Compare commits
1 Commits
master
...
393379520b
Author | SHA1 | Date | |
---|---|---|---|
393379520b |
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,6 +1,4 @@
|
||||
.idea
|
||||
/build/
|
||||
/install/
|
||||
/log/
|
||||
/src/build/
|
||||
/src/install/
|
||||
/log/
|
@ -3,13 +3,12 @@ FROM osrf/ros:humble-desktop-full-jammy
|
||||
|
||||
# Update and install dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3-colcon-common-extensions python3-pip
|
||||
python3-colcon-common-extensions python3-pip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY requirements.txt ./
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
RUN rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Create a workspace
|
||||
WORKDIR /ros2_ws
|
||||
|
||||
@ -22,7 +21,6 @@ RUN . /opt/ros/humble/setup.sh && \
|
||||
|
||||
RUN echo "source /opt/ros/humble/setup.bash" >> ~/.bashrc
|
||||
|
||||
ENV PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/opt/ros/humble/bin"
|
||||
|
||||
# Source the workspace
|
||||
CMD ["/bin/bash"]
|
||||
|
19
README.md
19
README.md
@ -27,25 +27,6 @@ docker build -t interactive-robot-learning-framework .
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
## Setting up Pycharm Environment
|
||||
Add a new Remote Interpreter based on the docker-compose file.
|
||||
Then add the following paths to the interpreter paths. You can find them when clicking on the Interpreter in the lower right corner of the Pycharm window.
|
||||
Then select "Interpreter Settings" within the setting go to "Show All..." Python interpreters (its in the list of the Python Interpreters).
|
||||
Subsequently, you can add with the "+" a new interpreter, choose "Docker Compose" and select the "docker-compose.yaml" file from this repository.
|
||||
The last step is to add the ros2 paths within your docker container to the interpreter paths (its one of the buttons next to the "+".
|
||||
|
||||
The following paths are necessary to develop in the docker container otherwise python cannot find rclpy and the custom msg packages:
|
||||
|
||||
```bash
|
||||
/opt/ros/humble/local/lib/python3.10/dist-packages
|
||||
|
||||
/opt/ros/humble/lib/python3.10/site-packages
|
||||
|
||||
/ros2_ws/install/interaction_msgs/local/lib/python3.10/dist-packages
|
||||
```
|
||||
If there is a
|
||||
|
||||
|
||||
## Framework Structure
|
||||
|
||||
The Interactive Robot Learning Framework consists of several key ROS2 packages, each responsible for different aspects of robot learning and interaction. Below is an overview of each package:
|
||||
|
@ -5,8 +5,4 @@ pydot~=1.4.2
|
||||
empy~=3.3.4
|
||||
lark~=1.1.1
|
||||
scipy~=1.12.0
|
||||
scikit-learn~=1.4.0
|
||||
transitions==0.9.0
|
||||
movement-primitives[all]~=0.7.0
|
||||
cma~=3.3.0
|
||||
PyYAML~=5.4.1
|
||||
scikit-learn~=1.4.0
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,18 +0,0 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>interaction_benchmark</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
@ -1,4 +0,0 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/interaction_benchmark
|
||||
[install]
|
||||
install_scripts=$base/lib/interaction_benchmark
|
@ -1,25 +0,0 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
package_name = 'interaction_benchmark'
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version='0.0.0',
|
||||
packages=find_packages(exclude=['test']),
|
||||
data_files=[
|
||||
('share/ament_index/resource_index/packages',
|
||||
['resource/' + package_name]),
|
||||
('share/' + package_name, ['package.xml']),
|
||||
],
|
||||
install_requires=['setuptools'],
|
||||
zip_safe=True,
|
||||
maintainer='niko',
|
||||
maintainer_email='nikolaus.feith@unileoben.ac.at',
|
||||
description='TODO: Package description',
|
||||
license='TODO: License declaration',
|
||||
tests_require=['pytest'],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
],
|
||||
},
|
||||
)
|
@ -1,25 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_copyright.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(reason='No copyright header has been placed in the generated source file.')
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found errors'
|
@ -1,25 +0,0 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_flake8.main import main_with_errors
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, \
|
||||
'Found %d code style errors / warnings:\n' % len(errors) + \
|
||||
'\n'.join(errors)
|
@ -1,23 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_pep257.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found code style errors / warnings'
|
@ -9,18 +9,7 @@ find_package(ament_cmake REQUIRED)
|
||||
find_package(rosidl_default_generators REQUIRED)
|
||||
|
||||
rosidl_generate_interfaces(${PROJECT_NAME}
|
||||
"action/TaskEvaluation.action"
|
||||
"srv/Query.srv"
|
||||
"srv/Task.srv"
|
||||
"srv/UserInterface.srv"
|
||||
"srv/ParameterChange.srv"
|
||||
# "srv/TaskEvaluation.srv"
|
||||
"msg/OptimizerState.msg"
|
||||
"msg/Opt2UI.msg"
|
||||
"msg/UI2Opt.msg"
|
||||
"msg/TaskOrder.msg"
|
||||
# "msg/Opt2Task.msg"
|
||||
# "msg/Task2Opt.msg"
|
||||
DEPENDENCIES
|
||||
)
|
||||
|
||||
|
@ -1,26 +0,0 @@
|
||||
# Goal
|
||||
bool user_input
|
||||
uint16 number_of_population
|
||||
float32 duration
|
||||
uint16 number_of_time_steps
|
||||
|
||||
# case if user_input is true
|
||||
float32[] user_parameters # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] user_covariance_diag # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] current_optimizer_mean # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] conditional_points # Length: (number_of_dimensions + time_stamp[0,1]) * number_of_conditional_points
|
||||
float32[] weight_parameter # this parameter sets the weighted average 0 dont trust user 1 completly trust user (it is set by the user or it is decays over time i have to do some experiments on that)
|
||||
|
||||
# case if user_input is false
|
||||
uint16 number_of_dimensions # this is the number of ProMPs * 2 (Position and Velocity)
|
||||
uint16 number_of_parameters_per_dimensions
|
||||
float32[] parameter_array # Length: number_of_population * number_of_dimensions * number_of_parameters_per_dimension
|
||||
---
|
||||
# Feedback
|
||||
string current_state
|
||||
uint16 processed_trajectories
|
||||
---
|
||||
# Result
|
||||
float32[] new_means # Length: number_of_population * number_of_dimensions * number_of_parameters_per_dimension, this is needed because in case of user input the parameters arent known yet
|
||||
float32[] score # Length: number_of_population
|
||||
|
@ -1,8 +0,0 @@
|
||||
# Return reward - True: for updating the model, False: for displaying the x_best to the user
|
||||
bool reward_return
|
||||
# Number of dimensions of the representation model
|
||||
uint16 nr_dim
|
||||
# Number of parameters per dimensions
|
||||
uint16 nr_parameter
|
||||
# Next parameters
|
||||
float32[] x_next
|
@ -1,5 +0,0 @@
|
||||
# Best parameter set so far
|
||||
float32[] x_best
|
||||
|
||||
# parameters which were fixed by the user
|
||||
bool[] fixed_parameters
|
@ -1,9 +0,0 @@
|
||||
# Current State
|
||||
string current_state
|
||||
|
||||
# Current BO Episode
|
||||
int32 current_episode
|
||||
|
||||
# Best result so far
|
||||
float32 reward_best
|
||||
float32[] x_best
|
@ -1,4 +0,0 @@
|
||||
# observed parameters
|
||||
float32[] x_observed
|
||||
# observed reward
|
||||
float32 reward
|
@ -1 +0,0 @@
|
||||
uint16 bla
|
@ -1,7 +0,0 @@
|
||||
# parameters which were fixed by the user
|
