BO execute error

This commit is contained in:
Niko Feith 2023-03-07 13:23:37 +01:00
parent 916b11e933
commit a05e5af477
6 changed files with 101 additions and 7 deletions

View File

@ -22,6 +22,7 @@ find_package(rosidl_default_generators REQUIRED)
rosidl_generate_interfaces(${PROJECT_NAME}
"srv/WeightToPolicy.srv"
"srv/RLRollOut.srv"
"srv/BO.srv"
"msg/ImageFeedback.msg"
)

View File

@ -0,0 +1,9 @@
uint16 nr_weights
uint16 max_steps
uint16 nr_episodes
uint16 nr_runs
string acquisition_function
---
float32[] best_policy
float32[] reward_mean
float32[] reward_std

View File

@ -7,9 +7,6 @@ from active_bo_ros.AcquistionFunctions.ExpectedImprovement import ExpectedImprov
from active_bo_ros.AcquistionFunctions.ProbabilityOfImprovement import ProbabilityOfImprovement
from active_bo_ros.AcquistionFunctions.ConfidenceBound import ConfidenceBound
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
class BayesianOptimization:
def __init__(self, env, nr_steps, nr_init=3, acq='ei', nr_weights=6, policy_seed=None):
self.env = env
@ -145,5 +142,14 @@ class BayesianOptimization:
self.episode += 1
return step_count
def get_best_result(self):
y_hat = self.GP.predict(self.X)
idx = np.argmax(y_hat)
x_max = self.X[idx, :]
self.policy_model.weights = x_max
return self.policy_model.rollout(), y_hat[idx]

View File

@ -0,0 +1,64 @@
from active_bo_msgs.srv import BO
import rclpy
from rclpy.node import Node
from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
import numpy as np
class BOService(Node):
def __init__(self):
super().__init__('bo_service')
self.srv = self.create_service(BO, 'bo_srv', self.bo_callback)
self.env = Continuous_MountainCarEnv()
self.distance_penalty = 0
self.nr_init = 3
def bo_callback(self, request, response):
nr_weights = request.nr_weights
max_steps = request.steps
nr_episodes = request.nr_episodes
nr_runs = request.nr_runs
acq = request.acquisition_function
reward = np.zeros((nr_episodes, nr_runs))
best_pol_reward = np.zeros((nr_runs, 1))
best_policy = np.zeros((max_steps, nr_runs))
BO = BayesianOptimization(self.env,
max_steps,
nr_init=self.nr_init,
acq=acq,
nr_weights=nr_weights)
for i in range(nr_runs):
BO.initialize()
for j in range(nr_episodes):
x_next = BO.next_observation()
BO.eval_new_observation(x_next)
best_policy[:, i], best_pol_reward[:, i] = BO.get_best_result()
reward[:, i] = BO.best_reward.T
response.reward_mean = np.mean(reward, axis=1)
response.reward_std = np.std(reward, axis=1)
best_policy_idx = np.argmax(best_pol_reward)
response.best_policy = best_policy[:, best_policy_idx]
return response
def main(args=None):
rclpy.init(args=args)
bo_service = BOService()
rclpy.spin(bo_service)
if __name__ == '__main__':
main()

11
src/active_bo_ros/launch/bo_service.launch.py Normal file → Executable file
View File

@ -0,0 +1,11 @@
from launch import LaunchDescription
from launch_ros.actions import Node
def generate_launch_description():
return LaunchDescription([
Node(
package='active_bo_ros',
executable='bo_srv',
name='bo_srv'
),
])

View File

@ -9,14 +9,16 @@ setup(
version='0.0.0',
packages=[package_name,
package_name + '/PolicyModel',
package_name+'/ReinforcementLearning'],
package_name + '/ReinforcementLearning',
package_name + '/AcquisitionFunctions',
package_name + '/BayesianOptimization'],
data_files=[
('share/ament_index/resource_index/packages',
['resource/' + package_name]),
('share/' + package_name, ['package.xml']),
(os.path.join('share', package_name), glob('launch/*.launch.py')),
],
install_requires=['setuptools', 'gym', 'numpy'],
install_requires=['setuptools', 'gym', 'numpy', 'sklearn'],
zip_safe=True,
maintainer='cpsfeith',
maintainer_email='nikolaus.feith@unileoben.ac.at',
@ -26,7 +28,8 @@ setup(
entry_points={
'console_scripts': [
'policy_srv = active_bo_ros.policy_service:main',
'rl_srv = active_bo_ros.rl_service:main'
'rl_srv = active_bo_ros.rl_service:main',
'bo_srv = active_bo_ros.bo_service:main'
],
},
)