Started with PreferenceExpectedImprovement.py
This commit is contained in:
parent
be2192ee90
commit
e9f24d0086
@ -3,21 +3,31 @@ from scipy.stats import norm
|
|||||||
|
|
||||||
|
|
||||||
class PreferenceExpectedImprovement:
|
class PreferenceExpectedImprovement:
|
||||||
def __init__(self, nr_samples, upper_bound, lower_bound, nr_dims=2):
|
def __init__(self, nr_samples, nr_dims, lower_bound, upper_bound, seed=None):
|
||||||
|
|
||||||
self.nr_samples = nr_samples
|
self.nr_samples = nr_samples
|
||||||
|
self.nr_dims = nr_dims
|
||||||
|
# check if upper_bound and lower_bound are numpy arrays of shape (nr_dims, 1) or (nr_dims,) or if they are floats
|
||||||
|
|
||||||
self.upper_bound = upper_bound
|
self.upper_bound = upper_bound
|
||||||
self.lower_bound = lower_bound
|
self.lower_bound = lower_bound
|
||||||
|
|
||||||
self.user_model = None
|
self.user_model = None
|
||||||
self.proposal_model_mean = np.array()
|
self.proposal_model_mean = np.array((nr_dims, 1))
|
||||||
|
self.proposal_model_covariance = np.diag(np.ones((nr_dims, )) * 5)
|
||||||
|
|
||||||
|
self.rng = np.random.default_rng(seed=seed)
|
||||||
|
|
||||||
def initialize(self):
|
def initialize(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def rejection_sampling(self):
|
def rejection_sampling(self):
|
||||||
|
samples = np.empty((self.nr_samples, self.nr_dims))
|
||||||
|
i = 0
|
||||||
|
while i < self.nr_samples:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def expected_improvement(self):
|
def expected_improvement(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -26,3 +36,8 @@ class PreferenceExpectedImprovement:
|
|||||||
|
|
||||||
def update_proposal_model(self):
|
def update_proposal_model(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
acquisition = PreferenceExpectedImprovement(10, 2, -1.0, 1.0)
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ gaussian = gaussian[(gaussian > -1) & (gaussian < 1)]
|
|||||||
uniform = np.random.uniform(-1, 1, len(gaussian)) # Same number of samples as the Gaussian
|
uniform = np.random.uniform(-1, 1, len(gaussian)) # Same number of samples as the Gaussian
|
||||||
|
|
||||||
# Plot the distributions
|
# Plot the distributions
|
||||||
plt.figure(figsize=(12,6))
|
plt.figure(figsize=(12, 6))
|
||||||
|
|
||||||
plt.subplot(1, 2, 1)
|
plt.subplot(1, 2, 1)
|
||||||
plt.hist(gaussian, bins=30, density=True, alpha=0.6, color='g')
|
plt.hist(gaussian, bins=30, density=True, alpha=0.6, color='g')
|
||||||
|
Loading…
Reference in New Issue
Block a user