||||
bool[] fixed_parameters
|
||||
# parameters set by the user
|
||||
float32[] set_parameter_values
|
||||
# proposed new poses and their time steps
|
||||
float32[] new_poses
|
||||
float32[] new_poses_time_stamps
|
@ -1,6 +0,0 @@
|
||||
string[] parameter_name
|
||||
string[] parameter_type # One of 'float', 'string', 'bool', potentially others
|
||||
string[] parameter_value
|
||||
---
|
||||
bool success
|
||||
string message # For error reporting
|
@ -1,18 +0,0 @@
|
||||
# Number of dimensions of the representation model
|
||||
uint16 nr_dim
|
||||
# Number of parameters per dimensions
|
||||
uint16 nr_parameter
|
||||
# Next parameters
|
||||
float32[] x_next
|
||||
# time array
|
||||
float32[] time_steps_array
|
||||
# did the user updated trajectory in the ui
|
||||
bool user_update
|
||||
# if the user updated update Pose + its timestamp (multiple Poses possible
|
||||
float32[] update_pose
|
||||
float32[] update_timestamps
|
||||
---
|
||||
# observed parameters
|
||||
float32[] x_observed
|
||||
# observed reward
|
||||
float32 reward
|
@ -1,20 +0,0 @@
|
||||
bool user_input
|
||||
uint16 number_of_population
|
||||
float32 duration
|
||||
uint16 number_of_time_steps
|
||||
|
||||
# case if user_input is true
|
||||
float32[] user_parameters # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] user_covariance_diag # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] current_cma_mean # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] conditional_points # Length: (number_of_dimensions + time_stamp[0,1]) * number_of_conditional_points
|
||||
float32[] weight_parameter # this parameter sets the weighted average 0 dont trust user 1 completly trust user (it is set by the user or it is decays over time i have to do some experiments on that)
|
||||
|
||||
# case if user_input is false
|
||||
uint16 number_of_dimensions # this is the number of ProMPs * 2 (Position and Velocity)
|
||||
uint16 number_of_parameters_per_dimensions
|
||||
float32[] parameter_array # Length: number_of_population * number_of_dimensions * number_of_parameters_per_dimension
|
||||
---
|
||||
# response
|
||||
float32[] parameter_array # this is needed because in case of user input the parameters arent known yet
|
||||
float32[] score
|
@ -1,8 +0,0 @@
|
||||
float32[] current_cma_mean # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] best_parameters # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] current_user_covariance_diag # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
---
|
||||
float32[] user_parameters # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] user_covariance_diag # Length: number_of_dimensions * number_of_parameters_per_dimension
|
||||
float32[] conditional_points # Length: (number_of_dimensions + time_stamp[0,1]) * number_of_conditional_points
|
||||
float32 weight_parameter # this parameter sets the weighted average 0 dont trust user 1 completly trust user (it is set by the user or it is decays over time i have to do some experiments on that)
|
@ -1,78 +0,0 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from transitions.extensions.asyncio import AsyncMachine
|
||||
from std_msgs.msg import String
|
||||
import asyncio
|
||||
import threading
|
||||
import time
|
||||
|
||||
|
||||
class StatefulNode(Node):
|
||||
def __init__(self, event_loop):
|
||||
super().__init__('stateful_node')
|
||||
self.event_loop = event_loop
|
||||
self.subscription = self.create_subscription(String, 'my_topic', self.listener_callback, 10)
|
||||
|
||||
states = [
|
||||
{'name': 'state1', 'on_enter': 'on_enter_state1'},
|
||||
{'name': 'state2', 'on_enter': 'on_enter_state2'},
|
||||
{'name': 'state3', 'on_enter': 'on_enter_state3'}
|
||||
]
|
||||
transitions = [
|
||||
{'trigger': 'go_to_state1', 'source': '*', 'dest': 'state1'},
|
||||
{'trigger': 'go_to_state2', 'source': '*', 'dest': 'state2'},
|
||||
{'trigger': 'go_to_state3', 'source': '*', 'dest': 'state3'},
|
||||
]
|
||||
|
||||
self.machine = AsyncMachine(model=self, states=states, transitions=transitions, initial='state1')
|
||||
|
||||
async def on_enter_state1(self):
|
||||
self.get_logger().info(f"Entering State 1 - {time.time()}")
|
||||
|
||||
async def on_enter_state2(self):
|
||||
self.get_logger().info(f"Entering State 2 - {time.time()}")
|
||||
|
||||
async def on_enter_state3(self):
|
||||
self.get_logger().info(f"Entering State 3 - {time.time()}")
|
||||
|
||||
def listener_callback(self, msg):
|
||||
try:
|
||||
self.get_logger().info(f'Received message: "{msg.data}"')
|
||||
if msg.data == 'trigger1':
|
||||
self.get_logger().info("Attempting to go to state2")
|
||||
asyncio.run_coroutine_threadsafe(self.go_to_state1(), self.event_loop)
|
||||
elif msg.data == 'trigger2':
|
||||
self.get_logger().info("Attempting to go to state1")
|
||||
asyncio.run_coroutine_threadsafe(self.go_to_state2(), self.event_loop)
|
||||
elif msg.data == 'trigger3':
|
||||
self.get_logger().info("Attempting to go to state1")
|
||||
asyncio.run_coroutine_threadsafe(self.go_to_state3(), self.event_loop)
|
||||
except Exception as e:
|
||||
self.get_logger().error(f"Error in listener_callback: {str(e)}")
|
||||
|
||||
|
||||
def run_asyncio_loop():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_forever()
|
||||
return loop # Ensure you return the loop reference
|
||||
|
||||
|
||||
def main():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
threading.Thread(target=loop.run_forever, daemon=True).start()
|
||||
|
||||
# Initialize ROS and pass the event loop to the node
|
||||
rclpy.init()
|
||||
node = StatefulNode(loop)
|
||||
|
||||
# Now, the ROS 2 node has the correct event loop reference for asyncio operations
|
||||
rclpy.spin(node)
|
||||
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
loop.call_soon_threadsafe(loop.stop)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -20,7 +20,6 @@ setup(
|
||||
tests_require=['pytest'],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'async_node = interaction_objective_function.async_testing:main'
|
||||
],
|
||||
},
|
||||
)
|
||||
|
@ -1,4 +0,0 @@
|
||||
initial_mean_centre: 0.0
|
||||
initial_mean_std_dev: 0.2
|
||||
initial_variance: 0.3
|
||||
random_seed: ''
|
@ -1,326 +1 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from rclpy.callback_groups import ReentrantCallbackGroup
|
||||
|
||||
from interaction_msgs.srv import Query
|
||||
from interaction_msgs.srv import Task
|
||||
from interaction_msgs.msg import UI2Opt
|
||||
from interaction_msgs.msg import TaskOrder
|
||||
from interaction_msgs.msg import Opt2UI
|
||||
from interaction_msgs.msg import OptimizerState
|
||||
|
||||
|
||||
from .optimizers.bayesian_optimization import BayesianOptimization
|
||||
|
||||
from transitions.extensions.asyncio import AsyncMachine
|
||||
import asyncio
|
||||
|
||||
import threading
|
||||
import time
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BayesianOptimizationNode(Node):
|
||||
def __init__(self, event_loop):
|
||||
super().__init__('bayesian_optimization_node')
|
||||
self.event_loop = event_loop
|
||||
|
||||
# region Parameters
|
||||
"""
|
||||
self.acquisition_function_name = (self.declare_parameter('acquisition_function_name', 'EI')
|
||||
.get_parameter_value().string_value)
|
||||
self.nr_bo_steps = self.declare_parameter('bo_steps', 100).get_parameter_value().integer_value
|
||||
self.nr_dimensions = self.declare_parameter('nr_dimensions', 1).get_parameter_value().integer_value
|
||||
self.nr_policy_parameters = (self.declare_parameter('nr_policy_parameters', 100)
