Compare commits

...

1 Commits

Author SHA1 Message Date
393379520b interaction_query finished 2024-02-15 17:10:43 +01:00
50 changed files with 459 additions and 156 deletions

View File

@ -0,0 +1,8 @@
pytest~=6.2.5
setuptools==58.2.0
numpy~=1.26.4
pydot~=1.4.2
empy~=3.3.4
lark~=1.1.1
scipy~=1.12.0
scikit-learn~=1.4.0

View File

@ -1,4 +0,0 @@
import rclpy
from rclpy.node import Node
from interaction_msgs.srv import Query

View File

@ -1,12 +0,0 @@
class RegularQuery:
def __init__(self, regular, episode):
self.regular = int(regular)
self.counter = episode
def query(self):
if self.counter % self.regular == 0 and self.counter != 0:
return True
else:
return False

View File

@ -1,4 +0,0 @@
[develop]
script_dir=$base/lib/InteractionQuery
[install]
install_scripts=$base/lib/InteractionQuery

View File

@ -1,18 +0,0 @@
<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>ObjectiveFunctions</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>
<license>TODO: License declaration</license>
<test_depend>ament_copyright</test_depend>
<test_depend>ament_flake8</test_depend>
<test_depend>ament_pep257</test_depend>
<test_depend>python3-pytest</test_depend>
<export>
<build_type>ament_python</build_type>
</export>
</package>

View File

@ -1,4 +0,0 @@
[develop]
script_dir=$base/lib/ObjectiveFunctions
[install]
install_scripts=$base/lib/ObjectiveFunctions

View File

@ -1,4 +0,0 @@
[develop]
script_dir=$base/lib/Optimizers
[install]
install_scripts=$base/lib/Optimizers

View File

@ -1,4 +0,0 @@
[develop]
script_dir=$base/lib/RepresentationModels
[install]
install_scripts=$base/lib/RepresentationModels

View File

@ -1,25 +0,0 @@
from setuptools import find_packages, setup
package_name = 'RepresentationModels'
setup(
name=package_name,
version='0.0.0',
packages=find_packages(exclude=['test']),
data_files=[
('share/ament_index/resource_index/packages',
['resource/' + package_name]),
('share/' + package_name, ['package.xml']),
],
install_requires=['setuptools'],
zip_safe=True,
maintainer='niko',
maintainer_email='nikolaus.feith@unileoben.ac.at',
description='TODO: Package description',
license='TODO: License declaration',
tests_require=['pytest'],
entry_points={
'console_scripts': [
],
},
)

View File

@ -1,25 +0,0 @@
# Copyright 2015 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ament_copyright.main import main
import pytest
# Remove the `skip` decorator once the source file(s) have a copyright header
@pytest.mark.skip(reason='No copyright header has been placed in the generated source file.')
@pytest.mark.copyright
@pytest.mark.linter
def test_copyright():
rc = main(argv=['.', 'test'])
assert rc == 0, 'Found errors'

View File

@ -1,25 +0,0 @@
# Copyright 2017 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ament_flake8.main import main_with_errors
import pytest
@pytest.mark.flake8
@pytest.mark.linter
def test_flake8():
rc, errors = main_with_errors(argv=[])
assert rc == 0, \
'Found %d code style errors / warnings:\n' % len(errors) + \
'\n'.join(errors)

View File

@ -1,23 +0,0 @@
# Copyright 2015 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ament_pep257.main import main
import pytest
@pytest.mark.linter
@pytest.mark.pep257
def test_pep257():
rc = main(argv=['.', 'test'])
assert rc == 0, 'Found code style errors / warnings'

View File

@ -1,3 +1,6 @@
# MODES: random:=0, regular:=1, improvement:=2
uint16 modes
# random query
float32 threshold
@ -7,9 +10,9 @@ uint16 current_episode
# improvement query
# float32 threshold
uint16 period
# uint16 frequency
uint16 last_queried_episode
float32[] rewards
float32[] last_rewards
---
bool interaction

View File

@ -1,7 +1,7 @@
<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>RepresentationModels</name>
<name>interaction_objective_function</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>

View File

@ -0,0 +1,4 @@
[develop]
script_dir=$base/lib/interaction_objective_function
[install]
install_scripts=$base/lib/interaction_objective_function

View File

@ -1,6 +1,6 @@
from setuptools import find_packages, setup
package_name = 'Optimizers'
package_name = 'interaction_objective_function'
setup(
name=package_name,

View File

@ -0,0 +1,4 @@
from .confidence_bounds import ConfidenceBounds
from .probability_of_improvement import ProbabilityOfImprovement
from .expected_improvement import ExpectedImprovement
from .preference_expected_improvement import PreferenceExpectedImprovement

