Integration of all but acrobot envs in interface + adapting msgs and srvs

This commit is contained in:
Niko Feith 2023-05-24 17:45:38 +02:00
parent a101b2f53b
commit 7ea78d5e0f
10 changed files with 556 additions and 21 deletions

View File

@ -1,6 +1,8 @@
string env
string metric
uint16 nr_weights uint16 nr_weights
uint16 max_steps uint16 max_steps
uint16 nr_episodes uint16 nr_episodes
uint16 nr_runs uint16 nr_runs
string acquisition_function string acquisition_function
float32 epsilon float32 metric_parameter

View File

@ -1,2 +1,3 @@
string env
float32[] policy float32[] policy
float32[] weights float32[] weights

View File

@ -1,3 +1,4 @@
string env
float32[] policy float32[] policy
--- ---
float32 reward float32 reward

View File

@ -47,9 +47,12 @@ class BayesianOptimization:
env_reward = 0.0 env_reward = 0.0
step_count = 0 step_count = 0
self.env.reset()
for i in range(len(policy)): for i in range(len(policy)):
action = policy[i] action = policy[i]
output = self.env.step(action) action_clipped = action.clip(min=-1.0, max=1.0)
output = self.env.step(action_clipped.astype(np.float32))
env_reward += output[1] env_reward += output[1]
done = output[2] done = output[2]

