2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import skvideo.io
|
|
|
|
import random
|
|
|
|
import tqdm
|
|
|
|
|
|
|
|
class BackgroundMatting(object):
|
|
|
|
"""
|
|
|
|
Produce a mask by masking the given color. This is a simple strategy
|
|
|
|
but effective for many games.
|
|
|
|
"""
|
|
|
|
def __init__(self, color):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
color: a (r, g, b) tuple or single value for grayscale
|
|
|
|
"""
|
|
|
|
self._color = color
|
|
|
|
|
|
|
|
def get_mask(self, img):
|
|
|
|
return img == self._color
|
|
|
|
|
|
|
|
|
|
|
|
class ImageSource(object):
|
|
|
|
"""
|
|
|
|
Source of natural images to be added to a simulated environment.
|
|
|
|
"""
|
|
|
|
def get_image(self):
|
|
|
|
"""
|
|
|
|
Returns:
|
|
|
|
an RGB image of [h, w, 3] with a fixed shape.
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
""" Called when an episode ends. """
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class FixedColorSource(ImageSource):
|
|
|
|
def __init__(self, shape, color):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
shape: [h, w]
|
|
|
|
color: a 3-tuple
|
|
|
|
"""
|
|
|
|
self.arr = np.zeros((shape[0], shape[1], 3))
|
|
|
|
self.arr[:, :] = color
|
|
|
|
|
|
|
|
def get_image(self):
|
|
|
|
return self.arr
|
|
|
|
|
|
|
|
|
|
|
|
class RandomColorSource(ImageSource):
|
|
|
|
def __init__(self, shape):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
shape: [h, w]
|
|
|
|
"""
|
|
|
|
self.shape = shape
|
|
|
|
self.arr = None
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self._color = np.random.randint(0, 256, size=(3,))
|
|
|
|
self.arr = np.zeros((self.shape[0], self.shape[1], 3))
|
|
|
|
self.arr[:, :] = self._color
|
|
|
|
|
|
|
|
def get_image(self):
|
|
|
|
return self.arr
|
|
|
|
|
|
|
|
|
|
|
|
class NoiseSource(ImageSource):
|
|
|
|
def __init__(self, shape, strength=255):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
shape: [h, w]
|
|
|
|
strength (int): the strength of noise, in range [0, 255]
|
|
|
|
"""
|
|
|
|
self.shape = shape
|
|
|
|
self.strength = strength
|
|
|
|
|
|
|
|
def get_image(self):
|
|
|
|
return np.random.randn(self.shape[0], self.shape[1], 3) * self.strength
|
|
|
|
|
|
|
|
|
|
|
|
class RandomImageSource(ImageSource):
|
|
|
|
def __init__(self, shape, filelist, total_frames=None, grayscale=False):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
shape: [h, w]
|
|
|
|
filelist: a list of image files
|
|
|
|
"""
|
|
|
|
self.grayscale = grayscale
|
|
|
|
self.total_frames = total_frames
|
|
|
|
self.shape = shape
|
|
|
|
self.filelist = filelist
|
|
|
|
self.build_arr()
|
|
|
|
self.current_idx = 0
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
def build_arr(self):
|
|
|
|
self.total_frames = self.total_frames if self.total_frames else len(self.filelist)
|
|
|
|
self.arr = np.zeros((self.total_frames, self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
|
|
|
for i in range(self.total_frames):
|
|
|
|
# if i % len(self.filelist) == 0: random.shuffle(self.filelist)
|
|
|
|
fname = self.filelist[i % len(self.filelist)]
|
|
|
|
if self.grayscale: im = cv2.imread(fname, cv2.IMREAD_GRAYSCALE)[..., None]
|
|
|
|
else: im = cv2.imread(fname, cv2.IMREAD_COLOR)
|
|
|
|
