moved the Evaluation from BayesianOptimization.py to the active_rl_topic.py due to inconsistency in the evaluation of rl envs

This commit is contained in:
Niko Feith 2023-06-07 14:35:41 +02:00
parent 1b9e099696
commit e99b131ee9
6 changed files with 466 additions and 37 deletions

View File

@ -1,5 +1,6 @@
string env
uint32 seed
bool final_run
bool display_run
uint8 interactive_run
float64[] policy
float64[] weights

View File

@ -38,9 +38,11 @@ class BayesianOptimization:
def reset_bo(self):
self.counter_array = np.empty((1, 1))
self.GP = None
self.GP = GaussianProcessRegressor(Matern(nu=1.5, length_scale_bounds=(1e-8, 1e5)), n_restarts_optimizer=5, )
self.episode = 0
self.best_reward = np.empty((1, 1))
self.X = np.zeros((1, self.nr_policy_weights), dtype=np.float64)
self.Y = np.zeros((1, 1), dtype=np.float64)
def runner(self, policy, seed=None):
env_reward = 0.0
@ -71,9 +73,6 @@ class BayesianOptimization:
self.env.reset(seed=seed)
self.reset_bo()
self.X = np.zeros((self.nr_init, self.nr_policy_weights), dtype=np.float64)
self.Y = np.zeros((self.nr_init, 1), dtype=np.float64)
for i in range(self.nr_init):
self.policy_model.random_policy()
self.X[i, :] = self.policy_model.weights.T
@ -141,16 +140,16 @@ class BayesianOptimization:
return step_count
def add_new_observation(self, reward, x_new):
self.X = np.vstack((self.X, np.around(x_new, decimals=8)), dtype=np.float64)
self.Y = np.vstack((self.Y, reward), dtype=np.float64)
self.GP.fit(self.X, self.Y)
if self.episode == 0:
self.X[0, :] = x_new
self.Y[0] = reward
self.best_reward[0] = np.max(self.Y)
else:
self.X = np.vstack((self.X, np.around(x_new, decimals=8)), dtype=np.float64)
self.Y = np.vstack((self.Y, reward), dtype=np.float64)
self.best_reward = np.vstack((self.best_reward, np.max(self.Y)), dtype=np.float64)
self.GP.fit(self.X, self.Y)
self.episode += 1
def get_best_result(self):

View File

@ -25,6 +25,7 @@ class GaussianRBF:
def random_policy(self):
self.weights = np.around(self.rng.uniform(self.low, self.upper, self.nr_weights), decimals=8)
return self.weights.T
def rollout(self):
self.policy = np.zeros((self.nr_steps, 1))