View File

@ -0,0 +1,465 @@
"""classic Acrobot task"""
from typing import Optional
import numpy as np
from numpy import cos, pi, sin
from gym import core, logger, spaces
from gym.error import DependencyNotInstalled
__copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy"
__credits__ = [
"Alborz Geramifard",
"Robert H. Klein",
"Christoph Dann",
"William Dabney",
"Jonathan P. How",
]
__license__ = "BSD 3-Clause"
__author__ = "Christoph Dann <cdann@cdann.de>"
# SOURCE:
# https://github.com/rlpy/rlpy/blob/master/rlpy/Domains/Acrobot.py
from gym.envs.classic_control import utils
class AcrobotEnv(core.Env):
"""
### Description
The Acrobot environment is based on Sutton's work in
["Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding"](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html)
and [Sutton and Barto's book](http://www.incompleteideas.net/book/the-book-2nd.html).
The system consists of two links connected linearly to form a chain, with one end of
the chain fixed. The joint between the two links is actuated. The goal is to apply
torques on the actuated joint to swing the free end of the linear chain above a
given height while starting from the initial state of hanging downwards.
As seen in the **Gif**: two blue links connected by two green joints. The joint in
between the two links is actuated. The goal is to swing the free end of the outer-link
to reach the target height (black horizontal line above system) by applying torque on
the actuator.
### Action Space
The action is discrete, deterministic, and represents the torque applied on the actuated
joint between the two links.
| Num | Action | Unit |
|-----|---------------------------------------|--------------|
| 0 | apply -1 torque to the actuated joint | torque (N m) |
| 1 | apply 0 torque to the actuated joint | torque (N m) |
| 2 | apply 1 torque to the actuated joint | torque (N m) |
### Observation Space
The observation is a `ndarray` with shape `(6,)` that provides information about the
two rotational joint angles as well as their angular velocities:
| Num | Observation | Min | Max |
|-----|------------------------------|---------------------|-------------------|
| 0 | Cosine of `theta1` | -1 | 1 |
| 1 | Sine of `theta1` | -1 | 1 |
| 2 | Cosine of `theta2` | -1 | 1 |
| 3 | Sine of `theta2` | -1 | 1 |
| 4 | Angular velocity of `theta1` | ~ -12.567 (-4 * pi) | ~ 12.567 (4 * pi) |
| 5 | Angular velocity of `theta2` | ~ -28.274 (-9 * pi) | ~ 28.274 (9 * pi) |
where
- `theta1` is the angle of the first joint, where an angle of 0 indicates the first link is pointing directly
downwards.
- `theta2` is ***relative to the angle of the first link.***
An angle of 0 corresponds to having the same angle between the two links.
The angular velocities of `theta1` and `theta2` are bounded at ±4π, and ±9π rad/s respectively.
A state of `[1, 0, 1, 0, ..., ...]` indicates that both links are pointing downwards.
### Rewards
The goal is to have the free end reach a designated target height in as few steps as possible,
and as such all steps that do not reach the goal incur a reward of -1.
Achieving the target height results in termination with a reward of 0. The reward threshold is -100.
### Starting State
Each parameter in the underlying state (`theta1`, `theta2`, and the two angular velocities) is initialized
uniformly between -0.1 and 0.1. This means both links are pointing downwards with some initial stochasticity.
### Episode End
The episode ends if one of the following occurs:
1. Termination: The free end reaches the target height, which is constructed as:
`-cos(theta1) - cos(theta2 + theta1) > 1.0`
2. Truncation: Episode length is greater than 500 (200 for v0)
### Arguments
No additional arguments are currently supported.
```
env = gym.make('Acrobot-v1')
```
By default, the dynamics of the acrobot follow those described in Sutton and Barto's book
[Reinforcement Learning: An Introduction](http://incompleteideas.net/book/11/node4.html).
However, a `book_or_nips` parameter can be modified to change the pendulum dynamics to those described
in the original [NeurIPS paper](https://papers.nips.cc/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html).
```
# To change the dynamics as described above
env.env.book_or_nips = 'nips'
```
See the following note and
the [implementation](https://github.com/openai/gym/blob/master/gym/envs/classic_control/acrobot.py) for details:
> The dynamics equations were missing some terms in the NIPS paper which
are present in the book. R. Sutton confirmed in personal correspondence
that the experimental results shown in the paper and the book were
generated with the equations shown in the book.
However, there is the option to run the domain with the paper equations
by setting `book_or_nips = 'nips'`
### Version History
- v1: Maximum number of steps increased from 200 to 500. The observation space for v0 provided direct readings of
`theta1` and `theta2` in radians, having a range of `[-pi, pi]`. The v1 observation space as described here provides the
sine and cosine of each angle instead.
- v0: Initial versions release (1.0.0) (removed from gym for v1)
### References
- Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding.
In D. Touretzky, M. C. Mozer, & M. Hasselmo (Eds.), Advances in Neural Information Processing Systems (Vol. 8).
MIT Press. https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
- Sutton, R. S., Barto, A. G. (2018 ). Reinforcement Learning: An Introduction. The MIT Press.
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 15,
}
dt = 0.2
LINK_LENGTH_1 = 1.0 # [m]
LINK_LENGTH_2 = 1.0 # [m]
LINK_MASS_1 = 1.0 #: [kg] mass of link 1
LINK_MASS_2 = 1.0 #: [kg] mass of link 2
LINK_COM_POS_1 = 0.5 #: [m] position of the center of mass of link 1
LINK_COM_POS_2 = 0.5 #: [m] position of the center of mass of link 2
LINK_MOI = 1.0 #: moments of inertia for both links
MAX_VEL_1 = 4 * pi
MAX_VEL_2 = 9 * pi
AVAIL_TORQUE = [-1.0, 0.0, +1]
torque_noise_max = 0.0
SCREEN_DIM = 500
#: use dynamics equations from the nips paper or the book
book_or_nips = "book"
action_arrow = None
domain_fig = None
actions_num = 3
def __init__(self, render_mode: Optional[str] = None):
self.render_mode = render_mode
self.screen = None
self.clock = None
self.isopen = True
high = np.array(