|
||||
.get_parameter_value().integer_value)
|
||||
"""
|
||||
self.kernel_type = self.declare_parameter('kernel_type', 'Matern').get_parameter_value().string_value
|
||||
self.nr_init = self.declare_parameter('nr_init', 3).get_parameter_value().integer_value
|
||||
self.task_request_timeout = self.declare_parameter('task_request_timeout', 10).get_parameter_value().integer_value
|
||||
self.task_request_max_tries = self.declare_parameter('task_request_max_tries', 3).get_parameter_value().integer_value
|
||||
# endregion
|
||||
|
||||
# State Machine
|
||||
states = [
|
||||
{'name': 'idle'},
|
||||
{'name': 'initialize_bo', 'on_enter': 'initialize_bo_fun'},
|
||||
{'name': 'user_query', 'on_enter': 'user_query_fun'},
|
||||
{'name': 'non_interactive_mode', 'on_enter': 'non_interactive_mode_fun'},
|
||||
{'name': 'waiting_for_user_response', 'on_enter': 'waiting_for_user_response_fun'},
|
||||
{'name': 'processing_user_proposal_fun', 'on_enter': 'processing_fun'},
|
||||
]
|
||||
transitions = [
|
||||
{'trigger': 'order_received', 'source': 'idle', 'dest': 'initialize_bo'},
|
||||
{'trigger': 'initialization_finished', 'source': 'initialize_bo', 'dest': 'user_query'},
|
||||
{'trigger': 'non_interactive', 'source': 'user_query', 'dest': 'non_interactive_mode'},
|
||||
{'trigger': 'non_interactive_finished', 'source': 'non_interactive_mode', 'dest': 'user_query'},
|
||||
{'trigger': 'interactive', 'source': 'user_query', 'dest': 'waiting_for_user_response'},
|
||||
{'trigger': 'user_response_received', 'source': 'waiting_for_user_response', 'dest': 'processing_user_proposal_fun'},
|
||||
{'trigger': 'processing_finished', 'source': 'processing_user_proposal_fun', 'dest': 'user_query'},
|
||||
{'trigger': 'order_completed', 'source': 'waiting_for_task_response', 'dest': 'idle'},
|
||||
{'trigger': 'abort', 'source': '*', 'dest': 'idle'}
|
||||
]
|
||||
|
||||
"""
|
||||
Algo:
|
||||
A) idle -> order_received() -> initializing_bo:
|
||||
order_sub - receives order
|
||||
reset_bo with the order parameters
|
||||
trigger: order_received()
|
||||
|
||||
for i=0:nr_episodes
|
||||
B) initializing_bo -> initialization_finished() -> user_query:
|
||||
for j = 0:nr_init
|
||||
x_next <- initial sampling
|
||||
send x_next to task node
|
||||
reward received from task node
|
||||
fit model
|
||||
trigger: initialization_finished()
|
||||
|
||||
C1.1) user_query -> non_interactive() -> sampling_x_next
|
||||
service call for user_query
|
||||
if user_query is False:
|
||||
trigger: non_interactive()
|
||||
C1.2) sampling_x_next -> sampling_finished() -> processing
|
||||
sampling x_next with acqusition function
|
||||
trigger: sampling_finished()
|
||||
|
||||
C2.1) user_query -> interactive() -> waiting_for_user
|
||||
service call for user_query
|
||||
if user_query is True:
|
||||
trigger: interactive()
|
||||
C2.2) waiting_for_user_response -> user_response_received() -> processing
|
||||
send x_best to task node
|
||||
send x_best to UI
|
||||
user adapts x_best
|
||||
(UI sends x_next to task node)
|
||||
receives x_next from UI
|
||||
trigger: user_response_received()
|
||||
|
||||
D) processing -> processing_finished() -> waiting_for_task_response
|
||||
sends x_next to task node
|
||||
trigger: processing_finished()
|
||||
|
||||
E) waiting_for_task_response -> task_response_received() -> user_query
|
||||
if episode < nr_episodes:
|
||||
get results from reward_sub
|
||||
model fit with additional observation
|
||||
trigger: task_response_received()
|
||||
|
||||
F) waiting_for_task_response -> order_completed() -> idle
|
||||
if episode = nr_episodes:
|
||||
completion_pub with the completed results
|
||||
trigger: order_completed()
|
||||
|
||||
|
||||
Additional Transitions:
|
||||
Abort: * -> abort() -> idle
|
||||
"""
|
||||
|
||||
self.machine = AsyncMachine(model=self, states=states,
|
||||
transitions=transitions, initial='idle',
|
||||
ignore_invalid_triggers=True)
|
||||
|
||||
|
||||
# Subscribers
|
||||
self.ui_sub = self.create_subscription(UI2Opt, 'interaction/ui_response', self.ui_callback, 10)
|
||||
self.order_sub = self.create_subscription(TaskOrder, 'interaction/order', self.task_order_callback, 10)
|
||||
|
||||
# Publishers
|
||||
self.ui_pub = self.create_publisher(Opt2UI, 'interaction/ui_request', 10)
|
||||
self.state_pub = self.create_publisher(OptimizerState, 'interaction/optimizer/state', 10)
|
||||
|
||||
# Service Clients
|
||||
self.query_client = self.create_client(Query, 'interaction/user_query_srv')
|
||||
self.task_client = self.create_client(Task, 'interaction/task_srv')
|
||||
|
||||
# Timer Objects
|
||||
self.state_timer = self.create_timer(0.1, self.state_callback)
|
||||
# Bayesian Optimization
|
||||
self.bayesian_optimization = None
|
||||
|
||||
self.current_episodes = 0
|
||||
self.nr_bo_steps = 0
|
||||
self.nr_dimensions = 0
|
||||
self.nr_policy_parameters = 0
|
||||
self.acquisition_function_name = ''
|
||||
self.fixed_dimensions = None
|
||||
|
||||
self.seed = None
|
||||
self.lower_bound = None
|
||||
self.upper_bound = None
|
||||
|
||||
self.x_temp = None # temp x_next
|
||||
|
||||
|
||||
self.get_logger().info(f"Bayesian optimization Node started up!")
|
||||
|
||||
def reset_bo(self, fixed_dimensions=None, **kwargs):
|
||||
self.bayesian_optimization = BayesianOptimization(self.nr_bo_steps,
|
||||
self.nr_dimensions,
|
||||
self.nr_policy_parameters,
|
||||
seed=self.seed,
|
||||
fixed_dimensions=fixed_dimensions,
|
||||
lower_bound=self.lower_bound,
|
||||
upper_bound=self.upper_bound,
|
||||
acquisition_function_name=self.acquisition_function_name,
|
||||
kernel_type=self.kernel_type, **kwargs)
|
||||
|
||||
# region Callback & Async Send functions
|
||||
def task_order_callback(self, msg):
|
||||
self.current_episodes = 0
|
||||
self.nr_bo_steps = msg.nr_bo_steps
|
||||
self.nr_dimensions = msg.nr_dimensions
|
||||
self.nr_policy_parameters = msg.nr_policy_parameters
|
||||
self.seed = msg.seed
|
||||
self.fixed_dimensions = msg.fixed_dimensions
|
||||
self.acquisition_function_name = msg.acquisition_function_name
|
||||
|
||||
asyncio.run_coroutine_threadsafe(self.order_received(), self.event_loop)
|
||||
|
||||
def ui_callback(self, msg):
|
||||
self.fixed_dimensions = msg.fixed_dimensions
|
||||
self.x_temp = msg.set_parameter_values
|
||||
|
||||
asyncio.run_coroutine_threadsafe(self.user_response_received)
|
||||
|
||||
async def send_task_request_with_retry(self, request):
|
||||
for attempt in range(self.task_request_max_tries):
|
||||
self.get_logger().info(f"Attempt {attempt + 1}, send task request with retry!")
|
||||
|
||||
future = self.task_client.call_async(request)
|
||||
try:
|
||||
response = await asyncio.wait_for(future, self.task_request_timeout)
|
||||
return response
|
||||
except asyncio.TimeoutError:
|
||||
self.get_logger().warning(f"Task request timed out, resending...")
|
||||
|
||||
self.get_logger().error(f"Max retries reached for task request: {self.task_request_max_tries}")
|
||||
return None
|
||||
|
||||
def state_callback(self):
|
||||
msg = OptimizerState()
|
||||
msg.current_state = self.state
|
||||
if self.state != 'idle':
|
||||
msg.current_episode = self.bayesian_optimization.episode
|
||||
msg.reward_best, msg.x_best, _ = self.bayesian_optimization.get_best_reward()
|
||||
|
||||
self.state_pub.publish(msg)
|
||||
# endregion
|
||||
|
||||
# State Methods
|
||||
async def initializing_bo_fun(self):
|
||||
self.get_logger().info('Initializing bo...')
