Compare commits

..

5 Commits

7 changed files with 430 additions and 24 deletions

View File

@ -7,4 +7,8 @@
<orderEntry type="jdk" jdkName="Python 3.8 (venv)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>

View File

@ -0,0 +1,14 @@
import numpy as np
from scipy.stats import norm
def ConfidenceBound(gp, X, nr_test, nr_weights, lam=1.2, seed=None, lower=-1.0, upper=1.0):
y_hat = gp.predict(X)
best_y = max(y_hat)
rng = np.random.default_rng(seed=seed)
X_test = rng.uniform(lower, upper, (nr_test, nr_weights))
mu, sigma = gp.predict(X_test, return_std=True)
cb = mu + lam * sigma
idx = np.argmax(cb)
X_next = X_test[idx, :]
return X_next

View File

@ -0,0 +1,15 @@
import numpy as np
from scipy.stats import norm
def ProbabilityOfImprovement(gp, X, nr_test, nr_weights, kappa=2.576, seed=None, lower=-1.0, upper=1.0):
y_hat = gp.predict(X)
best_y = max(y_hat)
rng = np.random.default_rng(seed=seed)
X_test = rng.uniform(lower, upper, (nr_test, nr_weights))
mu, sigma = gp.predict(X_test, return_std=True)
z = (mu - best_y - kappa) / sigma
pi = norm.cdf(z)
idx = np.argmax(pi)
X_next = X_test[idx, :]
return X_next

View File

@ -4,26 +4,29 @@ from sklearn.gaussian_process.kernels import Matern
from PolicyModel.GaussianModel import GaussianPolicy
from AcquistionFunctions.ExpectedImprovement import ExpectedImprovement
from AcquistionFunctions.ProbabilityOfImprovement import ProbabilityOfImprovement
from AcquistionFunctions.ConfidenceBound import ConfidenceBound
from ToyTask.MountainCarGym import Continuous_MountainCarEnv
import gym
import time
import matplotlib.pyplot as plt
from warnings import catch_warnings, simplefilter
class BayesianOptimization:
def __init__(self, env, nr_step, nr_init=3, acq='ei', nr_weights=8, policy_seed=None):
def __init__(self, env, nr_step, nr_init=3, acq='ei', nr_weights=6, policy_seed=None):
self.env = env
self.nr_init = nr_init
self.acq = acq
self.X = None
self.Y = None
self.counter_array = np.zeros((1, 1))
self.gp = None
self.episode = 0
self.best_reward = np.empty((1, 1))
self.distance_penalty = 10
self.distance_penalty = 0
self.nr_policy_weights = nr_weights
self.nr_steps = nr_step
@ -40,7 +43,8 @@ class BayesianOptimization:
def initialize(self):
self.env.reset()
self.env.render()
if self.env.render_mode == 'human':
self.env.render()
self.X = np.zeros((self.nr_init, self.nr_policy_weights))
self.Y = np.zeros((self.nr_init, 1))
@ -50,7 +54,7 @@ class BayesianOptimization:
self.X[i, :] = self.policy_model.weights.T
policy = self.policy_model.policy_rollout()
reward = self.runner(policy)
reward, step_count = self.runner(policy)
self.Y[i] = reward
@ -66,16 +70,29 @@ class BayesianOptimization:
output = self.env.step(action)
env_reward += output[1]
done = output[2]
time.sleep(0.0001)
if self.env.render_mode == 'human':
time.sleep(0.0001)
step_count += 1
if step_count >= self.nr_steps:
done = True
distance = -(self.env.goal_position - output[0][0])
env_reward += distance * self.distance_penalty
