Rewrite Active_BO and Active_RL as Topic instead of Srv
Starting with testing
This commit is contained in:
parent
e70459dc6e
commit
baa81ca4a7
@ -25,8 +25,10 @@ rosidl_generate_interfaces(${PROJECT_NAME}
|
||||
"srv/BO.srv"
|
||||
"srv/ActiveBO.srv"
|
||||
"srv/ActiveRL.srv"
|
||||
"srv/ActiveRLEval.srv"
|
||||
"msg/ActiveRLEval.msg"
|
||||
"msg/ActiveBORequest.msg"
|
||||
"msg/ActiveBOResponse.msg"
|
||||
"msg/ActiveRLResponse.msg"
|
||||
"msg/ActiveRL.msg"
|
||||
"msg/ImageFeedback.msg"
|
||||
|
||||
)
|
||||
|
6
src/active_bo_msgs/msg/ActiveBORequest.msg
Normal file
6
src/active_bo_msgs/msg/ActiveBORequest.msg
Normal file
@ -0,0 +1,6 @@
|
||||
uint16 nr_weights
|
||||
uint16 max_steps
|
||||
uint16 nr_episodes
|
||||
uint16 nr_runs
|
||||
string acquisition_function
|
||||
float32 epsilon
|
4
src/active_bo_msgs/msg/ActiveBOResponse.msg
Normal file
4
src/active_bo_msgs/msg/ActiveBOResponse.msg
Normal file
@ -0,0 +1,4 @@
|
||||
float32[] best_policy
|
||||
float32[] best_weights
|
||||
float32[] reward_mean
|
||||
float32[] reward_std
|
3
src/active_bo_msgs/msg/ActiveRLResponse.msg
Normal file
3
src/active_bo_msgs/msg/ActiveRLResponse.msg
Normal file
@ -0,0 +1,3 @@
|
||||
float32[] weights
|
||||
uint16 final_step
|
||||
float32 reward
|
194
src/active_bo_ros/active_bo_ros/active_bo_topic.py
Normal file
194
src/active_bo_ros/active_bo_ros/active_bo_topic.py
Normal file
@ -0,0 +1,194 @@
|
||||
from active_bo_msgs.msg import ActiveBORequest
|
||||
from active_bo_msgs.msg import ActiveBOResponse
|
||||
from active_bo_msgs.msg import ActiveRL
|
||||
from active_bo_msgs.msg import ActiveRLResponse
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from rclpy.callback_groups import ReentrantCallbackGroup
|
||||
|
||||
from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization
|
||||
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
|
||||
class ActiveBOTopic(Node):
|
||||
def __init__(self):
|
||||
super().__init__('active_bo_topic')
|
||||
|
||||
bo_callback_group = ReentrantCallbackGroup()
|
||||
rl_callback_group = ReentrantCallbackGroup()
|
||||
mainloop_callback_group = ReentrantCallbackGroup()
|
||||
|
||||
# Active Bayesian Optimization Publisher, Subscriber and Message attributes
|
||||
self.active_bo_pub = self.create_publisher(ActiveBOResponse,
|
||||
'active_bo_response',
|
||||
1, callback_group=bo_callback_group)
|
||||
|
||||
self.active_bo_sub = self.create_subscription(ActiveBORequest,
|
||||
'active_bo_request',
|
||||
self.active_bo_callback,
|
||||
1, callback_group=bo_callback_group)
|
||||
|
||||
self.active_bo_pending = False
|
||||
self.bo_nr_weights = None
|
||||
self.bo_steps = None
|
||||
self.bo_episodes = None
|
||||
self.bo_runs = None
|
||||
self.bo_acq_fcn = None
|
||||
self.bo_epsilon = None
|
||||
self.current_run = 0
|
||||
self.current_episode = 0
|
||||
|
||||
# Active Reinforcement Learning Publisher, Subscriber and Message attributes
|
||||
self.active_rl_pub = self.create_publisher(ActiveRL,
|
||||
'active_rl_request',
|
||||
1, callback_group=rl_callback_group)
|
||||
self.active_rl_sub = self.create_subscription(ActiveRLResponse,
|
||||
'active_rl_response',
|
||||
self.active_rl_callback,
|
||||
1, callback_group=rl_callback_group)
|
||||
|
||||
self.active_rl_pending = False
|
||||
self.rl_weights = None
|
||||
self.rl_final_step = None
|
||||
self.rl_reward = None
|
||||
|
||||
# RL Environments and BO
|
||||
self.env = Continuous_MountainCarEnv()
|
||||
self.distance_penalty = 0
|
||||
|
||||
self.BO = None
|
||||
self.nr_init = 3
|
||||
self.reward = None
|
||||
self.best_pol_reward = None
|
||||
self.best_policy = None
|
||||
self.best_weights = None
|
||||
|
||||
# Main loop timer object
|
||||
self.mainloop_timer_period = 0.1
|
||||
self.mainloop = self.create_timer(self.mainloop_timer_period,
|
||||
self.mainloop_callback,
|
||||
callback_group=mainloop_callback_group)
|
||||
|
||||
def reset_bo_request(self):
|
||||
self.bo_nr_weights = None
|
||||
self.bo_steps = None
|
||||
self.bo_episodes = None
|
||||
self.bo_runs = None
|
||||
self.bo_acq_fcn = None
|
||||
self.bo_epsilon = None
|
||||
self.current_run = 0
|
||||
self.current_episode = 0
|
||||
|
||||
def active_bo_callback(self, msg):
|
||||
self.get_logger().info('Active Bayesian Optimization request pending!')
