added random, regular, max acquisition & improvement metric
This commit is contained in:
parent
952ee10b67
commit
c5f00a4069
@ -86,7 +86,7 @@ class BayesianOptimization:
|
||||
|
||||
self.Y[i] = reward
|
||||
|
||||
self.GP = GaussianProcessRegressor(Matern(nu=1.5))
|
||||
self.GP = GaussianProcessRegressor(Matern(nu=1.5, length_scale_bounds=(1e-8, 1e5)), n_restarts_optimizer=5, )
|
||||
self.GP.fit(self.X, self.Y)
|
||||
|
||||
def next_observation(self):
|
||||
@ -147,6 +147,8 @@ class BayesianOptimization:
|
||||
self.X = np.vstack((self.X, x_new))
|
||||
self.Y = np.vstack((self.Y, reward))
|
||||
|
||||
self.GP.fit(self.X, self.Y)
|
||||
|
||||
if self.episode == 0:
|
||||
self.best_reward[0] = max(self.Y)
|
||||
else:
|
||||
|
@ -132,12 +132,20 @@ class ActiveBOTopic(Node):
|
||||
|
||||
def active_rl_callback(self, msg):
|
||||
if self.active_rl_pending:
|
||||
self.get_logger().info('Active Reinforcement Learning response pending!')
|
||||
self.active_rl_pending = False
|
||||
self.get_logger().info('Active Reinforcement Learning response received!')
|
||||
self.rl_weights = msg.weights
|
||||
self.rl_final_step = msg.final_step
|
||||
self.rl_reward = msg.reward
|
||||
|
||||
try:
|
||||
self.BO.add_new_observation(self.rl_reward, self.rl_weights)
|
||||
self.get_logger().info('Active Reinforcement Learning added new observation!')
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}')
|
||||
|
||||
self.active_rl_pending = False
|
||||
self.reset_rl_response()
|
||||
|
||||
def mainloop_callback(self):
|
||||
if self.active_bo_pending:
|
||||
|
||||
@ -181,18 +189,26 @@ class ActiveBOTopic(Node):
|
||||
else:
|
||||
if self.active_rl_pending:
|
||||
pass
|
||||
elif self.rl_weights is not None and not self.active_rl_pending:
|
||||
try:
|
||||
self.BO.add_new_observation(self.rl_reward, self.rl_weights)
|
||||
self.reset_rl_response()
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}')
|
||||
else:
|
||||
if self.current_episode < self.bo_episodes:
|
||||
# metrics
|
||||
if self.bo_metric == "RandomQuery":
|
||||
if self.bo_metric == "random":
|
||||
user_query = RandomQuery(self.bo_metric_parameter)
|
||||
|
||||
elif self.bo_metric == "regular":
|
||||
user_query = RegularQuery(self.bo_metric_parameter)
|
||||
|
||||
elif self.bo_metric == "max acquisition":
|
||||
user_query = MaxAcqQuery(self.bo_metric_parameter,
|
||||
self.BO.GP,
|
||||
100,
|
||||
self.bo_nr_weights,
|
||||
acq=self.bo_acq_fcn,
|
||||
X=self.BO.X)
|
||||
|
||||
elif self.bo_metric == "improvement":
|
||||
user_query = ImprovementQuery(self.bo_metric_parameter, 10)
|
||||
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@ -234,7 +250,6 @@ class ActiveBOTopic(Node):
|
||||
self.get_logger().info(f'Current Run: {self.current_run}')
|
||||
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user