time.sleep(0.25)
if self.counter_array[0] == 0:
if step_count == 100:
step_count = np.NAN
self.counter_array[0] = step_count
else:
if step_count == 100:
step_count = np.NAN
self.counter_array = np.vstack((self.counter_array, step_count))
if self.env.render_mode == 'human':
time.sleep(0.25)
self.env.reset()
return env_reward
return env_reward, step_count
def next_observation(self):
if self.acq == 'ei':
@ -83,19 +100,44 @@ class BayesianOptimization:
self.X,
self.nr_test,
self.nr_policy_weights,
kappa=0,
seed=self.policy_seed,
lower=self.lowerb,
upper=self.upperb)
return x_next
elif self.acq == 'pi':
x_next = ProbabilityOfImprovement(self.gp,
self.X,
self.nr_test,
self.nr_policy_weights,
kappa=0,
seed=self.policy_seed,
lower=self.lowerb,
upper=self.upperb)
return x_next
elif self.acq == 'cb':
x_next = ConfidenceBound(self.gp,
self.X,
self.nr_test,
self.nr_policy_weights,
lam=2.576,
seed=self.policy_seed,
lower=self.lowerb,
upper=self.upperb)
return x_next
else:
raise NotImplementedError
def eval_new_observation(self, x_next):
self.policy_model.weights = x_next
policy = self.policy_model.policy_rollout()
reward = self.runner(policy)
reward, step_count = self.runner(policy)
self.X = np.vstack((self.X, x_next))
self.Y = np.vstack((self.Y, reward))
@ -108,28 +150,58 @@ class BayesianOptimization:
self.best_reward = np.vstack((self.best_reward, max(self.Y)))
self.episode += 1
self.policy_model.plot_policy()
return step_count
def plot_reward(self):
epsiodes = np.linspace(0, self.episode, self.episode)
plt.plot(epsiodes, self.best_reward)
plt.show()
def plot_objective_function(self):
plt.scatter(self.X[:, 0], self.Y)
x_dom = np.linspace(self.lowerb * np.ones((1, 6)), self.upperb * np.ones((1, 6)), 100).reshape(-1, self.nr_policy_weights)
y_plot, y_sigma = self.gp.predict(x_dom, return_std=True)
y_plot = y_plot.reshape(-1)
y_sigma = y_sigma.reshape(-1)
print(y_plot.shape, x_dom.shape)
plt.plot(x_dom[:, 0], y_plot)
plt.fill_between(
x_dom[:, 0],
y_plot - 1.96 * y_sigma,
y_plot + 1.96 * y_sigma,
alpha=0.5
)
plt.show()
def get_best_result(self):
y_hat = self.gp.predict(self.X)
idx = np.argmax(y_hat)
x_max = self.X[idx, :]
self.policy_model.weights = x_max
self.policy_model.policy_rollout()
print(self.counter_array[idx], idx)
self.policy_model.plot_policy(finished=self.counter_array[idx])
def main():
nr_steps = 80
env = gym.envs.make('MountainCarContinuous-v0', render_mode="human")
bo = BayesianOptimization(env, nr_steps)
nr_steps = 100
env = Continuous_MountainCarEnv() # render_mode='human'
bo = BayesianOptimization(env, nr_steps, acq='ei')
bo.initialize()
iteration_steps = 100
iteration_steps = 200
for i in range(iteration_steps):
x_next = bo.next_observation()
bo.eval_new_observation(x_next)
step_count = bo.eval_new_observation(x_next)
print(bo.episode, bo.best_reward[-1][0])
print(bo.episode, bo.best_reward[-1][0], step_count)
bo.plot_reward()
bo.policy_model.plot_policy()
bo.get_best_result()
plt.show()
if __name__ == "__main__":
main()