View File

@ -0,0 +1,31 @@
import numpy as np
class ConfidenceBounds:
def __init__(self, nr_weights, nr_samples=100, beta=1.2, seed=None, lower_bound=-1.0, upper_bound=1.0):
self.nr_weights = nr_weights
self.nr_samples = nr_samples
self.beta = beta # if beta negative => lower confidence bounds
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.seed = seed
def __call__(self, gauss_process, _, seed=None):
# if seed is set for whole experiment
if self.seed is not None:
seed = self.seed
# random generator
rng = np.random.default_rng(seed)
# sample from the surrogate
x_test = rng.uniform(self.lower_bound, self.upper_bound, size=(self.nr_samples, self.nr_weights))
mu, sigma = gauss_process.predict(x_test, return_std=True)
# upper/lower confidence bounds
cb = mu + self.beta * sigma
# get the best result and return it
idx = np.argmax(cb)
return x_test[idx, :]

View File

@ -0,0 +1,37 @@
import numpy as np
from scipy.stats import norm
class ExpectedImprovement:
def __init__(self, nr_weights, nr_samples=100, kappa=0.0, seed=None, lower_bound=-1.0, upper_bound=1.0):
self.nr_weights = nr_weights
self.nr_samples = nr_samples
self.kappa = kappa
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.seed = seed
def __call__(self, gauss_process, x_observed, seed=None):
# if seed is set for whole experiment
if self.seed is not None:
seed = self.seed
# random generator
rng = np.random.default_rng(seed)
# get the best so far observed y
mu = gauss_process.predict(x_observed)
y_best = max(mu)
# sample from surrogate
x_test = rng.uniform(self.lower_bound, self.upper_bound, size=(self.nr_samples, self.nr_weights))
mu, sigma = gauss_process.predict(x_test, return_std=True)
# expected improvement
z = (mu - y_best - self.kappa) / sigma
ei = (mu - y_best - self.kappa) * norm.cdf(z) + sigma * norm.pdf(z)
# get the best result and return it
idx = np.argmax(ei)
return x_test[idx, :]

View File

@ -0,0 +1,93 @@
import numpy as np
from scipy.stats import norm
class PreferenceExpectedImprovement:
def __init__(self, nr_dims, initial_variance, update_variance, nr_samples=100,
kappa=0.0, lower_bound=None, upper_bound=None, seed=None, fixed_dims=None):
self.nr_dims = nr_dims
self.initial_variance = initial_variance
self.update_variance = update_variance
self.nr_samples = nr_samples
self.kappa = kappa
if lower_bound is None:
self.lower_bound = [-1.] * self.nr_dims
else:
self.lower_bound = lower_bound
if upper_bound is None:
self.upper_bound = [1.] * self.nr_dims
else:
self.upper_bound = upper_bound
self.seed = seed
# initial proposal distribution
self.proposal_mean = np.zeros((nr_dims, 1))
self.proposal_cov = np.diag(np.ones((nr_dims,)) * self.initial_variance)
# fixed dimension for robot experiment
self.fixed_dims = fixed_dims
def rejection_sampling(self, seed=None):
rng = np.random.default_rng(seed)
samples = np.empty((0, self.nr_dims))
while samples.shape[0] < self.nr_samples:
# sample from the multi variate gaussian distribution
sample = np.zeros((1, self.nr_dims))
for i in range(self.nr_dims):
if i in self.fixed_dims:
sample[0, i] = self.fixed_dims[i]
else:
check = False
while not check:
sample[0, i] = rng.normal(self.proposal_mean[i], self.proposal_cov[i, i])
if self.lower_bound[i] <= sample[0, i] <= self.upper_bound[i]:
check = True
samples = np.append(samples, sample, axis=0)
return samples
def __call__(self, gauss_process, x_observed, seed=None):
# if seed is set for whole experiment
if self.seed is not None:
seed = self.seed
# get the best so far observed y
mu = gauss_process.predict(x_observed)
y_best = max(mu)
# sample from surrogate
x_test = self.rejection_sampling(seed)
mu, sigma = gauss_process.predict(x_test, return_std=True)
# expected improvement
z = (mu - y_best - self.kappa) / sigma
ei = (mu - y_best - self.kappa) * norm.cdf(z) + sigma * norm.pdf(z)
# get the best result and return it
idx = np.argmax(ei)
return x_test[idx, :]
def update_proposal_model(self, preference_mean, preference_bool):
cov_diag = np.ones((self.nr_dims,)) * self.initial_variance
cov_diag[preference_bool] = self.update_variance
preference_cov = np.diag(cov_diag)
preference_mean = preference_mean.reshape(-1, 1)
posterior_mean = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov))\
.dot(np.linalg.inv(self.proposal_cov).dot(self.proposal_mean)
+ np.linalg.inv(preference_cov).dot(preference_mean))
posterior_cov = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov))
self.proposal_mean = posterior_mean
self.proposal_cov = posterior_cov

