = -torch.mean(reward_dist.log_prob(rewards[:-1]))
# update models # update models
world_model_loss = encoder_loss + ub_loss + lb_loss + decoder_loss * 1e-2 world_model_loss = encoder_loss + 100 * ub_loss + lb_loss + reward_loss + decoder_loss * 1e-2
self.world_model_opt.zero_grad() self.world_model_opt.zero_grad()
world_model_loss.backward() world_model_loss.backward()
nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm) nn.utils.clip_grad_norm_(self.world_model_parameters, self.args.grad_clip_norm)
self.world_model_opt.step() self.world_model_opt.step()
# update momentum encoder
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau)
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau)
# actor loss # actor loss
with FreezeParameters(self.world_model_modules + self.value_modules): with FreezeParameters(self.world_model_modules + self.value_modules):
imag_rew_dist = self.reward_model(imagined_rollout["sample"]) imag_rew_dist = self.reward_model(imagined_rollout["sample"])
@ -419,39 +436,62 @@ class DPI:
if step % self.args.value_target_update_freq == 0: if step % self.args.value_target_update_freq == 0:
self.target_value_model = copy.deepcopy(self.value_model) self.target_value_model = copy.deepcopy(self.value_model)
# update momentum encoder # counter for reward
soft_update_params(self.obs_encoder, self.obs_encoder_momentum, self.args.encoder_tau) count = np.arange((counter-1) * (self.args.batch_size), (counter) * (self.args.batch_size))
# update momentum projection head
soft_update_params(self.prjoection_head, self.prjoection_head_momentum, self.args.encoder_tau) if step % self.args.logging_freq:
writer.add_scalar('World Loss/World Loss', world_model_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss.detach().item(), step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss.detach().item(), step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss.detach().item(), step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss.detach().item(), step)
step += 1 step += 1
if step % self.args.logging_freq:
writer.add_scalar('Main Loss/World Loss', world_model_loss, step)
writer.add_scalar('Main Models Loss/Encoder Loss', encoder_loss, step)
writer.add_scalar('Main Models Loss/Decoder Loss', decoder_loss, step)
writer.add_scalar('Actor Critic Loss/Actor Loss', actor_loss, step)
writer.add_scalar('Actor Critic Loss/Value Loss', value_loss, step)
writer.add_scalar('Actor Critic Loss/Reward Loss', reward_loss, step)
writer.add_scalar('Bound Loss/Upper Bound Loss', ub_loss, step)
writer.add_scalar('Bound Loss/Lower Bound Loss', lb_loss, step)
"""
if step % self.args.logging_freq:
metrics['Upper Bound Loss'] = ub_loss.item()
metrics['Encoder Loss'] = encoder_loss.item()
metrics['Decoder Loss'] = decoder_loss.item()
metrics["Lower Bound Loss"] = lb_loss.item()
metrics["World Model Loss"] = world_model_loss.item()
wandb.log(metrics)
"""
if step>total_steps: if step>total_steps:
print("Training finished") print("Training finished")
break break
# save model
if step % self.args.saving_interval == 0:
path = os.path.dirname(os.path.realpath(__file__)) + "/saved_models/models.pth"
self.save_models(path)
#torch.cuda.empty_cache() # memory leak issues
for j in range(len(all_rews)):
writer.add_scalar('Rewards/Rewards', all_rews[j], count[j])
def evaluate(self, env, eval_episodes, render=False):
episode_rew = np.zeros((eval_episodes))
video_images = [[] for _ in range(eval_episodes)]
for i in range(eval_episodes):
obs = env.reset()
done = False
prev_state = self.rssm.init_state(1, self.device)
prev_action = torch.zeros(1, self.action_size).to(self.device)
while not done:
with torch.no_grad():
posterior, action = self.act_with_world_model(obs, prev_state, prev_action)
action = action[0].cpu().numpy()
next_obs, rew, done, _ = env.step(action)
prev_state = posterior
prev_action = torch.tensor(action, dtype=torch.float32).to(self.device).unsqueeze(0)
episode_rew[i] += rew
if render:
video_images[i].append(obs['image'].transpose(1,2,0).copy())
obs = next_obs
return episode_rew, np.array(video_images[:self.args.max_videos_to_save])
def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states): def _upper_bound_minimization(self, last_states, current_states, negative_current_states, predicted_current_states):
club_sample = CLUBSample(last_states, club_sample = CLUBSample(last_states,
@ -469,8 +509,6 @@ class DPI:
# predicted current state distribution # predicted current state distribution
predicted_curr_states_dist = predicted_curr_states_dict["distribution"] predicted_curr_states_dist = predicted_curr_states_dict["distribution"]
# KL divergence loss # KL divergence loss
loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean() loss = torch.distributions.kl.kl_divergence(curr_states_dist, predicted_curr_states_dist).mean()
@ -502,10 +540,26 @@ class DPI:
returns = torch.flip(torch.stack(rets), [0]) returns = torch.flip(torch.stack(rets), [0])
return returns return returns
def save_models(self, save_path):
torch.save(
{'rssm' : self.transition_model.state_dict(),
'actor': self.actor_model.state_dict(),
'reward_model': self.reward_model.state_dict(),
'obs_encoder': self.obs_encoder.state_dict(),
'obs_decoder': self.obs_decoder.state_dict(),
'actor_optimizer': self.actor_opt.state_dict(),
'value_optimizer': self.value_opt.state_dict(),
'world_model_optimizer': self.world_model_opt.state_dict(),}, save_path)
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args() args = parse_args()
writer = SummaryWriter() writer = SummaryWriter()
dpi = DPI(args, writer)
dpi.train() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
step = 0
total_steps = 10000
dpi = DPI(args)
dpi.train(step,total_steps)