View File

@ -35,14 +35,14 @@ class GaussianPolicy:
return self.trajectory
def plot_policy(self):
def plot_policy(self, finished=np.NAN):
x = np.linspace(0, self.nr_steps, self.nr_steps)
plt.plot(x, self.trajectory)
for i in self.mean:
gaussian = np.exp(-0.5 * (x - i)**2 / self.std**2)
plt.plot(x, gaussian)
plt.show()
if finished != np.NAN:
plt.vlines(finished, -1, 1, colors='red')
# for i in self.mean:
# gaussian = np.exp(-0.5 * (x - i)**2 / self.std**2)
# plt.plot(x, gaussian)
def main():

301
ToyTask/MountainCarGym.py Normal file
View File

@ -0,0 +1,301 @@
"""
@author: Olivier Sigaud
A merge between two sources:
* Adaptation of the MountainCar Environment from the "FAReinforcement" library
of Jose Antonio Martin H. (version 1.0), adapted by 'Tom Schaul, tom@idsia.ch'
and then modified by Arnaud de Broissia
* the gym MountainCar environment
itself from
http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp
permalink: https://perma.cc/6Z2N-PFWC
"""
import math
from typing import Optional
import numpy as np
import gym
from gym import spaces
from gym.envs.classic_control import utils
from gym.error import DependencyNotInstalled
class Continuous_MountainCarEnv(gym.Env):
"""
### Description
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
that can be applied to the car in either direction. The goal of the MDP is to strategically
accelerate the car to reach the goal state on top of the right hill. There are two versions
of the mountain car domain in gym: one with discrete actions and one with continuous.
This version is the one with continuous actions.
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
```
@TECHREPORT{Moore90efficientmemory-based,
author = {Andrew William Moore},
title = {Efficient Memory-based Learning for Robot Control},
institution = {University of Cambridge},
year = {1990}
}
```
### Observation Space
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Unit |
|-----|--------------------------------------|------|-----|--------------|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
| 1 | velocity of the car | -Inf | Inf | position (m) |
### Action Space
The action is a `ndarray` with shape `(1,)`, representing the directional force applied on the car.
The action is clipped in the range `[-1,1]` and multiplied by a power of 0.0015.
### Transition Dynamics:
Given an action, the mountain car follows the following transition dynamics:
*velocity<sub>t+1</sub> = velocity<sub>t+1</sub> + force * self.power - 0.0025 * cos(3 * position<sub>t</sub>)*
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
where force is the action clipped to the range `[-1,1]` and power is a constant 0.0015.
The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall.
The position is clipped to the range [-1.2, 0.6] and velocity is clipped to the range [-0.07, 0.07].
### Reward
A negative reward of *-0.1 * action<sup>2</sup>* is received at each timestep to penalise for
taking actions of large magnitude. If the mountain car reaches the goal then a positive reward of +100
is added to the negative reward for that timestep.
### Starting State
The position of the car is assigned a uniform random value in `[-0.6 , -0.4]`.
The starting velocity of the car is always assigned to 0.
### Episode End
The episode ends if either of the following happens:
1. Termination: The position of the car is greater than or equal to 0.45 (the goal position on top of the right hill)
2. Truncation: The length of the episode is 999.
### Arguments
```
gym.make('MountainCarContinuous-v0')
```
### Version History
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 30,
}
def __init__(self, render_mode: Optional[str] = None, goal_velocity=0):
self.min_action = -1.0
self.max_action = 1.0
self.min_position = -1.2
self.max_position = 0.6
self.max_speed = 0.07
self.goal_position = (
0.45 # was 0.5 in gym, 0.45 in Arnaud de Broissia's version
)
self.goal_velocity = goal_velocity
self.power = 0.0015
self.low_state = np.array(
[self.min_position, -self.max_speed], dtype=np.float32
)
self.high_state = np.array(
[self.max_position, self.max_speed], dtype=np.float32
)
self.render_mode = render_mode
self.screen_width = 600
self.screen_height = 400
self.screen = None
self.clock = None
self.isopen = True
self.action_space = spaces.Box(
low=self.min_action, high=self.max_action, shape=(1,), dtype=np.float32
)
self.observation_space = spaces.Box(
low=self.low_state, high=self.high_state, dtype=np.float32
)
def step(self, action: np.ndarray):
position = self.state[0]
velocity = self.state[1]
force = min(max(action[0], self.min_action), self.max_action)
velocity += force * self.power - 0.0025 * math.cos(3 * position)
if velocity > self.max_speed:
velocity = self.max_speed
if velocity < -self.max_speed:
velocity = -self.max_speed
position += velocity
if position > self.max_position:
position = self.max_position
if position < self.min_position:
position = self.min_position
if position == self.min_position and velocity < 0:
velocity = 0
# Convert a possible numpy bool to a Python bool.
terminated = bool(
position >= self.goal_position and velocity >= self.goal_velocity
)
reward = 0
if terminated:
reward += 10
reward -= math.pow(action[0], 2) * 0.1
reward -= 1
self.state = np.array([position, velocity], dtype=np.float32)
if self.render_mode == "human":
self.render()
return self.state, reward, terminated, False, {}
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(options, -0.6, -0.4)
self.state = np.array([self.np_random.uniform(low=low, high=high), 0])
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), {}
def _height(self, xs):
return np.sin(3 * xs) * 0.45 + 0.55
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_width, self.screen_height)
)
else: # mode == "rgb_array":
self.screen = pygame.Surface((self.screen_width, self.screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
world_width = self.max_position - self.min_position
scale = self.screen_width / world_width
carwidth = 40
carheight = 20
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
pos = self.state[0]
xs = np.linspace(self.min_position, self.max_position, 100)
ys = self._height(xs)
xys = list(zip((xs - self.min_position) * scale, ys * scale))
pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0))
clearance = 10
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
coords = []
for c in [(l, b), (l, t), (r, t), (r, b)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
coords.append(
(
c[0] + (pos - self.min_position) * scale,
c[1] + clearance + self._height(pos) * scale,
)
)
gfxdraw.aapolygon(self.surf, coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0))
for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
wheel = (
int(c[0] + (pos - self.min_position) * scale),
int(c[1] + clearance + self._height(pos) * scale),
)
gfxdraw.aacircle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
gfxdraw.filled_circle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
flagx = int((self.goal_position - self.min_position) * scale)
flagy1 = int(self._height(self.goal_position) * scale)
flagy2 = flagy1 + 50
gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0))
gfxdraw.aapolygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
gfxdraw.filled_polygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False

0
runner/BOGymRunner.py Normal file
View File