|
||||
|
||||
self.reset_bo(fixed_dimensions=self.fixed_dimensions)
|
||||
|
||||
request = Task.Request()
|
||||
request.nr_dim = self.nr_dimensions
|
||||
request.nr_parameter = self.nr_policy_parameters
|
||||
for i in range(self.nr_init):
|
||||
request.x_next = self.bayesian_optimization.sample_random_next_observation()
|
||||
|
||||
response = await self.send_task_request_with_retry(request)
|
||||
if i < self.nr_init:
|
||||
self.bayesian_optimization.add_observation(response.reward, response.x_observed, fit=False)
|
||||
else:
|
||||
self.bayesian_optimization.add_observation(response.reward, response.x_observed)
|
||||
|
||||
await self.initialization_finished()
|
||||
|
||||
async def user_query_fun(self):
|
||||
self.get_logger().info('Deciding wheter to ask the user...')
|
||||
srv_msg = Query()
|
||||
future = self.query_client.call_async(srv_msg)
|
||||
try:
|
||||
response = await asyncio.wait_for(future, timeout=2)
|
||||
if response.interaction:
|
||||
await self.interactive()
|
||||
|
||||
else:
|
||||
await self.non_interactive()
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
self.get_logger().info("Timeout for Query Service...")
|
||||
|
||||
async def non_interactive_mode_fun(self):
|
||||
request = Task.Request()
|
||||
request.nr_dim = self.nr_dimensions
|
||||
request.nr_parameter = self.nr_policy_parameters
|
||||
|
||||
request.x_next = self.bayesian_optimization.next_observation()
|
||||
|
||||
response = await self.send_task_request_with_retry(request)
|
||||
self.bayesian_optimization.add_observation(response.reward, response.x_observed)
|
||||
|
||||
if self.bayesian_optimization.episode == self.nr_bo_steps:
|
||||
await self.order_completed()
|
||||
await self.non_interactive_finished()
|
||||
|
||||
async def waiting_for_user_response_fun(self):
|
||||
self.get_logger().info('Waiting for user response...')
|
||||
|
||||
# sending the best result so far to display it to the user
|
||||
_, x_max, _ = self.bayesian_optimization.get_best_result()
|
||||
|
||||
ui_msg = Opt2UI()
|
||||
ui_msg.x_best = x_max
|
||||
ui_msg.fixed_parameters = self.fixed_dimensions
|
||||
self.ui_pub.publish(ui_msg)
|
||||
|
||||
# send it to the task node to display the movement
|
||||
request = Task.Request()
|
||||
request.nr_dim = self.nr_dimensions
|
||||
request.nr_parameter = self.nr_policy_parameters
|
||||
|
||||
request.x_next = self.bayesian_optimization.next_observation()
|
||||
|
||||
_ = await self.send_task_request_with_retry(request)
|
||||
|
||||
self.get_logger().info('User best solution displayed completed.')
|
||||
|
||||
async def processing_user_proposal_fun(self):
|
||||
request = Task.Request()
|
||||
request.nr_dim = self.nr_dimensions
|
||||
request.nr_parameter = self.nr_policy_parameters
|
||||
|
||||
request.x_next = self.x_temp
|
||||
self.x_temp = None
|
||||
|
||||
response = await self.send_task_request_with_retry(request)
|
||||
self.bayesian_optimization.add_observation(response.reward, response.x_observed)
|
||||
|
||||
if self.bayesian_optimization.episode == self.nr_bo_steps:
|
||||
await self.order_completed()
|
||||
await self.non_interactive_finished()
|
||||
|
||||
|
||||
def run_asyncio_loop():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_forever()
|
||||
return loop # Ensure you return the loop reference
|
||||
|
||||
|
||||
def main():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
threading.Thread(target=loop.run_forever, daemon=True).start()
|
||||
|
||||
# Initialize ROS and pass the event loop to the node
|
||||
rclpy.init()
|
||||
node = BayesianOptimizationNode(loop)
|
||||
|
||||
# Now, the ROS 2 node has the correct event loop reference for asyncio operations
|
||||
rclpy.spin(node)
|
||||
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
loop.call_soon_threadsafe(loop.stop)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -1,348 +0,0 @@
|
||||
import os
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.parameter import Parameter
|
||||
from rclpy.action import ActionClient
|
||||
|
||||
from transitions import Machine
|
||||
import cma
|
||||
import yaml
|
||||
import numpy as np
|
||||
from src.interaction_utils.serialization import flatten_population, unflatten_population
|
||||
|
||||
# Msg/Srv/Action
|
||||
from interaction_msgs.srv import Query
|
||||
from interaction_msgs.action import TaskEvaluation
|
||||
from interaction_msgs.srv import ParameterChange
|
||||
from interaction_msgs.srv import UserInterface
|
||||
from std_msgs.msg import Bool
|
||||
|
||||
|
||||
class CMAESOptimizationNode(Node):
|
||||
def __init__(self):
|
||||
super().__init__('cmaes_optimization_node')
|
||||
|
||||
# CMA-ES Attributes
|
||||
self.cmaes = None
|
||||
self.number_of_initial_episodes = self.declare_parameter('number_of_initial_episodes', 5)
|
||||
self.initial_user_covariance = self.declare_parameter('initial_user_covariance', 1.0)
|
||||
self.episode = 0
|
||||
self.number_of_dimensions = 3
|
||||
self.number_of_parameters_per_dimensions = 10
|
||||
# the number of weights is double the number of dims * params per dim since its Position and Velocity
|
||||
self.number_of_weights = 2 * self.number_of_dimensions * self.number_of_parameters_per_dimensions
|
||||
self.user_covariance = np.ones((self.number_of_weights, 1)) * self.initial_user_covariance.value
|
||||
|
||||
self.random_seed = None
|
||||
|
||||
# Query Attributes
|
||||
self.query_metric = 'random'
|
||||
self.query_parameters = {}
|
||||
self.best_parameters_per_interation = []
|
||||
self.best_reward_per_iteration = []
|
||||
# ROS2 Interfaces
|
||||
self.__future = None
|
||||
self.__send_future = None
|
||||
self.__response_future = None
|
||||
self.__task_response = None
|
||||
self.__user_response = None
|
||||
# Heartbeat Topics - to make sure that there is no deadlock
|
||||
self.heartbeat_timeout = 30 # secs
|
||||
self.heartbeat_timer = self.create_timer(1.0, self.check_heartbeats)
|
||||
|
||||
# Heartbeat
|
||||
self.last_mr_heartbeat_time = None
|
||||
self.mr_heartbeat_sub = self.create_subscription(Bool, 'interaction/mr_heartbeat', self.mr_heatbeat_callback)
|
||||
# Topic
|
||||
|
||||
# Service
|
||||
self.parameter_srv = self.create_service(ParameterChange, 'interaction/cmaes_parameter_srv', self.parameter_callback)
|
||||
self.query_srv = self.create_client(Query, 'interaction/query_srv')
|
||||
self.user_interface_srv = self.create_client(UserInterface, 'interaction/user_interface_srv')
|
||||
|
||||
# Action
|
||||
self._task_action = ActionClient(self, TaskEvaluation, 'interaction/task_action')
|
||||
|
||||
# State Machine
|
||||
# States
|
||||
self.states = [
|
||||
'idle',
|
||||
'initialization',
|
||||
'query_decision',
|
||||
'non_interactive_mode',
|
||||
'wait_for_evaluation',
|
||||
'interactive_mode',
|
||||
'wait_for_user_response',
|
||||
'prepare_user_data_for_evaluation',
|
||||
'wait_for_user_evaluation',
|
||||
'update_optimizer',
|
||||
'check_termination',
|
||||
'complete',
|
||||
'error_recovery',
|
||||
]
|
||||
|
||||
# Initialize state machine
|
||||
self.machine = Machine(self, states=self.states, initial='idle')
|
||||
|
||||
# region Transitions
|
||||
self.machine.add_transition(trigger='order_received', source='idle', dest='initialization')
|
||||
self.machine.add_transition(trigger='initialization_complete', source='initialization', dest='query_decision')
|
||||
self.machine.add_transition(trigger='no_interaction', source='query_decision', dest='non_interactive_mode')
|
||||
self.machine.add_transition(trigger='data_send_for_evaluation', source='non_interactive_mode', dest='wait_for_evaluation')
|
||||
self.machine.add_transition(trigger='evaluation_response_received', source='wait_for_evaluation', dest='update_optimizer')
|
||||
self.machine.add_transition(trigger='interaction', source='query_decision', dest='interactive_mode')
|
||||
self.machine.add_transition(trigger='data_send_to_user', source='interactive_mode', dest='wait_for_user_response')