[1.0, 1.0, 1.0, 1.0, self.MAX_VEL_1, self.MAX_VEL_2], dtype=np.float32
)
low = -high
self.observation_space = spaces.Box(low=low, high=high, dtype=np.float32)
self.action_space = spaces.Discrete(3)
self.state = None
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(
options, -0.1, 0.1 # default low
) # default high
self.state = self.np_random.uniform(low=low, high=high, size=(4,)).astype(
np.float32
)
if self.render_mode == "human":
self.render()
return self._get_ob(), {}
def step(self, a):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
torque = self.AVAIL_TORQUE[a]
# Add noise to the force action
if self.torque_noise_max > 0:
torque += self.np_random.uniform(
-self.torque_noise_max, self.torque_noise_max
)
# Now, augment the state with our force action so it can be passed to
# _dsdt
s_augmented = np.append(s, torque)
ns = rk4(self._dsdt, s_augmented, [0, self.dt])
ns[0] = wrap(ns[0], -pi, pi)
ns[1] = wrap(ns[1], -pi, pi)
ns[2] = bound(ns[2], -self.MAX_VEL_1, self.MAX_VEL_1)
ns[3] = bound(ns[3], -self.MAX_VEL_2, self.MAX_VEL_2)
self.state = ns
terminated = self._terminal()
reward = -1.0 if not terminated else 0.0
if self.render_mode == "human":
self.render()
return (self._get_ob(), reward, terminated, False, {})
def _get_ob(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return np.array(
[cos(s[0]), sin(s[0]), cos(s[1]), sin(s[1]), s[2], s[3]], dtype=np.float32
)
def _terminal(self):
s = self.state
assert s is not None, "Call reset before using AcrobotEnv object."
return bool(-cos(s[0]) - cos(s[1] + s[0]) > 1.0)
def _dsdt(self, s_augmented):
m1 = self.LINK_MASS_1
m2 = self.LINK_MASS_2
l1 = self.LINK_LENGTH_1
lc1 = self.LINK_COM_POS_1
lc2 = self.LINK_COM_POS_2
I1 = self.LINK_MOI
I2 = self.LINK_MOI
g = 9.8
a = s_augmented[-1]
s = s_augmented[:-1]
theta1 = s[0]
theta2 = s[1]
dtheta1 = s[2]
dtheta2 = s[3]
d1 = (
m1 * lc1**2
+ m2 * (l1**2 + lc2**2 + 2 * l1 * lc2 * cos(theta2))
+ I1
+ I2
)
d2 = m2 * (lc2**2 + l1 * lc2 * cos(theta2)) + I2
phi2 = m2 * lc2 * g * cos(theta1 + theta2 - pi / 2.0)
phi1 = (
-m2 * l1 * lc2 * dtheta2**2 * sin(theta2)
- 2 * m2 * l1 * lc2 * dtheta2 * dtheta1 * sin(theta2)
+ (m1 * lc1 + m2 * l1) * g * cos(theta1 - pi / 2)
+ phi2
)
if self.book_or_nips == "nips":
# the following line is consistent with the description in the
# paper
ddtheta2 = (a + d2 / d1 * phi1 - phi2) / (m2 * lc2**2 + I2 - d2**2 / d1)
else:
# the following line is consistent with the java implementation and the
# book
ddtheta2 = (
a + d2 / d1 * phi1 - m2 * l1 * lc2 * dtheta1**2 * sin(theta2) - phi2
) / (m2 * lc2**2 + I2 - d2**2 / d1)
ddtheta1 = -(d2 * ddtheta2 + phi1) / d1
return dtheta1, dtheta2, ddtheta1, ddtheta2, 0.0
def render(self):
if self.render_mode is None:
logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.SCREEN_DIM, self.SCREEN_DIM)
)
else: # mode in "rgb_array"
self.screen = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
if self.clock is None:
self.clock = pygame.time.Clock()
surf = pygame.Surface((self.SCREEN_DIM, self.SCREEN_DIM))
surf.fill((255, 255, 255))
s = self.state
bound = self.LINK_LENGTH_1 + self.LINK_LENGTH_2 + 0.2 # 2.2 for default
scale = self.SCREEN_DIM / (bound * 2)
offset = self.SCREEN_DIM / 2
if s is None:
return None
p1 = [
-self.LINK_LENGTH_1 * cos(s[0]) * scale,
self.LINK_LENGTH_1 * sin(s[0]) * scale,
]
p2 = [
p1[0] - self.LINK_LENGTH_2 * cos(s[0] + s[1]) * scale,
p1[1] + self.LINK_LENGTH_2 * sin(s[0] + s[1]) * scale,
]
xys = np.array([[0, 0], p1, p2])[:, ::-1]
thetas = [s[0] - pi / 2, s[0] + s[1] - pi / 2]
link_lengths = [self.LINK_LENGTH_1 * scale, self.LINK_LENGTH_2 * scale]
pygame.draw.line(
surf,
start_pos=(-2.2 * scale + offset, 1 * scale + offset),
end_pos=(2.2 * scale + offset, 1 * scale + offset),
color=(0, 0, 0),
)
for ((x, y), th, llen) in zip(xys, thetas, link_lengths):
x = x + offset
y = y + offset
l, r, t, b = 0, llen, 0.1 * scale, -0.1 * scale
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for coord in coords:
coord = pygame.math.Vector2(coord).rotate_rad(th)
coord = (coord[0] + x, coord[1] + y)
transformed_coords.append(coord)
gfxdraw.aapolygon(surf, transformed_coords, (0, 204, 204))
gfxdraw.filled_polygon(surf, transformed_coords, (0, 204, 204))
gfxdraw.aacircle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
gfxdraw.filled_circle(surf, int(x), int(y), int(0.1 * scale), (204, 204, 0))
surf = pygame.transform.flip(surf, False, True)
self.screen.blit(surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def wrap(x, m, M):
"""Wraps ``x`` so m <= x <= M; but unlike ``bound()`` which
truncates, ``wrap()`` wraps x around the coordinate system defined by m,M.\n
For example, m = -180, M = 180 (degrees), x = 360 --> returns 0.
Args:
x: a scalar
m: minimum possible value in range
M: maximum possible value in range
Returns:
x: a scalar, wrapped
"""
diff = M - m
while x > M:
x = x - diff
while x < m:
x = x + diff
return x
def bound(x, m, M=None):
"""Either have m as scalar, so bound(x,m,M) which returns m <= x <= M *OR*
have m as length 2 vector, bound(x,m, <IGNORED>) returns m[0] <= x <= m[1].
Args:
x: scalar
m: The lower bound
M: The upper bound
Returns:
x: scalar, bound between min (m) and Max (M)
"""
if M is None:
M = m[1]
m = m[0]
# bound x between min (m) and Max (M)
return min(max(x, m), M)
def rk4(derivs, y0, t):
"""
Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta.
Example for 2D system:
>>> def derivs(x):
... d1 = x[0] + 2*x[1]
... d2 = -3*x[0] + 4*x[1]
... return d1, d2
>>> dt = 0.0005
>>> t = np.arange(0.0, 2.0, dt)
>>> y0 = (1,2)
>>> yout = rk4(derivs, y0, t)
Args:
derivs: the derivative of the system and has the signature ``dy = derivs(yi)``
y0: initial state vector
t: sample times
Returns:
yout: Runge-Kutta approximation of the ODE
"""
try:
Ny = len(y0)
except TypeError:
yout = np.zeros((len(t),), np.float_)
else:
yout = np.zeros((len(t), Ny), np.float_)
yout[0] = y0
for i in np.arange(len(t) - 1):
this = t[i]
dt = t[i + 1] - this
dt2 = dt / 2.0
y0 = yout[i]
k1 = np.asarray(derivs(y0))
k2 = np.asarray(derivs(y0 + dt2 * k1))
k3 = np.asarray(derivs(y0 + dt2 * k2))
k4 = np.asarray(derivs(y0 + dt * k3))
yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4)
# We only care about the final timestep and we cleave off action value which will be zero
return yout[-1][:4]