self.arr[i] = cv2.resize(im, (self.shape[1], self.shape[0])) ## THIS IS NOT A BUG! cv2 uses (width, height)
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self._loc = np.random.randint(0, self.total_frames)
|
|
|
|
|
|
|
|
def get_image(self):
|
|
|
|
return self.arr[self._loc]
|
|
|
|
|
|
|
|
|
|
|
|
class RandomVideoSource(ImageSource):
|
2023-03-25 16:07:07 +00:00
|
|
|
def __init__(self, shape, filelist, total_frames=None, grayscale=False, high_noise=False):
|
2023-03-23 14:05:28 +00:00
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
shape: [h, w]
|
|
|
|
filelist: a list of video files
|
|
|
|
"""
|
|
|
|
self.grayscale = grayscale
|
|
|
|
self.total_frames = total_frames
|
|
|
|
self.shape = shape
|
|
|
|
self.filelist = filelist
|
2023-03-25 16:07:07 +00:00
|
|
|
self.high_noise = high_noise
|
2023-03-23 14:05:28 +00:00
|
|
|
self.build_arr()
|
|
|
|
self.current_idx = 0
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
def build_arr(self):
|
|
|
|
if not self.total_frames:
|
|
|
|
self.total_frames = 0
|
|
|
|
self.arr = None
|
|
|
|
random.shuffle(self.filelist)
|
|
|
|
for fname in tqdm.tqdm(self.filelist, desc="Loading videos for natural", position=0):
|
|
|
|
if self.grayscale: frames = skvideo.io.vread(fname, outputdict={"-pix_fmt": "gray"})
|
|
|
|
else: frames = skvideo.io.vread(fname)
|
|
|
|
local_arr = np.zeros((frames.shape[0], self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
|
|
|
for i in tqdm.tqdm(range(frames.shape[0]), desc="video frames", position=1):
|
|
|
|
local_arr[i] = cv2.resize(frames[i], (self.shape[1], self.shape[0])) ## THIS IS NOT A BUG! cv2 uses (width, height)
|
|
|
|
if self.arr is None:
|
|
|
|
self.arr = local_arr
|
|
|
|
else:
|
|
|
|
self.arr = np.concatenate([self.arr, local_arr], 0)
|
|
|
|
self.total_frames += local_arr.shape[0]
|
|
|
|
else:
|
|
|
|
self.arr = np.zeros((self.total_frames, self.shape[0], self.shape[1]) + ((3,) if not self.grayscale else (1,)))
|
|
|
|
total_frame_i = 0
|
|
|
|
file_i = 0
|
|
|
|
with tqdm.tqdm(total=self.total_frames, desc="Loading videos for natural") as pbar:
|
|
|
|
while total_frame_i < self.total_frames:
|
|
|
|
if file_i % len(self.filelist) == 0: random.shuffle(self.filelist)
|
|
|
|
file_i += 1
|
|
|
|
fname = self.filelist[file_i % len(self.filelist)]
|
|
|
|
if self.grayscale: frames = skvideo.io.vread(fname, outputdict={"-pix_fmt": "gray"})
|
|
|
|
else: frames = skvideo.io.vread(fname)
|
|
|
|
for frame_i in range(frames.shape[0]):
|
|
|
|
if total_frame_i >= self.total_frames: break
|
|
|
|
if self.grayscale:
|
|
|
|
self.arr[total_frame_i] = cv2.resize(frames[frame_i], (self.shape[1], self.shape[0]))[..., None] ## THIS IS NOT A BUG! cv2 uses (width, height)
|
|
|
|
else:
|
|
|
|
self.arr[total_frame_i] = cv2.resize(frames[frame_i], (self.shape[1], self.shape[0]))
|
|
|
|
pbar.update(1)
|
|
|
|
total_frame_i += 1
|
2023-03-25 16:07:07 +00:00
|
|
|
|
|
|
|
# Randomize the order of the frames
|
|
|
|
if self.high_noise:
|
|
|
|
random.shuffle(self.arr)
|
2023-03-23 14:05:28 +00:00
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self._loc = np.random.randint(0, self.total_frames)
|
|
|
|
|
|
|
|
def get_image(self):
|
|
|
|
img = self.arr[self._loc % self.total_frames]
|
|
|
|
self._loc += 1
|
|
|
|
return img
|