|
||||
self.machine.add_transition(trigger='user_response_received', source='wait_for_user_response', dest='prepare_user_data_for_evaluation')
|
||||
self.machine.add_transition(trigger='send_user_data_to_evaluation', source='prepare_user_data_for_evaluation', dest='wait_for_user_evaluation')
|
||||
self.machine.add_transition(trigger='received_user_data_for_evaluation', source='wait_for_user_evaluation', dest='update_optimizer')
|
||||
self.machine.add_transition(trigger='optimizer_updated', source='update_optimizer', dest='check_termination')
|
||||
self.machine.add_transition(trigger='next_optimizer_step', source='check_termination', dest='query_decision')
|
||||
self.machine.add_transition(trigger='finished', source='check_termination', dest='complete')
|
||||
self.machine.add_transition(trigger='error_trigger', source='*', dest='error_recovery')
|
||||
self.machine.add_transition(trigger='recovery_complete', source='error_recovery', dest='idle')
|
||||
# endregion
|
||||
|
||||
# region State Functions
|
||||
def on_enter_initialization(self):
|
||||
config_file_path = self.get_parameter('cmaes_config_file_path').get_parameter_value().string_value
|
||||
|
||||
# Load YAML
|
||||
with open(config_file_path, 'r') as file:
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
if config['random_seed'] == '':
|
||||
self.random_seed = None
|
||||
else:
|
||||
self.random_seed = int(config['random_seed'])
|
||||
config['seed'] = self.random_seed
|
||||
|
||||
mean_centre = config['initial_mean_centre']
|
||||
mean_std_dev = config['initial_mean_std_dev']
|
||||
|
||||
random_gen = np.random.default_rng(seed=self.random_seed)
|
||||
|
||||
initial_mean = random_gen.normal(mean_centre, mean_std_dev, size=(self.number_of_weights, 1))
|
||||
initial_variance = config['initial_variance']
|
||||
self.cmaes = cma.CMAEvolutionStrategy(initial_mean, initial_variance, inopts=config)
|
||||
|
||||
# Trigger transition
|
||||
self.initialization_complete()
|
||||
|
||||
def on_enter_query_decision(self):
|
||||
request = Query.Request()
|
||||
|
||||
if self.query_metric == 'random':
|
||||
pass #TODO
|
||||
elif self.query_metric == 'regular':
|
||||
pass #TODO
|
||||
elif self.query_metric == 'improvement':
|
||||
pass #TODO
|
||||
|
||||
self.query_srv.wait_for_service(10)
|
||||
self.__future = self.query_srv.call_async(request)
|
||||
self.__future.add_done_callback(self.handle_query_response)
|
||||
|
||||
def on_enter_non_interactive_mode(self):
|
||||
goal = TaskEvaluation.Goal()
|
||||
goal.user_input = False
|
||||
goal.number_of_population = self.cmaes.popsize
|
||||
goal.number_of_dimensions = self.number_of_dimensions * 2
|
||||
goal.number_of_parameters_per_dimensions = self.number_of_parameters_per_dimensions
|
||||
|
||||
population = self.cmaes.ask()
|
||||
flat_population = flatten_population(population)
|
||||
|
||||
goal.parameter_array = flat_population
|
||||
|
||||
self._task_action.wait_for_server(timeout_sec=10.0)
|
||||
self.__send_future = self._task_action.send_goal_async(goal)
|
||||
self.__send_future.add_done_callback(self._task_response_callback)
|
||||
|
||||
self.data_send_for_evaluation()
|
||||
|
||||
def on_enter_interactive_mode(self):
|
||||
# Reset Mixed Reality heartbeat to check if the other node crashed
|
||||
self.last_mr_heartbeat_time = None
|
||||
|
||||
request = UserInterface.Request()
|
||||
request.current_cma_mean = flatten_population(self.cmaes.mean)
|
||||
request.best_parameters = flatten_population(self.best_parameters_per_interation[-1])
|
||||
request.current_user_covariance_diag = self.user_covariance
|
||||
|
||||
self.__future = self.user_interface_srv.call_async(request)
|
||||
self.__future.add_done_callback(self.handle_user_response)
|
||||
|
||||
self.data_send_to_user()
|
||||
|
||||
def on_enter_prepare_user_data_for_evaluation(self):
|
||||
# Update the user_covariance
|
||||
self.user_covariance = self.__user_response.user_covariance_diag
|
||||
|
||||
request = TaskEvaluation.Request()
|
||||
request.user_input = True
|
||||
request.number_of_population = self.cmaes.popsize
|
||||
request.user_parameters = self.__user_response.user_parameters
|
||||
request.user_covariance_diag = self.user_covariance
|
||||
request.current_cma_mean = flatten_population(self.cmaes.mean)
|
||||
request.conditional_points = self.__user_response.conditional_points
|
||||
request.weight_parameter = self.__user_response.weight_parameter
|
||||
|
||||
self.__future = self.task_srv.call_async(request)
|
||||
self.__future.add_done_callback(self.handle_task_response)
|
||||
|
||||
self.send_user_data_to_evaluation()
|
||||
|
||||
def on_enter_update_optimizer(self):
|
||||
population = unflatten_population(self.__task_response.parameter_array,
|
||||
self.cmaes.popsize,
|
||||
self.number_of_dimensions,
|
||||
self.number_of_parameters_per_dimensions)
|
||||
scores = self.__task_response.scores
|
||||
|
||||
self.cmaes.tell(population, scores)
|
||||
|
||||
# save best results
|
||||
best_idx = max(enumerate(scores), key=lambda item: item[1])[0]
|
||||
self.best_reward_per_iteration.append(scores[best_idx].copy())
|
||||
self.best_parameters_per_interation.append(population[best_idx, :, :].copy())
|
||||
|
||||
self.__task_response = None
|
||||
self.episode += 1
|
||||
|
||||
self.optimizer_updated()
|
||||
|
||||
def on_enter_check_termination(self):
|
||||
max_episodes = self.get_parameter('max_episode_count').get_parameter_value().integer_value
|
||||
|
||||
if self.episode >= max_episodes:
|
||||
self.finished()
|
||||
else:
|
||||
self.next_optimizer_step()
|
||||
|
||||
def on_enter_complete(self):
|
||||
pass
|
||||
|
||||
def on_enter_error_recovery(self):
|
||||
pass
|
||||
|
||||
# endregion
|
||||
|
||||
# region Callback Functions
|
||||
def parameter_callback(self, request, response):
|
||||
param_names = request.parameter_name
|
||||
param_types = request.parameter_type
|
||||
param_values_str = request.parameter_value
|
||||
|
||||
if len(param_names) != len(param_types) or len(param_types) != len(param_values_str):
|
||||
response.success = False
|
||||
response.message = 'Lists must have the same size'
|
||||
return response
|
||||
|
||||
try:
|
||||
# Parameter update loop
|
||||
all_params = []
|
||||
for i in range(len(param_names)):
|
||||
param_name = param_names[i]
|
||||
param_type = param_types[i]
|
||||
param_value_str = param_values_str[i]
|
||||
|
||||
# Input Validation (adjust as needed)
|
||||
if param_type not in ['float32', 'string', 'bool']:
|
||||
response.success = False
|
||||
response.message = 'Unsupported parameter type'
|
||||
return response
|
||||
|
||||
# Value Conversion (based on param_type)
|
||||
if param_type == 'float32':
|
||||
param_value = float(param_value_str)
|
||||
elif param_type == 'bool':
|
||||
param_value = (param_value_str.lower() == 'true')
|
||||
else: # 'string'
|
||||
param_value = param_value_str
|
||||
|
||||
# Compose the all parameter list
|
||||
param = Parameter(param_name, Parameter.Type.from_parameter_value(param_value), param_value)
|
||||
all_params.append(param)
|
||||
|
||||
# Attempt to set the parameter
|
||||
set_params_result = self.set_parameters(all_params)
|
||||
|
||||
response.success = True # Assume success unless set_parameters fails
|
||||
for result in set_params_result:
|
||||
if not result.successful:
|
||||
response.success = False
|
||||
response.message = result.reason
|
||||
break
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Parameter update failed: {str(e)}')
|
||||
response.success = False
|
||||
response.message = 'Parameter update failed, please check logs'
|
||||
return response
|
||||
|
||||
def check_heartbeats(self):
|
||||
if self.last_mr_heartbeat_time:
|
||||
current_time = self.get_clock().now().nanoseconds
|
||||
if (current_time - self.last_mr_heartbeat_time) > (self.heartbeat_timeout * 1e9):
|
||||
self.get_logger().error("MR Interface heartbeat timed out!")