View File

@ -123,9 +123,9 @@ class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
self.steps_beyond_terminated = None self.steps_beyond_terminated = None
def step(self, action): def step(self, action):
err_msg = f"{action!r} ({type(action)}) invalid" # err_msg = f"{action!r} ({type(action)}) invalid"
assert self.action_space.contains(action), err_msg # assert self.action_space.contains(action), err_msg
assert self.state is not None, "Call reset before using step method." # assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state x, x_dot, theta, theta_dot = self.state
# changed usage of action due to policy shaping approach # changed usage of action due to policy shaping approach
force = action * self.force_mag force = action * self.force_mag
@ -153,7 +153,7 @@ class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
theta_dot = theta_dot + self.tau * thetaacc theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot theta = theta + self.tau * theta_dot
self.state = (x, x_dot[0], theta, theta_dot[0]) self.state = (x, x_dot, theta, theta_dot)
terminated = bool( terminated = bool(
x < -self.x_threshold x < -self.x_threshold
@ -181,7 +181,6 @@ class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
if self.render_mode == "human": if self.render_mode == "human":
self.render() self.render()
return np.array(self.state, dtype=np.float32), reward, terminated, False, {} return np.array(self.state, dtype=np.float32), reward, terminated, False, {}
def reset( def reset(