|
||||
self.active_bo_pending = True
|
||||
self.bo_nr_weights = msg.nr_weights
|
||||
self.bo_steps = msg.max_steps
|
||||
self.bo_episodes = msg.nr_episodes
|
||||
self.bo_runs = msg.nr_runs
|
||||
self.bo_acq_fcn = msg.acquisition_function
|
||||
self.bo_epsilon = msg.epsilon
|
||||
|
||||
def reset_rl_response(self):
|
||||
self.rl_weights = None
|
||||
self.rl_final_step = None
|
||||
self.rl_reward = None
|
||||
|
||||
def active_rl_callback(self, msg):
|
||||
self.get_logger().info('Active Reinforcement Learning response pending!')
|
||||
self.active_rl_pending = False
|
||||
self.rl_weights = None
|
||||
self.rl_final_step = None
|
||||
self.rl_reward = None
|
||||
|
||||
def mainloop_callback(self):
|
||||
if self.active_bo_pending:
|
||||
if self.BO is None:
|
||||
self.BO = BayesianOptimization(self.env,
|
||||
self.bo_steps,
|
||||
nr_init=self.nr_init,
|
||||
acq=self.bo_acq_fcn,
|
||||
nr_weights=self.bo_nr_weights)
|
||||
|
||||
self.reward = np.zeros((self.bo_episodes, self.bo_runs))
|
||||
self.best_pol_reward = np.zeros((1, self.bo_runs))
|
||||
self.best_policy = np.zeros((self.bo_steps, self.bo_runs))
|
||||
self.best_weights = np.zeros((self.bo_nr_weights, self.bo_runs))
|
||||
|
||||
self.BO.initialize()
|
||||
|
||||
if self.current_run >= self.bo_runs:
|
||||
bo_response = ActiveBOResponse()
|
||||
|
||||
best_policy_idx = np.argmax(self.best_pol_reward)
|
||||
bo_response.best_policy = self.best_policy[:, best_policy_idx].tolist()
|
||||
bo_response.best_weights = self.best_weights[:, best_policy_idx].tolist()
|
||||
|
||||
bo_response.reward_mean = np.mean(self.reward, axis=1).tolist()
|
||||
bo_response.reward_std = np.std(self.reward, axis=1).tolist()
|
||||
|
||||
self.active_bo_pub.publish(bo_response)
|
||||
self.reset_bo_request()
|
||||
self.active_bo_pending = False
|
||||
|
||||
else:
|
||||
if self.active_rl_pending:
|
||||
pass
|
||||
elif self.rl_weights is not None and not self.active_rl_pending:
|
||||
try:
|
||||
self.BO.add_new_observation(self.rl_reward, self.rl_weights)
|
||||
self.reset_rl_response()
|
||||
except Exception as e:
|
||||
self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}')
|
||||
else:
|
||||
if self.current_episode < self.bo_episodes:
|
||||
if np.random.uniform(0.0, 1.0, 1) < self.bo_epsilon:
|
||||
active_rl_request = ActiveRL()
|
||||
old_policy, _, old_weights = self.BO.get_best_result()
|
||||
|
||||
active_rl_request.policy = old_policy.tolist()
|
||||
active_rl_request.weights = old_weights.tolist()
|
||||
|
||||
self.get_logger().info('Calling: Active RL')
|
||||
self.active_rl_pub.publish(active_rl_request)
|
||||
self.active_rl_pending = True
|
||||
|
||||
else:
|
||||
x_next = self.BO.next_observation()
|
||||
self.BO.eval_new_observation(x_next)
|
||||
|
||||
self.best_policy[:, self.current_run], \
|
||||
self.best_pol_reward[:, self.current_run], \
|
||||
self.best_weights[:, self.current_run] = self.BO.get_best_result()
|
||||
|
||||
self.reward[:, self.current_run] = self.BO.best_reward.T
|
||||
|
||||
self.current_episode += 1
|
||||
else:
|
||||
self.current_episode = 0
|
||||
self.current_run += 1
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
|
||||
active_bo_topic = ActiveBOTopic()
|
||||
|
||||
rclpy.spin(active_bo_topic)
|
||||
|
||||
try:
|
||||
rclpy.spin(active_bo_topic)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