View File

@ -68,8 +68,9 @@ class ActiveRLService(Node):
# State Machine Variables
self.best_pol_shown = False
self.policy_sent = False
self.active_rl_pending = False
self.final_run = False
self.rl_pending = False
self.interactive_run = False
self.display_run = False
# Main loop timer object
self.mainloop_timer_period = 0.05
@ -86,9 +87,10 @@ class ActiveRLService(Node):
def active_rl_callback(self, msg):
self.rl_env = msg.env
self.rl_seed = msg.seed
self.display_run = msg.display_run
self.rl_policy = np.array(msg.policy, dtype=np.float64)
self.rl_weights = msg.weights
self.final_run = msg.final_run
self.interactive_run = msg.interactive_run
if self.rl_env == "Mountain Car":
self.env = Continuous_MountainCarEnv(render_mode="rgb_array")
@ -103,7 +105,7 @@ class ActiveRLService(Node):
self.get_logger().info('Active RL: Called!')
self.env.reset(seed=self.rl_seed)
self.active_rl_pending = True
self.rl_pending = True
self.policy_sent = False
self.rl_step = 0
@ -119,7 +121,7 @@ class ActiveRLService(Node):
self.env.reset(seed=self.rl_seed)
self.eval_response_received = True
def next_image(self, policy):
def next_image(self, policy, display_run):
action = policy[self.rl_step]
action_clipped = action.clip(min=-1.0, max=1.0)
output = self.env.step(action_clipped.astype(np.float64))
@ -128,23 +130,24 @@ class ActiveRLService(Node):
done = output[2]
self.rl_step += 1
rgb_array = self.env.render()
rgb_shape = rgb_array.shape
if display_run:
rgb_array = self.env.render()
rgb_shape = rgb_array.shape
red = rgb_array[:, :, 0].flatten().tolist()
green = rgb_array[:, :, 1].flatten().tolist()
blue = rgb_array[:, :, 2].flatten().tolist()
red = rgb_array[:, :, 0].flatten().tolist()
green = rgb_array[:, :, 1].flatten().tolist()
blue = rgb_array[:, :, 2].flatten().tolist()
feedback_msg = ImageFeedback()
feedback_msg = ImageFeedback()
feedback_msg.height = rgb_shape[0]
feedback_msg.width = rgb_shape[1]
feedback_msg.current_time = self.rl_step
feedback_msg.red = red
feedback_msg.green = green
feedback_msg.blue = blue
feedback_msg.height = rgb_shape[0]
feedback_msg.width = rgb_shape[1]
feedback_msg.current_time = self.rl_step
feedback_msg.red = red
feedback_msg.green = green
feedback_msg.blue = blue
self.image_pub.publish(feedback_msg)
self.image_pub.publish(feedback_msg)
if not done and self.rl_step == len(policy):
done = True
@ -152,8 +155,8 @@ class ActiveRLService(Node):
return done
def mainloop_callback(self):
if self.active_rl_pending:
if not self.final_run:
if self.rl_pending:
if self.interactive_run == 0:
if not self.best_pol_shown:
if not self.policy_sent:
self.rl_step = 0
@ -170,7 +173,7 @@ class ActiveRLService(Node):
self.policy_sent = True
done = self.next_image(self.rl_policy)
done = self.next_image(self.rl_policy, self.display_run)
if done:
self.best_pol_shown = True
@ -182,7 +185,7 @@ class ActiveRLService(Node):
pass
if self.eval_response_received:
done = self.next_image(self.eval_policy)
done = self.next_image(self.eval_policy, self.display_run)
if done:
rl_response = ActiveRLResponse()
@ -203,8 +206,8 @@ class ActiveRLService(Node):
self.best_pol_shown = False
self.eval_response_received = False
self.active_rl_pending = False
else:
self.rl_pending = False
elif self.interactive_run == 1:
if not self.policy_sent:
self.rl_step = 0
self.rl_reward = 0.0
@ -220,13 +223,39 @@ class ActiveRLService(Node):
self.policy_sent = True
done = self.next_image(self.rl_policy)
done = self.next_image(self.rl_policy, self.display_run)
if done:
self.rl_step = 0
self.rl_reward = 0.0
self.final_run = False
self.active_rl_pending = False
self.rl_pending = False
elif self.interactive_run == 2:
if not self.policy_sent:
self.rl_step = 0
self.rl_reward = 0.0
self.env.reset(seed=self.rl_seed)
self.policy_sent = True
done = self.next_image(self.rl_policy, self.display_run)
if done:
rl_response = ActiveRLResponse()
rl_response.weights = self.eval_weights
rl_response.reward = self.rl_reward
rl_response.final_step = self.rl_step
self.active_rl_pub.publish(rl_response)
# reset flags and attributes
self.reset_eval_request()
self.reset_rl_request()
self.rl_step = 0
self.rl_reward = 0.0
self.rl_pending = False
def main(args=None):