View File

@ -126,7 +126,7 @@ class PendulumEnv(gym.Env):
u = 2 * u # scaling the action to +/- 2 Nm u = 2 * u # scaling the action to +/- 2 Nm
u = np.clip(u, -self.max_torque, self.max_torque)[0] u = np.clip(u, -self.max_torque, self.max_torque)
self.last_u = u # for rendering self.last_u = u # for rendering
costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2) costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2)

View File

@ -9,7 +9,11 @@ from rclpy.node import Node
from rclpy.callback_groups import ReentrantCallbackGroup from rclpy.callback_groups import ReentrantCallbackGroup
from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization from active_bo_ros.BayesianOptimization.BayesianOptimization import BayesianOptimization
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
from active_bo_ros.ReinforcementLearning.CartPole import CartPoleEnv
from active_bo_ros.ReinforcementLearning.Pendulum import PendulumEnv
from active_bo_ros.ReinforcementLearning.Acrobot import AcrobotEnv
import numpy as np import numpy as np
import time import time
@ -34,12 +38,13 @@ class ActiveBOTopic(Node):
1, callback_group=bo_callback_group) 1, callback_group=bo_callback_group)
self.active_bo_pending = False self.active_bo_pending = False
self.bo_env = None
self.bo_nr_weights = None self.bo_nr_weights = None
self.bo_steps = None self.bo_steps = None
self.bo_episodes = None self.bo_episodes = None
self.bo_runs = None self.bo_runs = None
self.bo_acq_fcn = None self.bo_acq_fcn = None
self.bo_epsilon = None self.bo_metric_parameter = None
self.current_run = 0 self.current_run = 0
self.current_episode = 0 self.current_episode = 0
@ -58,7 +63,7 @@ class ActiveBOTopic(Node):
self.rl_reward = None self.rl_reward = None
# RL Environments and BO # RL Environments and BO
self.env = Continuous_MountainCarEnv() self.env = None
self.distance_penalty = 0 self.distance_penalty = 0
self.BO = None self.BO = None
@ -75,12 +80,13 @@ class ActiveBOTopic(Node):
callback_group=mainloop_callback_group) callback_group=mainloop_callback_group)
def reset_bo_request(self): def reset_bo_request(self):
self.bo_env = None
self.bo_nr_weights = None self.bo_nr_weights = None
self.bo_steps = None self.bo_steps = None
self.bo_episodes = None self.bo_episodes = None
self.bo_runs = None self.bo_runs = None
self.bo_acq_fcn = None self.bo_acq_fcn = None
self.bo_epsilon = None self.bo_metric_parameter = None
self.current_run = 0 self.current_run = 0
self.current_episode = 0 self.current_episode = 0
@ -88,12 +94,13 @@ class ActiveBOTopic(Node):
if not self.active_bo_pending: if not self.active_bo_pending:
self.get_logger().info('Active Bayesian Optimization request pending!') self.get_logger().info('Active Bayesian Optimization request pending!')
self.active_bo_pending = True self.active_bo_pending = True
self.bo_env = msg.env
self.bo_nr_weights = msg.nr_weights self.bo_nr_weights = msg.nr_weights
self.bo_steps = msg.max_steps self.bo_steps = msg.max_steps
self.bo_episodes = msg.nr_episodes self.bo_episodes = msg.nr_episodes
self.bo_runs = msg.nr_runs self.bo_runs = msg.nr_runs
self.bo_acq_fcn = msg.acquisition_function self.bo_acq_fcn = msg.acquisition_function
self.bo_epsilon = msg.epsilon self.bo_metric_parameter = msg.metric_parameter
# initialize # initialize
self.reward = np.zeros((self.bo_episodes, self.bo_runs)) self.reward = np.zeros((self.bo_episodes, self.bo_runs))
@ -116,6 +123,18 @@ class ActiveBOTopic(Node):
def mainloop_callback(self): def mainloop_callback(self):
if self.active_bo_pending: if self.active_bo_pending:
# set rl environment
if self.bo_env == "Mountain Car":
self.env = Continuous_MountainCarEnv()
elif self.bo_env == "Cartpole":
self.env = CartPoleEnv()
elif self.bo_env == "Acrobot":
self.env = AcrobotEnv()
elif self.bo_env == "Pendulum":
self.env = PendulumEnv()
else:
raise NotImplementedError
if self.BO is None: if self.BO is None:
self.BO = BayesianOptimization(self.env, self.BO = BayesianOptimization(self.env,
self.bo_steps, self.bo_steps,
@ -139,6 +158,7 @@ class ActiveBOTopic(Node):
self.active_bo_pub.publish(bo_response) self.active_bo_pub.publish(bo_response)
self.reset_bo_request() self.reset_bo_request()
self.active_bo_pending = False self.active_bo_pending = False
self.BO = None
else: else:
if self.active_rl_pending: if self.active_rl_pending:
@ -151,10 +171,11 @@ class ActiveBOTopic(Node):
self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}') self.get_logger().error(f'Active Reinforcement Learning failed to add new observation: {e}')
else: else:
if self.current_episode < self.bo_episodes: if self.current_episode < self.bo_episodes:
if np.random.uniform(0.0, 1.0, 1) < self.bo_epsilon: if np.random.uniform(0.0, 1.0, 1) < self.bo_metric_parameter:
active_rl_request = ActiveRL() active_rl_request = ActiveRL()
old_policy, _, old_weights = self.BO.get_best_result() old_policy, _, old_weights = self.BO.get_best_result()
active_rl_request.env = self.bo_env
active_rl_request.policy = old_policy.tolist() active_rl_request.policy = old_policy.tolist()
active_rl_request.weights = old_weights.tolist() active_rl_request.weights = old_weights.tolist()

