BO execute error
This commit is contained in:
parent
916b11e933
commit
a05e5af477
@ -22,6 +22,7 @@ find_package(rosidl_default_generators REQUIRED)
|
||||
rosidl_generate_interfaces(${PROJECT_NAME}
|
||||
"srv/WeightToPolicy.srv"
|
||||
"srv/RLRollOut.srv"
|
||||
"srv/BO.srv"
|
||||
"msg/ImageFeedback.msg"
|
||||
)
|
||||
|
||||
|
9
src/active_bo_msgs/srv/BO.srv
Normal file
9
src/active_bo_msgs/srv/BO.srv
Normal file
@ -0,0 +1,9 @@
|
||||
uint16 nr_weights
|
||||
uint16 max_steps
|
||||
uint16 nr_episodes
|
||||
uint16 nr_runs
|
||||
string acquisition_function
|
||||
---
|
||||
float32[] best_policy
|
||||
float32[] reward_mean
|
||||
float32[] reward_std
|
@ -7,9 +7,6 @@ from active_bo_ros.AcquistionFunctions.ExpectedImprovement import ExpectedImprov
|
||||
from active_bo_ros.AcquistionFunctions.ProbabilityOfImprovement import ProbabilityOfImprovement
|
||||
from active_bo_ros.AcquistionFunctions.ConfidenceBound import ConfidenceBound
|
||||
|
||||
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
|
||||
|
||||
|
||||
class BayesianOptimization:
|
||||
def __init__(self, env, nr_steps, nr_init=3, acq='ei', nr_weights=6, policy_seed=None):
|
||||
self.env = env
|
||||
@ -145,5 +142,14 @@ class BayesianOptimization:
|
||||
self.episode += 1
|
||||
return step_count
|
||||
|
||||
def get_best_result(self):
|
||||
y_hat = self.GP.predict(self.X)
|
||||
idx = np.argmax(y_hat)
|
||||
x_max = self.X[idx, :]
|
||||
|
||||
self.policy_model.weights = x_max
|
||||
|
||||
return self.policy_model.rollout(), y_hat[idx]
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,64 @@
|
||||
from active_bo_msgs.srv import BO
|
||||
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization
|
||||
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
|
||||
|
||||
import numpy as np
|
||||
|
||||
class BOService(Node):
|
||||
def __init__(self):
|
||||
super().__init__('bo_service')
|
||||
self.srv = self.create_service(BO, 'bo_srv', self.bo_callback)
|
||||
|
||||
self.env = Continuous_MountainCarEnv()
|
||||
self.distance_penalty = 0
|
||||
|
||||
self.nr_init = 3
|
||||
|
||||
def bo_callback(self, request, response):
|
||||
nr_weights = request.nr_weights
|
||||
max_steps = request.steps
|
||||
nr_episodes = request.nr_episodes
|
||||
nr_runs = request.nr_runs
|
||||
acq = request.acquisition_function
|
||||
|
||||
reward = np.zeros((nr_episodes, nr_runs))
|
||||
best_pol_reward = np.zeros((nr_runs, 1))
|
||||
best_policy = np.zeros((max_steps, nr_runs))
|
||||
|
||||
BO = BayesianOptimization(self.env,
|
||||
max_steps,
|
||||
nr_init=self.nr_init,
|
||||
acq=acq,
|
||||
nr_weights=nr_weights)
|
||||
|
||||
for i in range(nr_runs):
|
||||
BO.initialize()
|
||||
|
||||
for j in range(nr_episodes):
|
||||
x_next = BO.next_observation()
|
||||
BO.eval_new_observation(x_next)
|
||||
|
||||
best_policy[:, i], best_pol_reward[:, i] = BO.get_best_result()
|
||||
reward[:, i] = BO.best_reward.T
|
||||
|
||||
response.reward_mean = np.mean(reward, axis=1)
|
||||
response.reward_std = np.std(reward, axis=1)
|
||||
|
||||
best_policy_idx = np.argmax(best_pol_reward)
|
||||
response.best_policy = best_policy[:, best_policy_idx]
|
||||
return response
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
|
||||
bo_service = BOService()
|
||||
|
||||
rclpy.spin(bo_service)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
11
src/active_bo_ros/launch/bo_service.launch.py
Normal file → Executable file
11
src/active_bo_ros/launch/bo_service.launch.py
Normal file → Executable file
@ -0,0 +1,11 @@
|
||||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
|
||||
def generate_launch_description():
|
||||
return LaunchDescription([
|
||||
Node(
|
||||
package='active_bo_ros',
|
||||
executable='bo_srv',
|
||||
name='bo_srv'
|
||||
),
|
||||
])
|
@ -8,15 +8,17 @@ setup(
|
||||
name=package_name,
|
||||
version='0.0.0',
|
||||
packages=[package_name,
|
||||
package_name+'/PolicyModel',
|
||||
package_name+'/ReinforcementLearning'],
|
||||
package_name + '/PolicyModel',
|
||||
package_name + '/ReinforcementLearning',
|
||||
package_name + '/AcquisitionFunctions',
|
||||
package_name + '/BayesianOptimization'],
|
||||
data_files=[
|
||||
('share/ament_index/resource_index/packages',
|
||||
['resource/' + package_name]),
|
||||
('share/' + package_name, ['package.xml']),
|
||||
(os.path.join('share', package_name), glob('launch/*.launch.py')),
|
||||
],
|
||||
install_requires=['setuptools', 'gym', 'numpy'],
|
||||
install_requires=['setuptools', 'gym', 'numpy', 'sklearn'],
|
||||
zip_safe=True,
|
||||
maintainer='cpsfeith',
|
||||
maintainer_email='nikolaus.feith@unileoben.ac.at',
|
||||
@ -26,7 +28,8 @@ setup(
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'policy_srv = active_bo_ros.policy_service:main',
|
||||
'rl_srv = active_bo_ros.rl_service:main'
|
||||
'rl_srv = active_bo_ros.rl_service:main',
|
||||
'bo_srv = active_bo_ros.bo_service:main'
|
||||
],
|
||||
},
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user