PreferenceExpectedImprovement added

This commit is contained in:
Niko Feith 2023-07-24 18:45:00 +02:00
parent c9daf65917
commit c32e7cff84
6 changed files with 109 additions and 8 deletions

View File

@ -0,0 +1,77 @@
import numpy as np
from scipy.stats import norm, multivariate_normal
class PreferenceExpectedImprovement:
def __init__(self, nr_dims, nr_samples, lower_bound, upper_bound, initial_variance, update_variance, seed=None):
self.nr_dims = nr_dims
self.nr_samples = int(nr_samples)
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.init_var = initial_variance
self.update_var = update_variance
self.rng = np.random.default_rng(seed=seed)
# initial proposal distribution
self.proposal_mean = np.zeros((nr_dims, 1))
self.proposal_cov = np.diag(np.ones((nr_dims,)) * self.init_var)
def rejection_sampling(self):
samples = np.empty((0, self.nr_dims))
while samples.shape[0] < self.nr_samples:
# sample from the multi variate gaussian distribution
sample = np.zeros((1, self.nr_dims))
for i in range(self.nr_dims):
check = False
while not check:
sample[0, i] = self.rng.normal(self.proposal_mean[i], self.proposal_cov[i, i])
if self.lower_bound <= sample[0, i] <= self.upper_bound:
check = True
samples = np.append(samples, sample, axis=0)
return samples
def expected_improvement(self, gp , X, kappa=0.01):
X_sample = self.rejection_sampling()
mu_sample, sigma_sample = gp.predict(X_sample, return_std=True)
sigma_sample = sigma_sample.reshape(-1, 1)
mu = gp.predict(X)
mu_best = np.max(mu)
with np.errstate(divide='warn'):
imp = mu_sample - mu_best - kappa
imp = imp.reshape(-1, 1)
z = imp / sigma_sample
ei = imp * norm.cdf(z) + sigma_sample * norm.pdf(z)
ei[sigma_sample == 0.0] = 0.0
idx = np.argmax(ei)
x_next = X_sample[idx, :]
return x_next
def update_proposal_model(self, preference_mean, preference_bool):
cov_diag = np.ones((self.nr_dims,)) * self.init_var
cov_diag[preference_bool] = self.update_var
preference_cov = np.diag(cov_diag)
preference_mean = preference_mean.reshape(-1, 1)
posterior_mean = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov))\
.dot(np.linalg.inv(self.proposal_cov).dot(self.proposal_mean)
+ np.linalg.inv(preference_cov).dot(preference_mean))
posterior_cov = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov))
self.proposal_mean = posterior_mean
self.proposal_cov = posterior_cov

View File

@ -3,9 +3,11 @@ from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern
from active_bo_ros.PolicyModel.GaussianRBFModel import GaussianRBF
from active_bo_ros.AcquisitionFunctions.ExpectedImprovement import ExpectedImprovement
from active_bo_ros.AcquisitionFunctions.ProbabilityOfImprovement import ProbabilityOfImprovement
from active_bo_ros.AcquisitionFunctions.ConfidenceBound import ConfidenceBound
from active_bo_ros.AcquisitionFunctions.PreferenceExpectedImprovement import PreferenceExpectedImprovement
from sklearn.exceptions import ConvergenceWarning
import warnings
@ -39,7 +41,16 @@ class BayesianOptimization:
self.lower_bound,
self.upper_bound)
self.eval_X = 100
self.nr_samples = 100
if acq == "Preference Expected Improvement":
self.acq_fun = PreferenceExpectedImprovement(self.nr_policy_weights,
self.nr_samples,
self.lower_bound,
self.upper_bound,
initial_variance=10.0,
update_variance=0.05,
seed=policy_seed)
def reset_bo(self):
self.counter_array = np.empty((1, 1))
@ -94,7 +105,7 @@ class BayesianOptimization:
if self.acq == "Expected Improvement":
x_next = ExpectedImprovement(self.GP,
self.X,
self.eval_X,
self.nr_samples,
self.nr_policy_weights,
kappa=0,
seed=self.policy_seed,
@ -104,7 +115,7 @@ class BayesianOptimization:
elif self.acq == "Probability of Improvement":
x_next = ProbabilityOfImprovement(self.GP,
self.X,
self.eval_X,
self.nr_samples,
self.nr_policy_weights,
kappa=0,
seed=self.policy_seed,
@ -113,13 +124,18 @@ class BayesianOptimization:
elif self.acq == "Upper Confidence Bound":
x_next = ConfidenceBound(self.GP,
self.eval_X,
self.nr_samples,
self.nr_policy_weights,
beta=2.576,
seed=self.policy_seed,
lower=self.lower_bound,
upper=self.upper_bound)
elif self.acq == "Preference Expected Improvement":
x_next = self.acq_fun.expected_improvement(self.GP,
self.X,
kappa=0)
else:
raise NotImplementedError

View File

@ -9,10 +9,10 @@ class ImprovementQuery:
self.rewards = rewards
def query(self):
if self.rewards.shape[0] < self.period:
if self.rewards.shape[0] < self.period + 1:
return False
elif self.rewards.shape[0] < self.last_query + self.period:
elif self.rewards.shape[0] < self.last_query + self.period + 1:
return False
else:

View File

@ -194,6 +194,8 @@ class ActiveBOTopic(Node):
if self.user_asked:
self.last_user_reward = self.rl_reward
if self.bo_acq_fcn == "Preference Expected Improvement":
self.BO.acq_fun.update_proposal_model(self.rl_weights, self.overwrite_weight)
self.user_asked = False
self.rl_pending = False
@ -271,6 +273,8 @@ class ActiveBOTopic(Node):
acq = 'pi'
elif self.bo_acq_fcn == "Upper Confidence Bound":
acq = 'cb'
elif self.bo_acq_fcn == "Preference Expected Improvement":
acq = 'pei'
else:
raise NotImplementedError
@ -311,7 +315,7 @@ class ActiveBOTopic(Node):
if self.init_pending:
return
else:
if self.current_episode < self.bo_episodes:
if self.current_episode < self.bo_episodes + self.nr_init - 1:
# metrics
if self.bo_metric == "random":
user_query = RandomQuery(self.bo_metric_parameter)
@ -362,6 +366,9 @@ class ActiveBOTopic(Node):
self.rl_pending = True
else:
# if self.bo_acq_fcn == "Preference Expected Improvement":
# self.get_logger().info(f"{self.BO.acq_fun.proposal_mean}")
# self.get_logger().info(f"X: {self.BO.X}")
x_next = self.BO.next_observation()
# self.get_logger().info(f'x_next: {x_next}')
# self.get_logger().info(f'overwrite: {self.overwrite_weight}')
@ -392,10 +399,11 @@ class ActiveBOTopic(Node):
self.active_rl_pub.publish(rl_msg)
self.current_episode += 1
self.reward[self.current_episode, self.current_run] = np.max(self.BO.Y)
self.get_logger().info(f'Current Episode: {self.current_episode},'
f' best reward: {self.reward[self.current_episode, self.current_run]}')
self.current_episode += 1
else:
self.best_policy[:, self.current_run], \