View File

@ -0,0 +1,399 @@
from active_bo_msgs.msg import ActiveBORequest
from active_bo_msgs.msg import ActiveBOResponse
from active_bo_msgs.msg import ActiveRL
from active_bo_msgs.msg import ActiveRLResponse
from active_bo_msgs.msg import ActiveBOState
import rclpy
from rclpy.node import Node
from rclpy.callback_groups import ReentrantCallbackGroup
from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
from active_bo_ros.ReinforcementLearning.CartPole import CartPoleEnv
from active_bo_ros.ReinforcementLearning.Pendulum import PendulumEnv
from active_bo_ros.ReinforcementLearning.Acrobot import AcrobotEnv
from active_bo_ros.UserQuery.random_query import RandomQuery
from active_bo_ros.UserQuery.regular_query import RegularQuery
from active_bo_ros.UserQuery.improvement_query import ImprovementQuery
from active_bo_ros.UserQuery.max_acq_query import MaxAcqQuery
import numpy as np
import time
import os
class ActiveBOTopic(Node):
def __init__(self):
super().__init__('active_bo_topic')
bo_callback_group = ReentrantCallbackGroup()
rl_callback_group = ReentrantCallbackGroup()
mainloop_callback_group = ReentrantCallbackGroup()
# Active Bayesian Optimization Publisher, Subscriber and Message attributes
self.active_bo_pub = self.create_publisher(ActiveBOResponse,
'active_bo_response',
1, callback_group=bo_callback_group)
self.active_bo_sub = self.create_subscription(ActiveBORequest,
'active_bo_request',
self.active_bo_callback,
1, callback_group=bo_callback_group)
self.active_bo_pending = False
self.bo_env = None
self.bo_metric = None
self.bo_fixed_seed = False
self.bo_nr_weights = None
self.bo_steps = 0
self.bo_episodes = 0
self.bo_runs = 0
self.bo_acq_fcn = None
self.bo_metric_parameter = None
self.current_run = 0
self.current_episode = 0
self.seed = None
self.seed_array = None
self.save_result = False
# Active Reinforcement Learning Publisher, Subscriber and Message attributes
self.active_rl_pub = self.create_publisher(ActiveRL,
'active_rl_request',
1, callback_group=rl_callback_group)
self.active_rl_sub = self.create_subscription(ActiveRLResponse,
'active_rl_response',
self.active_rl_callback,
1, callback_group=rl_callback_group)
self.rl_pending = False
self.rl_weights = None
self.rl_final_step = None
self.rl_reward = 0.0
# State Publisher
self.state_pub = self.create_publisher(ActiveBOState, 'active_bo_state', 1)
# RL Environments and BO
self.env = None
self.BO = None
self.nr_init = 3
self.init_step = 0
self.init_pending = False
self.reward = None
self.best_reward = 0.0
self.best_pol_reward = None
self.best_policy = None
self.best_weights = None
# Main loop timer object
self.mainloop_timer_period = 0.1
self.mainloop = self.create_timer(self.mainloop_timer_period,
self.mainloop_callback,
callback_group=mainloop_callback_group)
def reset_bo_request(self):
self.bo_env = None
self.bo_metric = None
self.bo_fixed_seed = False
self.bo_nr_weights = None
self.bo_steps = 0
self.bo_episodes = 0
self.bo_runs = 0
self.bo_acq_fcn = None
self.bo_metric_parameter = None
self.current_run = 0
self.current_episode = 0
self.save_result = False
self.seed_array = None
def active_bo_callback(self, msg):
if not self.active_bo_pending:
self.get_logger().info('Active Bayesian Optimization request pending!')
self.active_bo_pending = True
self.bo_env = msg.env
self.bo_metric = msg.metric
self.bo_fixed_seed = msg.fixed_seed
self.bo_nr_weights = msg.nr_weights
self.bo_steps = msg.max_steps
self.bo_episodes = msg.nr_episodes
self.bo_runs = msg.nr_runs
self.bo_acq_fcn = msg.acquisition_function
self.bo_metric_parameter = msg.metric_parameter
self.save_result = msg.save_result