View File

@ -9,6 +9,10 @@ from rclpy.node import Node
from rclpy.callback_groups import ReentrantCallbackGroup from rclpy.callback_groups import ReentrantCallbackGroup
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
from active_bo_ros.ReinforcementLearning.CartPole import CartPoleEnv
from active_bo_ros.ReinforcementLearning.Pendulum import PendulumEnv
from active_bo_ros.ReinforcementLearning.Acrobot import AcrobotEnv
import numpy as np import numpy as np
import time import time
@ -32,6 +36,7 @@ class ActiveRLService(Node):
1, callback_group=rl_callback_group) 1, callback_group=rl_callback_group)
self.active_rl_pending = False self.active_rl_pending = False
self.rl_env = None
self.rl_policy = None self.rl_policy = None
self.rl_weights = None self.rl_weights = None
self.rl_reward = 0.0 self.rl_reward = 0.0
@ -58,7 +63,8 @@ class ActiveRLService(Node):
self.eval_weights = None self.eval_weights = None
# RL Environments # RL Environments
self.env = Continuous_MountainCarEnv(render_mode='rgb_array') self.env = None
self.distance_penalty = 0 self.distance_penalty = 0
self.best_pol_shown = False self.best_pol_shown = False
@ -69,13 +75,26 @@ class ActiveRLService(Node):
callback_group=mainloop_callback_group) callback_group=mainloop_callback_group)
def reset_rl_request(self): def reset_rl_request(self):
self.rl_env = None
self.rl_policy = None self.rl_policy = None
self.rl_weights = None self.rl_weights = None
def active_rl_callback(self, msg): def active_rl_callback(self, msg):
self.rl_policy = msg.policy self.rl_env = msg.env
self.rl_policy = np.array(msg.policy, dtype=np.float32)
self.rl_weights = msg.weights self.rl_weights = msg.weights
if self.rl_env == "Mountain Car":
self.env = Continuous_MountainCarEnv(render_mode="rgb_array")
elif self.rl_env == "Cartpole":
self.env = CartPoleEnv(render_mode="rgb_array")
elif self.rl_env == "Acrobot":
self.env = AcrobotEnv(render_mode="rgb_array")
elif self.rl_env == "Pendulum":
self.env = PendulumEnv(render_mode="rgb_array")
else:
raise NotImplementedError
self.get_logger().info('Active RL: Called!') self.get_logger().info('Active RL: Called!')
self.env.reset() self.env.reset()
self.active_rl_pending = True self.active_rl_pending = True
@ -85,15 +104,20 @@ class ActiveRLService(Node):
self.eval_weights = None self.eval_weights = None
def active_rl_eval_callback(self, msg): def active_rl_eval_callback(self, msg):
self.eval_policy = msg.policy self.eval_policy = np.array(msg.policy, dtype=np.float32)
self.eval_weights = msg.weights self.eval_weights = msg.weights
self.get_logger().info('Active RL Eval: Responded!') self.get_logger().info('Active RL Eval: Responded!')
self.env.reset()
self.eval_response_received = True self.eval_response_received = True
def next_image(self, policy): def next_image(self, policy):
action = policy[self.rl_step] action = policy[self.rl_step]
output = self.env.step(action) action_clipped = action.clip(min=-1.0, max=1.0)
self.get_logger().info(str(action_clipped) + str(type(action_clipped)))
output = self.env.step(action_clipped.astype(np.float32))
self.get_logger().info(str(output))
self.rl_reward += output[1] self.rl_reward += output[1]
done = output[2] done = output[2]
@ -133,7 +157,7 @@ class ActiveRLService(Node):
self.rl_reward = 0.0 self.rl_reward = 0.0
eval_request = ActiveRL() eval_request = ActiveRL()
eval_request.policy = self.rl_policy eval_request.policy = self.rl_policy.tolist()
eval_request.weights = self.rl_weights eval_request.weights = self.rl_weights
self.eval_pub.publish(eval_request) self.eval_pub.publish(eval_request)