|
||||
self.error_trigger()
|
||||
else:
|
||||
pass
|
||||
|
||||
def mr_heartbeat_callback(self, _):
|
||||
self.last_mr_heartbeat_time = self.get_clock().now().nanoseconds
|
||||
|
||||
def handle_query_response(self, future):
|
||||
try:
|
||||
response = future.result()
|
||||
|
||||
if self.episode < self.number_of_initial_episodes.value:
|
||||
self.non_interaction()
|
||||
|
||||
if response.interaction:
|
||||
self.interaction()
|
||||
else:
|
||||
self.non_interaction()
|
||||
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Query service call failed: {e}')
|
||||
self.error_trigger()
|
||||
|
||||
def _task_goal_callback(self, future):
|
||||
goal_handle = future.result()
|
||||
|
||||
if not goal_handle.accepted:
|
||||
self.get_logger().error(f'Task Goal rejected: {goal_handle}')
|
||||
self.error_trigger()
|
||||
|
||||
self.__response_future = goal_handle.get_result_asyn()
|
||||
self.__response_future.add_done_callback(self._task_result_callback)
|
||||
|
||||
def _task_feedback_callback(self, msg):
|
||||
self.get_logger().info(f'Received Feedback: state={msg.current_state}, processed={msg.processed_trajectories}')
|
||||
def _task_result_callback(self, future):
|
||||
self.__task_response = future.result()
|
||||
self.evaluation_response_received()
|
||||
|
||||
def handle_user_response(self, future):
|
||||
try:
|
||||
self.__user_response = future.result()
|
||||
self.user_response_received()
|
||||
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Task service call failed: {e}')
|
||||
self.error_trigger()
|
||||
# endregion
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
node = CMAESOptimizationNode()
|
||||
rclpy.spin(node)
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -117,8 +117,8 @@ class BayesianOptimization:
|
||||
x_next = self.acquisition_function(self.gauss_process, self.x_observed, seed=self.seed)
|
||||
return x_next
|
||||
|
||||
def add_observation(self, y_new, x_new, fit=True):
|
||||
if self.x_observed.shape[0] == 1:
|
||||
def add_observation(self, y_new, x_new):
|
||||
if self.episode == 0:
|
||||
self.x_observed[0, :] = x_new
|
||||
self.y_observed[0] = y_new
|
||||
self.best_reward[0] = np.max(self.y_observed)
|
||||
@ -127,9 +127,8 @@ class BayesianOptimization:
|
||||
self.y_observed = np.vstack((self.y_observed, y_new))
|
||||
self.best_reward = np.vstack((self.best_reward, np.max(self.y_observed)))
|
||||
|
||||
if fit:
|
||||
self.gauss_process.fit(self.x_observed, self.y_observed)
|
||||
self.episode += 1
|
||||
self.gauss_process.fit(self.x_observed, self.y_observed)
|
||||
self.episode += 1
|
||||
|
||||
def get_best_result(self):
|
||||
y_max = np.max(self.y_observed)
|
||||
|
@ -7,9 +7,6 @@
|
||||
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<exec_depend>interaction_msgs</exec_depend>
|
||||
<exec_depend>rclpy</exec_depend>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
|
@ -1,6 +1,4 @@
|
||||
from setuptools import find_packages, setup
|
||||
import os
|
||||
from glob import glob
|
||||
|
||||
package_name = 'interaction_optimizers'
|
||||
|
||||
@ -12,7 +10,6 @@ setup(
|
||||
('share/ament_index/resource_index/packages',
|
||||
['resource/' + package_name]),
|
||||
('share/' + package_name, ['package.xml']),
|
||||
(os.path.join('share', package_name, 'config'), glob('config/*.yaml')),
|
||||
],
|
||||
install_requires=['setuptools'],
|
||||
zip_safe=True,
|
||||
@ -23,7 +20,6 @@ setup(
|
||||
tests_require=['pytest'],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'bo_node = interaction_optimizers.bayesian_optimization_node:main'
|
||||
],
|
||||
},
|
||||
)
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1 +0,0 @@
|
||||
# TODO
|
@ -1,43 +0,0 @@
|
||||
from dual_quaternions import DualQuaternion
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DualQuaternionSplines:
|
||||
def __init__(self, pose_vector, nr_interpolation_steps=10):
|
||||
self.pose_vector = pose_vector
|
||||
self.nr_interpolation_steps = nr_interpolation_steps
|
||||
self.dual_quaternions = self.parse_input_vector()
|
||||
|
||||
def generate_trajectory(self):
|
||||
"""Generate an interpolated trajectory from the list of dual quaternions."""
|
||||
interpolated_trajectory = []
|
||||
for i in range(len(self.dual_quaternions) - 1):
|
||||
interpolated_trajectory.extend(self.interpolate_dual_quaternions(self.dual_quaternions[i],
|
||||
self.dual_quaternions[i+1],
|
||||
self.nr_interpolation_steps))
|
||||
return interpolated_trajectory
|
||||
|
||||
def parse_input_vector(self):
|
||||
"""Parse the input vector into dual quaternions."""
|
||||
dual_quats = []
|
||||
for i in range(0, len(self.pose_vector), 7):
|
||||
pose = self.pose_vector[i:i+7]
|
||||
dq = self.quaternion_to_dual_quaternion(pose)
|
||||
dual_quats.append(dq)
|
||||
return dual_quats
|
||||
|
||||
@staticmethod
|
||||
def quaternion_to_dual_quaternion(pose):
|
||||
"""Convert position and quaternion to a dual quaternion.
|
||||
:param pose: [q_rw, q_rx, q_ry, q_rz, q_tx, q_ty, q_tz]"""
|
||||
return DualQuaternion.from_quat_pose_array(pose)
|
||||
|
||||
@staticmethod
|
||||
def interpolate_dual_quaternions(dq1, dq2, steps=10):
|
||||
"""Interpolate between two dual quaternions."""
|
||||
return [DualQuaternion.sclerp(dq1, dq2, t) for t in np.linspace(0, 1, steps)]
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
# TODO
|
@ -1 +0,0 @@
|
||||
# TODO
|
@ -1,93 +0,0 @@
|
||||
from movement_primitives.promp import ProMP
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.action import ActionClient
|
||||
|
||||
from interaction_msgs.srv import Task
|
||||
from interaction_msgs.action import TaskExecution
|
||||
|
||||
import numpy as np
|
||||
import asyncio
|
||||
import threading
|
||||
|
||||
|
||||
class PrompNode(Node):
|
||||
def __init__(self, event_loop):
|
||||
super().__init__('policy_promp_node')
|
||||
self.event_loop = event_loop
|
||||
|
||||
self.task_srv = self.create_service(Task, 'interaction/task_srv', self.task_srv_callback)
|
||||
self.execution_action = ActionClient(self, TaskExecution, 'interaction/task_execution')
|
||||
|
||||
# Parameters
|
||||
self.timeout_buffer = self.declare_parameter('timeout_buffer', 5.0).get_parameter_value().double_value
|
||||
|
||||
def task_srv_callback(self, request, response):
|
||||
coroutine = self.handle_request_async(request, response)
|
||||
|
||||
future = asyncio.run_coroutine_threadsafe(coroutine, self.event_loop)
|
||||
|
||||
try:
|
||||
response = future.result(timeout=request.time_array[-1] + self.timeout_buffer)
|
||||
except asyncio.TimeoutError:
|
||||
self.get_logger().error('Task timed out!')