View File

@ -0,0 +1,37 @@
import numpy as np
from scipy.stats import norm
class ProbabilityOfImprovement:
def __init__(self, nr_weights, nr_samples=100, kappa=0.0, seed=None, lower_bound=-1.0, upper_bound=1.0):
self.nr_weights = nr_weights
self.nr_samples = nr_samples
self.kappa = kappa
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.seed = seed
def __call__(self, gauss_process, x_observed, seed=None):
# if seed is set for whole experiment
if self.seed is not None:
seed = self.seed
# random generator
rng = np.random.default_rng(seed)
# get the best so far observed y
mu = gauss_process.predict(x_observed)
y_best = max(mu)
# sample from surrogate
x_test = rng.uniform(self.lower_bound, self.upper_bound, size=(self.nr_samples, self.nr_weights))
mu, sigma = gauss_process.predict(x_test, return_std=True)
# probability of improvement
z = (mu - y_best - self.kappa) / sigma
pi = norm.cdf(z)
# get the best result and return it
idx = np.argmax(pi)
return x_test[idx, :]

View File

@ -0,0 +1,137 @@
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern, RBF, ExpSineSquared
from ..acquisition_function import ConfidenceBounds
from ..acquisition_function import ProbabilityOfImprovement
from ..acquisition_function import ExpectedImprovement
from ..acquisition_function import PreferenceExpectedImprovement
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.filterwarnings('ignore', category=ConvergenceWarning)
class BayesianOptimization:
def __init__(self, nr_steps, nr_dimensions, nr_policy_parameters, seed=None,
fixed_dimensions=None, lower_bound=None, upper_bound=None,
acquisition_function_name="EI", kernel_name="Matern",
**kwargs):
self.nr_steps = nr_steps
self.nr_dimensions = nr_dimensions
self.nr_policy_parameters = nr_policy_parameters
self.nr_weights = nr_policy_parameters * nr_dimensions
if lower_bound is None:
self.lower_bound = [-1.] * self.nr_weights
else:
self.lower_bound = lower_bound
if upper_bound is None:
self.upper_bound = [-1.] * self.nr_weights
else:
self.upper_bound = upper_bound
self.seed = seed
self.fixed_dimensions = fixed_dimensions
self.x_observed = None
self.y_observed = None
self.best_reward = None
self.episode = 0
self.gauss_process = None
self.n_restarts_optimizer = kwargs.get('n_restarts_optimizer', 5)
# region Kernel
length_scale = kwargs.get('length_scale', 1.0)
if kernel_name == "Matern":
nu = kwargs.get('nu', 1.5)
self.kernel = Matern(nu=nu, length_scale=length_scale)
elif kernel_name == "RBF":
self.kernel = RBF(length_scale=length_scale)
elif kernel_name == "ExpSineSquared":
periodicity = kwargs.get('periodicity', 1.0)
self.kernel = ExpSineSquared(length_scale=length_scale, periodicity=periodicity)
else:
raise NotImplementedError("This kernel is not implemented!")
# endregion
# region Acquisitionfunctions
if 'nr_samples' in kwargs:
nr_samples = kwargs['nr_samples']
else:
nr_samples = 100
if acquisition_function_name == "CB":
beta = kwargs.get('beta', 1.2)
self.acquisition_function = ConfidenceBounds(self.nr_weights, nr_samples=nr_samples, beta=beta, seed=seed,
lower_bound=lower_bound, upper_bound=upper_bound)
elif acquisition_function_name == "PI":
kappa = kwargs.get('kappa', 0.0)
self.acquisition_function = ProbabilityOfImprovement(self.nr_weights, nr_samples=nr_samples, kappa=kappa,
seed=seed, lower_bound=lower_bound,
upper_bound=upper_bound)
elif acquisition_function_name == "EI":
kappa = kwargs.get('kappa', 0.0)
self.acquisition_function = ExpectedImprovement(self.nr_weights, nr_samples=nr_samples, kappa=kappa,
seed=seed, lower_bound=lower_bound, upper_bound=upper_bound)
elif acquisition_function_name == "PEI":
kappa = kwargs.get('kappa', 0.0)
initial_variance = kwargs.get('initial_variance', None)
update_variance = kwargs.get('update_variance', None)
if initial_variance is None or update_variance is None:
raise ValueError("Initial_variance and update_variance has to be provided in PEI!")
self.acquisition_function = PreferenceExpectedImprovement(self.nr_weights, initial_variance,
update_variance, nr_samples=nr_samples,
kappa=kappa, lower_bound=lower_bound,
upper_bound=upper_bound, seed=seed,
fixed_dims=fixed_dimensions)
else:
raise NotImplementedError("This acquisition function is not implemented!")
# endregion
self.reset()
def reset(self):
self.gauss_process = GaussianProcessRegressor(self.kernel, n_restarts_optimizer=self.n_restarts_optimizer)
self.best_reward = np.empty((1, 1))
self.x_observed = np.zeros((1, self.nr_weights), dtype=np.float64)
self.y_observed = np.zeros((1, 1), dtype=np.float64)
self.episode = 0
def next_observation(self):
x_next = self.acquisition_function(self.gauss_process, self.x_observed, seed=self.seed)
return x_next
def add_observation(self, y_new, x_new):
if self.episode == 0:
self.x_observed[0, :] = x_new
self.y_observed[0] = y_new
self.best_reward[0] = np.max(self.y_observed)
else:
self.x_observed = np.vstack((self.x_observed, np.around(x_new, decimals=8)))
self.y_observed = np.vstack((self.y_observed, y_new))
self.best_reward = np.vstack((self.best_reward, np.max(self.y_observed)))
self.gauss_process.fit(self.x_observed, self.y_observed)
self.episode += 1
def get_best_result(self):
y_max = np.max(self.y_observed)
idx = np.argmax(self.y_observed)
x_max = self.x_observed[idx, :]
return y_max, x_max, idx