active_bo_topic.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,6 +1,6 @@
|
||||
from active_bo_msgs.srv import ActiveRL
|
||||
from active_bo_msgs.msg import ImageFeedback
|
||||
from active_bo_msgs.msg import ActiveRLEval
|
||||
from active_bo_msgs.msg import ActiveRL as ActiveRLEval
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
@ -36,7 +36,7 @@ class ActiveRLService(Node):
|
||||
self.active_rl_eval_callback,
|
||||
1,
|
||||
callback_group=topic_callback_group)
|
||||
|
||||
# active_rl_eval_response
|
||||
self.eval_response_received = False
|
||||
self.eval_response = None
|
||||
|
||||
|
179
src/active_bo_ros/active_bo_ros/active_rl_topic.py
Normal file
179
src/active_bo_ros/active_bo_ros/active_rl_topic.py
Normal file
@ -0,0 +1,179 @@
|
||||
from active_bo_msgs.msg import ActiveRL
|
||||
from active_bo_msgs.msg import ActiveRLResponse
|
||||
|
||||
from active_bo_msgs.msg import ImageFeedback
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from rclpy.callback_groups import ReentrantCallbackGroup
|
||||
|
||||
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
import copy
|
||||
|
||||
|
||||
class ActiveRLService(Node):
|
||||
def __init__(self):
|
||||
super().__init__('active_rl_service')
|
||||
rl_callback_group = ReentrantCallbackGroup()
|
||||
topic_callback_group = ReentrantCallbackGroup()
|
||||
mainloop_callback_group = ReentrantCallbackGroup()
|
||||
|
||||
# Active Reinforcement Learning Publisher, Subscriber and Message attributes
|
||||
self.active_rl_pub = self.create_publisher(ActiveRLResponse,
|
||||
'active_rl_response',
|
||||
1, callback_group=rl_callback_group)
|
||||
self.active_rl_sub = self.create_subscription(ActiveRL,
|
||||
'active_rl_request',
|
||||
self.active_rl_callback,
|
||||
1, callback_group=rl_callback_group)
|
||||
|
||||
self.active_rl_pending = False
|
||||
self.rl_policy = None
|
||||
self.rl_weights = None
|
||||
self.rl_reward = 0.0
|
||||
self.rl_step = 0
|
||||
|
||||
# Image publisher to publish the rgb array from the gym environment
|
||||
self.image_pub = self.create_publisher(ImageFeedback,
|
||||
'rl_feedback',
|
||||
1, callback_group=topic_callback_group)
|
||||
|
||||
# Active RL Evaluation Publisher, Subscriber and Message attributes
|
||||
self.eval_pub = self.create_publisher(ActiveRL,
|
||||
'active_rl_eval_request',
|
||||
1,
|
||||
callback_group=topic_callback_group)
|
||||
self.eval_sub = self.create_subscription(ActiveRL,
|
||||
'active_rl_eval_response',
|
||||
self.active_rl_eval_callback,
|
||||
1,
|
||||
callback_group=topic_callback_group)
|
||||
|
||||
self.eval_response_received = False
|
||||
self.eval_policy = None
|
||||
self.eval_weights = None
|
||||
|
||||
# RL Environments
|
||||
self.env = Continuous_MountainCarEnv(render_mode='rgb_array')
|
||||
self.distance_penalty = 0
|
||||
self.best_pol_shown = False
|
||||
|
||||
# Main loop timer object
|
||||
self.mainloop_timer_period = 0.1
|
||||
self.mainloop = self.create_timer(self.mainloop_timer_period,
|
||||
self.mainloop_callback,
|
||||
callback_group=mainloop_callback_group)
|
||||
|
||||
def reset_rl_request(self):
|
||||
self.rl_policy = None
|
||||
self.rl_weights = None
|
||||
|
||||
def active_rl_callback(self, msg):
|
||||
self.rl_policy = msg.policy
|
||||
self.rl_weights = msg.weights
|
||||
|
||||
self.get_logger().info('Active RL: Called!')
