Reacher Experiments

Finger Env added
This commit is contained in:
Niko Feith 2023-09-10 20:24:27 +02:00
parent 569a4c2217
commit 413d195581
3 changed files with 116 additions and 30 deletions

View File

@ -114,7 +114,7 @@ class BayesianOptimization:
def get_best_result(self):
y_max = np.max(self.Y)
idx = np.argmax(self.Y)
x_max = self.X[idx, :]
x_max = self.X[idx, :].reshape((self.nr_weights, self.nr_dims), order='F')
return y_max, x_max, idx

View File

@ -152,12 +152,6 @@ class ActiveBOTopic(Node):
else:
self.seed = None
# set rl environment
if self.bo_env == "Reacher":
pass
else:
raise NotImplementedError
def reset_rl_response(self):
self.rl_weights = None
self.rl_final_step = None
@ -222,8 +216,8 @@ class ActiveBOTopic(Node):
rl_msg = ActiveRLRequest()
rl_msg.env = self.bo_env
rl_msg.seed = seed
rl_msg.display_run = False
rl_msg.interactive_run = 2
rl_msg.display_run = True
rl_msg.interactive_run = 3
rl_msg.weights = self.BO.policy_model.random_weights().flatten('F').tolist()
rl_msg.policy = self.BO.policy_model.rollout().flatten('F').tolist()
rl_msg.nr_weights = self.bo_nr_weights
@ -243,12 +237,14 @@ class ActiveBOTopic(Node):
bo_response.nr_weights = self.bo_nr_weights
bo_response.nr_steps = self.bo_steps
bo_response.reward_mean = np.mean(self.reward, axis=1).tolist()
bo_response.reward_std = np.std(self.reward, axis=1).tolist()
bo_response.reward_mean = np.mean(self.reward, axis=0).tolist()
bo_response.reward_std = np.std(self.reward, axis=0).tolist()
if self.save_result:
if self.bo_env == "Reacher":
env = 're'
elif self.bo_env == "Finger":
env = 'fin'
else:
raise NotImplementedError
@ -278,7 +274,7 @@ class ActiveBOTopic(Node):
active_rl_request = ActiveRLRequest()
if self.bo_fixed_seed:
seed = int(self.seed_array[0, best_policy_idx])
seed = int(self.seed_array[best_policy_idx, 0])
else:
seed = int(np.random.randint(1, 2147483647, 1)[0])
@ -386,6 +382,9 @@ class ActiveBOTopic(Node):
self.best_pol_reward[self.current_run, :], \
self.best_weights[self.current_run, :, :], idx = self.BO.get_best_result()
self.BO.policy_model.weights = self.best_weights[self.current_run, :, :]
self.best_policy[self.current_run, :, :] = self.BO.policy_model.rollout()
if self.current_run < self.bo_runs - 1:
self.BO = None
@ -393,7 +392,6 @@ class ActiveBOTopic(Node):
self.last_query = 0
if self.bo_fixed_seed:
self.seed_array[self.current_run, 0] = self.seed
else:
self.seed = int(np.random.randint(1, 2147483647, 1)[0])
# self.get_logger().info(f'{self.seed}')
self.current_run += 1