|
||||
|
||||
return response
|
||||
|
||||
async def handle_request_async(self, request, response):
|
||||
if len(request.x_next) != request.nr_dim * request.nr_parameter:
|
||||
self.get_logger().error('x_next size does not math to nr_dim * nr_parameter')
|
||||
return response
|
||||
|
||||
time_array = np.array(request.time_array, dtype=np.float32)
|
||||
weights = np.array(request.x_next, dtype=np.float32).reshape(request.nr_dim, request.nr_parameter)
|
||||
|
||||
promp = ProMP(n_dims=request.nr_dim, n_weights_per_dim=request.nr_parameter)
|
||||
trajectory = promp.trajectory_from_weights(time_array, weights)
|
||||
|
||||
goal = TaskExecution.Goal()
|
||||
goal.trajectory = trajectory
|
||||
await self.execution_action.wait_for_server()
|
||||
send_goal_future = self.execution_action.send_goal_async(goal)
|
||||
goal_handle = await send_goal_future
|
||||
|
||||
if not goal_handle.accepted:
|
||||
self.get_logger().error('Goal rejected!')
|
||||
return response
|
||||
|
||||
self.get_logger().info('Goal accepted!')
|
||||
result_handle = await goal_handle.get_result_async()
|
||||
|
||||
response.x_observed = request.x_next
|
||||
response.reward = result_handle.result.reward
|
||||
|
||||
return response
|
||||
|
||||
|
||||
def run_asyncio_loop():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_forever()
|
||||
return loop # Ensure you return the loop reference
|
||||
|
||||
|
||||
def main():
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
threading.Thread(target=loop.run_forever, daemon=True).start()
|
||||
|
||||
# Initialize ROS and pass the event loop to the node
|
||||
rclpy.init()
|
||||
node = PrompNode(loop)
|
||||
|
||||
# Now, the ROS 2 node has the correct event loop reference for asyncio operations
|
||||
rclpy.spin(node)
|
||||
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
loop.call_soon_threadsafe(loop.stop)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,23 +0,0 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>interaction_policy_representation</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<depend>geometry_msgs</depend>
|
||||
<depend>interaction_msgs</depend>
|
||||
<depend>control_msgs</depend>
|
||||
<depend>moveit_msgs</depend>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
@ -1,4 +0,0 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/interaction_policy_representation
|
||||
[install]
|
||||
install_scripts=$base/lib/interaction_policy_representation
|
@ -1,25 +0,0 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
package_name = 'interaction_policy_representation'
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version='0.0.0',
|
||||
packages=find_packages(exclude=['test']),
|
||||
data_files=[
|
||||
('share/ament_index/resource_index/packages',
|
||||
['resource/' + package_name]),
|
||||
('share/' + package_name, ['package.xml']),
|
||||
],
|
||||
install_requires=['setuptools'],
|
||||
zip_safe=True,
|
||||
maintainer='niko',
|
||||
maintainer_email='nikolaus.feith@unileoben.ac.at',
|
||||
description='TODO: Package description',
|
||||
license='TODO: License declaration',
|
||||
tests_require=['pytest'],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
],
|
||||
},
|
||||
)
|
Binary file not shown.
@ -1,25 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_copyright.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(reason='No copyright header has been placed in the generated source file.')
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found errors'
|
@ -1,25 +0,0 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_flake8.main import main_with_errors
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, \
|
||||
'Found %d code style errors / warnings:\n' % len(errors) + \
|
||||
'\n'.join(errors)
|
@ -1,29 +0,0 @@
|
||||
import unittest
|
||||
from dual_quaternions import DualQuaternion
|
||||
from src.interaction_policy_representation.interaction_policy_representation.models.dual_quaternion_splines import DualQuaternionSplines
|
||||
|
||||
|
||||
class TestDualQuaternionSplines(unittest.TestCase):
|
||||
def setUp(self):
|
||||
# Example input vector (position + quaternion for 2 poses)
|
||||
self.input_vector = [1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.]
|
||||
# Expected dual quaternion for the first pose, adapted based on actual class functionality
|
||||
self.expected_first_dq = DualQuaternion.from_quat_pose_array(self.input_vector[:7])
|
||||
|
||||
def test_parse_input_vector(self):
|
||||
trajectory = DualQuaternionSplines(self.input_vector)
|
||||
# Check if the first dual quaternion matches the expected one
|
||||
# This assumes the implementation details about how dual quaternions are stored
|
||||
self.assertAlmostEqual(trajectory.dual_quaternions[0].q_r.w, self.expected_first_dq.q_r.w, places=5)
|
||||
self.assertAlmostEqual(trajectory.dual_quaternions[0].q_r.x, self.expected_first_dq.q_r.x, places=5)
|
||||
# Add more assertions as needed for y, z, dual part
|
||||
|
||||
def test_generate_trajectory(self):
|
||||
trajectory = DualQuaternionSplines(self.input_vector)
|
||||
interpolated_trajectory = trajectory.generate_trajectory()
|
||||
# Ensure the interpolated trajectory is not empty
|
||||
self.assertTrue(len(interpolated_trajectory) > 0)
|
||||
# Add more specific tests, e.g., comparing specific interpolated values
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,23 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_pep257.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found code style errors / warnings'
|
@ -1,202 +0,0 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.parameter import Parameter
|
||||
from rclpy.action import ActionServer
|
||||
from rclpy.action import GoalResponse, CancelResponse
|
||||
from rclpy.callback_groups import ReentrantCallbackGroup
|
||||
|
||||
from transitions import Machine
|
||||
import yaml
|
||||
import numpy as np
|
||||
from movement_primitives.promp import ProMP
|
||||
from src.interaction_utils.serialization import flatten_population, unflatten_population
|
||||
|
||||
from interaction_msgs.action import TaskEvaluation
|
||||
|
||||
|
||||
class TaskNode(Node):
|
||||
def __init__(self):
|
||||
super().__init__('task_node')
|
||||
|
||||
# Task Attributes
|
||||
self.number_of_processed_trajectories = 0
|
||||
self.goal_dict = {}
|
||||
self.eval_strategy = 'robot'
|
||||
self.seed = self.declare_parameter('seed', None)
|
||||
# ROS2 Interfaces
|
||||
self.task_callback_group = ReentrantCallbackGroup()
|
||||
|
||||
# Topic
|
||||
|
||||
# Service
|
||||
|
||||
# Action
|
||||
self._goal = None
|
||||
self._task_action = ActionServer(self,
|
||||
TaskEvaluation,
|
||||
'interaction/task_action',
|
||||
goal_callback=self._task_goal_callback,
|
||||
cancel_callback=self._task_cancel_callback,
|
||||
execute_callback=self._task_execute_callback,
|
||||
callback_group=self.task_callback_group)
|
||||
|
||||
# State Machine
|
||||
self.state = None
|
||||
# States
|
||||
self.states = [
|
||||
'waiting_for_task_specs',
|
||||
'processing_non_interactive_input',
|
||||
'processing_interactive_input',
|
||||
'waiting_for_robot_response',
|
||||
'waiting_for_objective_function_response',
|
||||
'sending_request'
|
||||
'error_recovery'
|
||||
]
|
||||
|
||||
# initialize state machine
|
||||
self.machine = Machine(self, states=self.states, initial='waiting_for_task_specs')
|
||||
|
||||
self.machine.add_transition(trigger='non_interactive_specs_received', source='waiting_for_task_specs', dest='processing_non_interactive_input')
|
||||
self.machine.add_transition(trigger='interactive_specs_received', source='waiting_for_task_specs', dest='processing_interactive_input')
|
||||
self.machine.add_transition(trigger='non_interactive_to_robot', source='processing_non_interactive_input', dest='waiting_for_robot_response')
|
||||
self.machine.add_transition(trigger='non_interactive_to_obj_fun', source='processing_non_interactive_input', dest='waiting_for_objective_function_response')