|
||||
self.active_rl_pending = True
|
||||
|
||||
def reset_eval_request(self):
|
||||
self.eval_policy = None
|
||||
self.eval_weights = None
|
||||
|
||||
def active_rl_eval_callback(self, msg):
|
||||
self.eval_policy = msg.policy
|
||||
self.eval_weights = msg.weights
|
||||
|
||||
self.get_logger().info('Active RL Eval: Responded!')
|
||||
self.eval_response_received = True
|
||||
|
||||
def next_image(self, policy):
|
||||
action = policy[self.rl_step]
|
||||
output = self.env.step(action)
|
||||
|
||||
self.rl_reward += output[1]
|
||||
done = output[2]
|
||||
self.rl_step += 1
|
||||
|
||||
rgb_array = self.env.render()
|
||||
rgb_shape = rgb_array.shape
|
||||
|
||||
red = rgb_array[:, :, 0].flatten().tolist()
|
||||
green = rgb_array[:, :, 1].flatten().tolist()
|
||||
blue = rgb_array[:, :, 2].flatten().tolist()
|
||||
|
||||
feedback_msg = ImageFeedback()
|
||||
|
||||
feedback_msg.height = rgb_shape[0]
|
||||
feedback_msg.width = rgb_shape[1]
|
||||
feedback_msg.red = red
|
||||
feedback_msg.green = green
|
||||
feedback_msg.blue = blue
|
||||
|
||||
self.image_pub.publish(feedback_msg)
|
||||
|
||||
if not done and self.rl_step == len(policy):
|
||||
distance = -(self.env.goal_position - output[0][0])
|
||||
self.rl_reward += distance * self.distance_penalty
|
||||
|
||||
return done
|
||||
|
||||
def mainloop_callback(self):
|
||||
if self.active_rl_pending:
|
||||
if not self.best_pol_shown:
|
||||
done = self.next_image(self.rl_policy)
|
||||
|
||||
if done:
|
||||
self.rl_step = 0
|
||||
self.rl_reward = 0.0
|
||||
|
||||
eval_request = ActiveRL()
|
||||
eval_request.policy = self.rl_policy
|
||||
eval_request.weights = self.rl_weights
|
||||
|
||||
self.eval_pub.publish(eval_request)
|
||||
self.get_logger().info('Active RL: Called!')
|
||||
self.best_pol_shown = True
|
||||
|
||||
elif self.best_pol_shown:
|
||||
if not self.eval_response_received:
|
||||
self.get_logger().info('Active RL: Waiting for Eval!')
|
||||
|
||||
if self.eval_response_received:
|
||||
done = self.next_image(self.eval_policy)
|
||||
|
||||
if done:
|
||||
rl_response = ActiveRLResponse()
|
||||
rl_response.weights = self.rl_weights
|
||||
rl_response.reward = self.rl_reward
|
||||
rl_response.final_step = self.rl_step
|
||||
|
||||
self.active_rl_pub.publish(rl_response)
|
||||
|
||||
# reset flags and attributes
|
||||
self.reset_eval_request()
|
||||
self.reset_rl_request()
|
||||
|
||||
self.rl_step = 0
|
||||
self.rl_reward = 0.0
|
||||
|
||||
self.best_pol_shown = False
|
||||
self.eval_response_received = False
|
||||
self.active_rl_pending = False
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
|
||||
active_rl_service = ActiveRLService()
|
||||
|
||||
rclpy.spin(active_rl_service)
|
||||
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user