View File

@ -124,7 +124,6 @@ class ActiveRL(Node):
def step(self, policy, display_run):
done = False
action = policy[self.rl_step, :]
action_clipped = action.clip(min=-1.0, max=1.0)
output = self.env.step(action_clipped.astype(np.float64))
@ -135,7 +134,7 @@ class ActiveRL(Node):
self.rl_reward += output.reward * 10
done = True
else:
self.rl_reward -= 1.0
self.rl_reward -= 1.0 + np.linalg.norm(action_clipped) * 0.1
if display_run:
rgb_array = self.env.physics.render(camera_id=0, height=320, width=480)
@ -173,10 +172,10 @@ class ActiveRL(Node):
step_count += 1
if output.reward != 0.0:
self.rl_reward += output.reward * 10
env_reward += output.reward * 10
done = True
else:
self.rl_reward -= 1.0
env_reward -= 1.0 + np.linalg.norm(action_clipped) * 0.1
if done:
break
@ -184,7 +183,7 @@ class ActiveRL(Node):
def mainloop_callback(self):
if self.rl_pending:
if self.interactive_run == 0:
if self.interactive_run == 0: # Interactive Mode
if not self.best_pol_shown:
if not self.policy_sent:
self.rl_step = 0
@ -195,11 +194,18 @@ class ActiveRL(Node):
self.env = suite.load('reacher',
'hard',
task_kwargs={'random': random_state})
self.rl_spec = self.env.action_spec()
self.env.reset()
elif self.rl_env == "Finger":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('finger',
'turn_easy',
task_kwargs={'random': random_state})
else:
raise NotImplementedError
self.rl_spec = self.env.action_spec()
self.env.reset()
eval_request = ActiveRLEvalRequest()
eval_request.policy = self.rl_policy.flatten('F').tolist()
eval_request.weights = self.rl_weights
@ -224,11 +230,18 @@ class ActiveRL(Node):
self.env = suite.load('reacher',
'hard',
task_kwargs={'random': random_state})
self.rl_spec = self.env.action_spec()
self.env.reset()
elif self.rl_env == "Finger":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('finger',
'turn_easy',
task_kwargs={'random': random_state})
else:
raise NotImplementedError
self.rl_spec = self.env.action_spec()
self.env.reset()
elif self.best_pol_shown:
if not self.eval_response_received:
pass
@ -256,7 +269,7 @@ class ActiveRL(Node):
self.eval_response_received = False
self.rl_pending = False
elif self.interactive_run == 1:
elif self.interactive_run == 1: # Last Run
if not self.policy_sent:
self.rl_step = 0
self.rl_reward = 0.0
@ -265,18 +278,26 @@ class ActiveRL(Node):
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('reacher', 'hard', task_kwargs={'random': random_state})
self.rl_spec = self.env.action_spec()
self.env.reset()
elif self.rl_env == "Finger":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('finger',
'turn_easy',
task_kwargs={'random': random_state})
else:
raise NotImplementedError
self.rl_spec = self.env.action_spec()
self.env.reset()
eval_request = ActiveRLEvalRequest()
eval_request.policy = self.rl_policy.flatten('F').tolist()
eval_request.weights = self.rl_weights
eval_request.nr_steps = self.nr_steps
eval_request.nr_weights = self.nr_weights
self.eval_pub.publish(eval_request)
self.get_logger().info('Active RL: Called!')
self.get_logger().info('Active RL: Waiting for Eval!')
self.get_logger().info('Active RL: Display Best Run!')
self.policy_sent = True
@ -287,16 +308,23 @@ class ActiveRL(Node):
self.rl_reward = 0.0
self.rl_pending = False
elif self.interactive_run == 2:
elif self.interactive_run == 2: # Without display
if self.rl_env == "Reacher":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('reacher', 'hard', task_kwargs={'random': random_state})
self.rl_spec = self.env.action_spec()
self.env.reset()
elif self.rl_env == "Finger":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('finger',
'turn_easy',
task_kwargs={'random': random_state})
else:
raise NotImplementedError
self.rl_spec = self.env.action_spec()
self.env.reset()
env_reward, step_count = self.runner(self.rl_policy)
rl_response = ActiveRLResponse()
@ -315,6 +343,66 @@ class ActiveRL(Node):
self.reset_rl_request()
self.rl_pending = False
elif self.interactive_run == 3: # Init Run to Display the first runs,checking pose of the arm and target
if not self.policy_sent:
self.rl_step = 0
self.rl_reward = 0.0
if self.rl_env == "Reacher":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('reacher', 'hard', task_kwargs={'random': random_state})
elif self.rl_env == "Finger":
np.random.seed(self.rl_seed)
random_state = np.random.RandomState(seed=self.rl_seed)
self.env = suite.load('finger',
'turn_easy',
task_kwargs={'random': random_state})
else:
raise NotImplementedError
self.rl_spec = self.env.action_spec()
self.env.reset()
eval_request = ActiveRLEvalRequest()
eval_request.policy = self.rl_policy.flatten('F').tolist()
eval_request.weights = self.rl_weights
eval_request.nr_steps = self.nr_steps
eval_request.nr_weights = self.nr_weights
self.eval_pub.publish(eval_request)
self.get_logger().info('Active RL: Init Display!')
self.policy_sent = True
done = self.step(self.rl_policy, self.display_run)
if done:
rl_response = ActiveRLResponse()
rl_response.weights = self.rl_weights
rl_response.reward = self.rl_reward
rl_response.final_step = self.rl_step
if self.weight_preference is None:
weight_preference = [False] * len(self.rl_weights)
else:
weight_preference = self.weight_preference
rl_response.weight_preference = weight_preference
self.active_rl_pub.publish(rl_response)
# reset flags and attributes
self.reset_eval_request()
self.reset_rl_request()
self.rl_step = 0
self.rl_reward = 0.0
self.best_pol_shown = False
self.eval_response_received = False
self.rl_pending = False
def main(args=None):
rclpy.init(args=args)