|
||||
self.machine.add_transition(trigger='interactive_to_robot', source='processing_interactive_input', dest='waiting_for_robot_response')
|
||||
self.machine.add_transition(trigger='interactive_to_obj_fun', source='processing_interactive_input', dest='waiting_for_objective_function_response')
|
||||
self.machine.add_transition(trigger='sending_robot_results', source='waiting_for_robot_response', dest='sending_request')
|
||||
self.machine.add_transition(trigger='sending_obj_fun_results', source='waiting_for_obj_fun_response', dest='sending_request')
|
||||
self.machine.add_transition(trigger='sending_back', source='sending_request', dest='waiting_for_task_specs')
|
||||
self.machine.add_transition(trigger='error_trigger', source='*', dest='error_recovery')
|
||||
self.machine.add_transition(trigger='recovery_complete', source='error_recovery', dest='waiting_for_task_specs')
|
||||
|
||||
def destroy(self):
|
||||
self._task_action.destroy()
|
||||
super().destroy_node()
|
||||
|
||||
# Helper function
|
||||
def compute_weighted_mean(self, user_parameters, optimizer_mean, weight_parameter):
|
||||
# Check if the weight_parameter is between 0 and 1
|
||||
if not 0 <= weight_parameter <= 1:
|
||||
self.get_logger().error(f'Invalid weight parameter for weighted average: {weight_parameter}')
|
||||
self.error_trigger()
|
||||
|
||||
# Compute the weighted average
|
||||
weighted_mean = (weight_parameter * user_parameters) + ((1 - weight_parameter) * optimizer_mean)
|
||||
return weighted_mean
|
||||
|
||||
def compute_promp_trajectory(self, parameter_set,
|
||||
number_of_dimensions, number_of_parameters_per_dimensions,
|
||||
duration, number_of_time_steps):
|
||||
time = np.linspace(0, duration, number_of_time_steps)
|
||||
promp = ProMP(number_of_dimensions / 2, n_weights_per_dim=number_of_parameters_per_dimensions)
|
||||
trajectory = promp.trajectory_from_weights(time, parameter_set)
|
||||
|
||||
return trajectory
|
||||
|
||||
|
||||
# State Methods
|
||||
def on_enter_processing_non_interactive_input(self):
|
||||
# Unflatten parameter array to get the parameter sets
|
||||
parameter_sets = unflatten_population(self._goal.parameter_array,
|
||||
self._goal.number_of_population,
|
||||
self._goal.number_of_dimensions,
|
||||
self._goal.number_of_parameters_per_dimensions)
|
||||
# Compute trajectories for each set
|
||||
trajectories = [self.compute_promp_trajectory(parameter_sets[i, :, :],
|
||||
self._goal.number_of_population,
|
||||
self._goal.number_of_parameters_per_dimensions,
|
||||
self._goal.duation,
|
||||
self._goal.number_of_time_steps
|
||||
) for i in range(parameter_sets.shape[0])]
|
||||
|
||||
# send the trajectories to the robot or objective function
|
||||
if self.eval_strategy == 'robot':
|
||||
# TODO: Implement Action Interface for Robot Evaluation
|
||||
self.non_interactive_to_robot()
|
||||
|
||||
elif self.eval_strategy == 'obj_fun':
|
||||
# TODO: Implement Action Interface for Objective Function Evaluation
|
||||
self.non_interactive_to_obj_fun()
|
||||
|
||||
else:
|
||||
self.get_logger().error(f"Unknown evaluation strategy: '{self.eval_strategy}'")
|
||||
self.error_trigger()
|
||||
|
||||
def on_enter_processing_interactive_input(self):
|
||||
weigthed_average = self.compute_weighted_mean(self._goal.user_parameters,
|
||||
self._goal.current_optimizer_mean,
|
||||
self._goal.weight_parameter)
|
||||
|
||||
promp = ProMP(self._goal.number_of_dimensions / 2,
|
||||
n_weights_per_dim=self._goal.number_of_parameters_per_dimensions)
|
||||
|
||||
promp.from_weight_distribution(weigthed_average,
|
||||
self._goal.user_covariance_diag)
|
||||
|
||||
if self._goal.conditional_points is not None:
|
||||
# TODO: Fix the Action to add condititional cov
|
||||
pass
|
||||
time = np.linspace(0, self._goal.duration, self._goal.number_of_time_steps)
|
||||
random_state = np.random.RandomState(self.seed.value)
|
||||
trajectories = promp.sample_trajectories(time, self._goal.number_of_population, random_state)
|
||||
|
||||
# send the trajectories to the robot or objective function
|
||||
if self.eval_strategy == 'robot':
|
||||
# TODO: Implement Action Interface for Robot Evaluation
|
||||
self.interactive_to_robot()
|
||||
|
||||
elif self.eval_strategy == 'obj_fun':
|
||||
# TODO: Implement Action Interface for Objective Function Evaluation
|
||||
self.interactive_to_obj_fun()
|
||||
|
||||
else:
|
||||
self.get_logger().error(f"Unknown evaluation strategy: '{self.eval_strategy}'")
|
||||
self.error_trigger()
|
||||
|
||||
def on_enter_waiting_for_robot_response(self):
|
||||
pass
|
||||
|
||||
def on_enter_waiting_for_objective_function_response(self):
|
||||
pass
|
||||
|
||||
# Callback functions
|
||||
def _task_goal_callback(self, goal):
|
||||
self._goal = goal
|
||||
|
||||
if goal.user_input:
|
||||
self.interactive_specs_received()
|
||||
else:
|
||||
self.non_interactive_specs_received()
|
||||
|
||||
return GoalResponse.ACCEPT
|
||||
|
||||
def _task_cancel_callback(self, _):
|
||||
self.error_trigger()
|
||||
return CancelResponse.ACCEPT
|
||||
|
||||
async def _task_execute_callback(self, goal_handle):
|
||||
feedback_msg = TaskEvaluation.Feedback()
|
||||
result_msg = TaskEvaluation.Result()
|
||||
|
||||
# Feedback Loop
|
||||
while not goal_handle.is_cancel_requested():
|
||||
# Send Feedback msg
|
||||
feedback_msg.current_state = self.state
|
||||
feedback_msg.processed_trajectories = self.number_of_processed_trajectories
|
||||
goal_handle.publish_feedback(feedback_msg)
|
||||
|
||||
if self.state == 'sending_request':
|
||||
if self.goal_dict == {}:
|
||||
self.error_trigger()
|
||||
|
||||
result_msg.score = self.goal_dict['score']
|
||||
result_msg.new_means = self.goal_dict['new_means']
|
||||
break
|
||||
|
||||
if goal_handle.is_cancel_requested():
|
||||
goal_handle.canceled()
|
||||
result_msg.score = -1
|
||||
return result_msg
|
||||
|
||||
self.sending_back()
|
||||
goal_handle.succeed()
|
||||
return result_msg
|
@ -1,21 +0,0 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>interaction_tasks</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<exec_depend>interaction_msgs</exec_depend>
|
||||
<exec_depend>rclpy</exec_depend>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
@ -1,4 +0,0 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/interaction_tasks
|
||||
[install]
|
||||
install_scripts=$base/lib/interaction_tasks
|
@ -1,25 +0,0 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
package_name = 'interaction_tasks'
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version='0.0.0',
|
||||
packages=find_packages(exclude=['test']),
|
||||
data_files=[
|
||||
('share/ament_index/resource_index/packages',
|
||||
['resource/' + package_name]),
|
||||
('share/' + package_name, ['package.xml']),
|
||||
],
|
||||
install_requires=['setuptools'],
|
||||
zip_safe=True,
|
||||
maintainer='niko',
|
||||
maintainer_email='nikolaus.feith@unileoben.ac.at',
|
||||
description='TODO: Package description',
|
||||
license='TODO: License declaration',
|
||||
tests_require=['pytest'],
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
],
|
||||
},
|
||||
)
|
@ -1,25 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_copyright.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(reason='No copyright header has been placed in the generated source file.')
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found errors'
|
@ -1,25 +0,0 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_flake8.main import main_with_errors
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, \
|
||||
'Found %d code style errors / warnings:\n' % len(errors) + \
|
||||
'\n'.join(errors)
|
@ -1,23 +0,0 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ament_pep257.main import main
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=['.', 'test'])
|
||||
assert rc == 0, 'Found code style errors / warnings'
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user