View File

@ -1,7 +1,7 @@
<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>Optimizers</name>
<name>interaction_optimizers</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="nikolaus.feith@unileoben.ac.at">niko</maintainer>

View File

@ -0,0 +1,4 @@
[develop]
script_dir=$base/lib/interaction_optimizers
[install]
install_scripts=$base/lib/interaction_optimizers

View File

@ -1,6 +1,6 @@
from setuptools import find_packages, setup
package_name = 'ObjectiveFunctions'
package_name = 'interaction_optimizers'
setup(
name=package_name,

View File

@ -1,3 +1,4 @@
class ImprovementQuery:
def __init__(self, threshold, period, last_query, rewards):
self.threshold = threshold

View File

@ -0,0 +1,71 @@
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from .random_query import RandomQuery
from .regular_query import RegularQuery
from .improvement_query import ImprovementQuery
from interaction_msgs.srv import Query
class QueryNode(Node):
def __init__(self):
super().__init__('query_node')
self.query_service = self.create_service(Query, 'user_query', self.query_callback)
self.get_logger().info('Query node started!')
def check_random_request(self, req):
t = req.threshold
if 0 < t <= 1:
return True
else:
self.get_logger().error('Invalid random request in user query!')
def check_regular_request(self, req):
f = req.frequency
if f > 0:
return True
else:
self.get_logger().error('Invalid regular request in user query!')
def check_improvement_request(self, req):
t = req.threshold
f = req.frequency
last_rewards = req.last_rewards
if 0 < t <= 1 and f > 0 and isinstance(last_rewards, list):
return True
else:
self.get_logger().error('Invalid improvement request in user query!')
def query_callback(self, request, response):
mode = response.mode
query_obj = None
if mode == 0:
if self.check_random_request(request):
query_obj = RandomQuery(request.threshold)
elif mode == 1:
if self.check_regular_request(request):
query_obj = RegularQuery(request.frequency, request.current_episode)
elif mode == 2:
if self.check_improvement_request(request):
query_obj = ImprovementQuery(request.threshold, request.frequency,
request.last_queried_episode, request.last_rewards)
else:
self.get_logger().error('Invalid query mode!')
if query_obj is not None:
response.interaction = query_obj.query()
return response
def main(args=None):
rclpy.init(args=args)
node = QueryNode()
rclpy.spin(node)
rclpy.shutdown()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,12 @@
class RegularQuery:
def __init__(self, frequency, episode):
self.frequency = int(frequency)
self.counter = episode
def query(self):
if self.counter % self.frequency == 0 and self.counter != 0:
return True
else:
return False

View File

@ -1,12 +1,15 @@
<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>InteractionQuery</name>
<name>interaction_query</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="root@todo.todo">root</maintainer>
<license>TODO: License declaration</license>
<exec_depend>interaction_msgs</exec_depend>
<exec_depend>rclpy</exec_depend>
<test_depend>ament_copyright</test_depend>
<test_depend>ament_flake8</test_depend>
<test_depend>ament_pep257</test_depend>

View File

@ -0,0 +1,4 @@
[develop]
script_dir=$base/lib/interaction_query
[install]
install_scripts=$base/lib/interaction_query

View File

@ -1,6 +1,6 @@
from setuptools import find_packages, setup
package_name = 'InteractionQuery'
package_name = 'interaction_query'
setup(
name=package_name,
@ -20,6 +20,7 @@ setup(
tests_require=['pytest'],
entry_points={
'console_scripts': [
'query_n = interaction_query.query_node:main',
],
},
)