View File

@ -5,6 +5,9 @@ import rclpy
from rclpy.node import Node from rclpy.node import Node
from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv from active_bo_ros.ReinforcementLearning.ContinuousMountainCar import Continuous_MountainCarEnv
from active_bo_ros.ReinforcementLearning.CartPole import CartPoleEnv
from active_bo_ros.ReinforcementLearning.Pendulum import PendulumEnv
from active_bo_ros.ReinforcementLearning.Acrobot import AcrobotEnv
import numpy as np import numpy as np
@ -16,7 +19,7 @@ class RLService(Node):
self.publisher = self.create_publisher(ImageFeedback, 'rl_feedback', 1) self.publisher = self.create_publisher(ImageFeedback, 'rl_feedback', 1)
self.env = Continuous_MountainCarEnv(render_mode='rgb_array') self.env = None
self.distance_penalty = 0 self.distance_penalty = 0
def rl_callback(self, request, response): def rl_callback(self, request, response):
@ -25,13 +28,27 @@ class RLService(Node):
reward = 0 reward = 0
step_count = 0 step_count = 0
policy = request.policy policy = np.array(request.policy, dtype=np.float32)
rl_env = request.env
if rl_env == "Mountain Car":
self.env = Continuous_MountainCarEnv(render_mode="rgb_array")
elif rl_env == "Cartpole":
self.env = CartPoleEnv(render_mode="rgb_array")
elif rl_env == "Acrobot":
self.env = AcrobotEnv(render_mode="rgb_array")
elif rl_env == "Pendulum":
self.env = PendulumEnv(render_mode="rgb_array")
else:
raise NotImplementedError
self.env.reset() self.env.reset()
for i in range(len(policy)): for i in range(len(policy)):
action = policy[i] action = policy[i]
output = self.env.step(action) action_clipped = action.clip(min=-1.0, max=1.0)
self.get_logger().info(str(action_clipped) + str(type(action_clipped)))
output = self.env.step(action_clipped.astype(np.float32))
reward += output[1] reward += output[1]
done = output[2] done = output[2]
@ -64,6 +81,7 @@ class RLService(Node):
return response return response
def main(args=None): def main(args=None):
rclpy.init(args=args) rclpy.init(args=args)
@ -73,5 +91,6 @@ def main(args=None):
rclpy.shutdown() rclpy.shutdown()
if __name__ == '__main__': if __name__ == '__main__':
main() main()