self.seed_array = np.zeros((1, self.bo_runs))
# initialize
self.reward = np.zeros((self.bo_episodes, self.bo_runs))
self.best_pol_reward = np.zeros((1, self.bo_runs))
self.best_policy = np.zeros((self.bo_steps, self.bo_runs))
self.best_weights = np.zeros((self.bo_nr_weights, self.bo_runs))
# set the seed
if self.bo_fixed_seed:
self.seed = int(np.random.randint(1, 2147483647, 1)[0])
self.get_logger().info(str(self.seed))
else:
self.seed = None
def reset_rl_response(self):
self.rl_weights = None
self.rl_final_step = None
def active_rl_callback(self, msg):
if self.rl_pending:
self.get_logger().info('Active Reinforcement Learning response received!')
self.rl_weights = msg.weights
self.rl_final_step = msg.final_step
self.rl_reward = msg.reward
try:
self.BO.add_new_observation(self.rl_reward, self.rl_weights)
self.get_logger().info('Active Reinforcement Learning added new observation!')
except Exception as e:
self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}')
if self.init_pending:
self.init_step += 1
if self.init_step == self.nr_init:
self.init_step = 0
self.init_pending = False
self.rl_pending = False
self.reset_rl_response()
def mainloop_callback(self):
if self.active_bo_pending:
# set rl environment
if self.bo_env == "Mountain Car":
self.env = Continuous_MountainCarEnv()
elif self.bo_env == "Cartpole":
self.env = CartPoleEnv()
elif self.bo_env == "Acrobot":
self.env = AcrobotEnv()
elif self.bo_env == "Pendulum":
self.env = PendulumEnv()
else:
raise NotImplementedError
if self.BO is None:
self.BO = BayesianOptimization(self.env,
self.bo_steps,
nr_init=self.nr_init,
acq=self.bo_acq_fcn,
nr_weights=self.bo_nr_weights)
# self.BO.initialize()
self.init_pending = True
if self.init_pending and not self.rl_pending:
if self.bo_fixed_seed:
seed = self.seed
else:
seed = int(np.random.randint(1, 2147483647, 1)[0])
rl_msg = ActiveRL()
rl_msg.env = self.bo_env
rl_msg.seed = seed
rl_msg.display_run = False
rl_msg.interactive_run = 2
rl_msg.weights = self.BO.policy_model.random_policy()
rl_msg.policy = self.BO.policy_model.rollout()
self.rl_pending = True
if self.current_run == self.bo_runs:
bo_response = ActiveBOResponse()
best_policy_idx = np.argmax(self.best_pol_reward)
bo_response.best_policy = self.best_policy[:, best_policy_idx].tolist()
bo_response.best_weights = self.best_weights[:, best_policy_idx].tolist()
self.get_logger().info(f'Best Policy: {self.best_pol_reward}')
self.get_logger().info(f'{best_policy_idx}, {int(self.seed_array[0, best_policy_idx])}')
bo_response.reward_mean = np.mean(self.reward, axis=1).tolist()
bo_response.reward_std = np.std(self.reward, axis=1).tolist()
if self.save_result:
if self.bo_env == "Mountain Car":
env = 'mc'
elif self.bo_env == "Cartpole":
env = 'cp'
elif self.bo_env == "Acrobot":
env = 'ab'
elif self.bo_env == "Pendulum":
env = 'pd'
else:
raise NotImplementedError
if self.bo_acq_fcn == "Expected Improvement":
acq = 'ei'
elif self.bo_acq_fcn == "Probability of Improvement":
acq = 'pi'
elif self.bo_acq_fcn == "Upper Confidence Bound":
acq = 'cb'
else:
raise NotImplementedError
home_dir = os.path.expanduser('~')
file_path = os.path.join(home_dir, 'Documents/IntRLResults')
filename = env + '-' + acq + '-' + self.bo_metric + '-' \
+ str(round(self.bo_metric_parameter, 2)) + '-' \
+ str(self.bo_nr_weights) + '-' + str(time.time())
filename = filename.replace('.', '_') + '.csv'
path = os.path.join(file_path, filename)
data = self.reward
np.savetxt(path, data, delimiter=',')
active_rl_request = ActiveRL()
if self.bo_fixed_seed:
seed = int(self.seed_array[0, best_policy_idx])
self.get_logger().info(f'Used seed{seed}')
else:
seed = int(np.random.randint(1, 2147483647, 1)[0])
active_rl_request.env = self.bo_env
active_rl_request.seed = seed
active_rl_request.policy = self.best_policy[:, best_policy_idx].tolist()
active_rl_request.weights = self.best_weights[:, best_policy_idx].tolist()
active_rl_request.interactive_run = 1
self.active_rl_pub.publish(active_rl_request)
self.get_logger().info('Responding: Active BO')
self.active_bo_pub.publish(bo_response)
self.reset_bo_request()
self.active_bo_pending = False
self.BO = None
else:
if self.rl_pending:
pass
else:
if self.init_pending:
pass
elif self.current_episode < self.bo_episodes:
# metrics
if self.bo_metric == "random":
user_query = RandomQuery(self.bo_metric_parameter)
elif self.bo_metric == "regular":
user_query = RegularQuery(self.bo_metric_parameter, self.current_episode)
elif self.bo_metric == "max acquisition":
user_query = MaxAcqQuery(self.bo_metric_parameter,
self.BO.GP,
100,
self.bo_nr_weights,
acq=self.bo_acq_fcn,
X=self.BO.X)
elif self.bo_metric == "improvement":
user_query = ImprovementQuery(self.bo_metric_parameter, 10)
else:
raise NotImplementedError
if user_query.query():
active_rl_request = ActiveRL()
old_policy, y_max, old_weights, _ = self.BO.get_best_result()
self.get_logger().info(f'Best: {y_max}, w:{old_weights}')
self.get_logger().info(f'Size of Y: {self.BO.Y.shape}, Size of X: {self.BO.X.shape}')
if self.bo_fixed_seed:
seed = self.seed
else:
seed = int(np.random.randint(1, 2147483647, 1)[0])
active_rl_request.env = self.bo_env
active_rl_request.seed = seed
active_rl_request.display_run = True
active_rl_request.policy = old_policy.tolist()
active_rl_request.weights = old_weights.tolist()
active_rl_request.interactive_run = 0
self.get_logger().info('Calling: Active RL')
self.active_rl_pub.publish(active_rl_request)
self.rl_pending = True
else:
x_next = self.BO.next_observation()
self.BO.policy_model.weights = np.around(x_next, decimals=8)
if self.bo_fixed_seed:
seed = self.seed
else:
seed = int(np.random.randint(1, 2147483647, 1)[0])
rl_msg = ActiveRL()
rl_msg.env = self.bo_env
rl_msg.seed = seed
rl_msg.display_run = False
rl_msg.interactive_run = 2
rl_msg.weights = x_next
rl_msg.policy = self.BO.policy_model.rollout()
self.rl_pending = True
self.current_episode += 1
# self.get_logger().info(f'Current Episode: {self.current_episode}')
else:
self.best_policy[:, self.current_run], \
self.best_pol_reward[:, self.current_run], \
self.best_weights[:, self.current_run], idx = self.BO.get_best_result()
self.get_logger().info(f'best idx: {idx}')
self.reward[:, self.current_run] = self.BO.best_reward.T
self.BO = None
self.current_episode = 0
if self.bo_fixed_seed:
self.seed_array[0, self.current_run] = self.seed
self.seed = int(np.random.randint(1, 2147483647, 1)[0])
self.get_logger().info(f'{self.seed}')
self.current_run += 1
self.get_logger().info(f'Current Run: {self.current_run}')
# send the current states
if self.BO is not None and self.BO.Y is not None:
self.best_reward = np.max(self.BO.Y)
state_msg = ActiveBOState()
state_msg.current_run = self.current_run + 1 if self.current_run < self.bo_runs else self.bo_runs
state_msg.current_episode = self.current_episode + 1 \
if self.current_episode < self.bo_episodes else self.bo_episodes
state_msg.best_reward = float(self.best_reward)
state_msg.last_user_reward = float(self.rl_reward)
self.state_pub.publish(state_msg)
def main(args=None):
rclpy.init(args=args)
active_bo_topic = ActiveBOTopic()
rclpy.spin(active_bo_topic)
try:
rclpy.spin(active_bo_topic)
except KeyboardInterrupt:
pass
active_bo_topic.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()