561 lines
14 KiB
Plaintext
561 lines
14 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Perceptron Algorithm for Classification of Iris Dataset"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(150, 4)\n",
|
|
"(150,)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# load the iris dataset\n",
|
|
"from sklearn.datasets import load_iris\n",
|
|
"from sklearn.metrics import accuracy_score\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"iris = load_iris()\n",
|
|
"X = iris.data\n",
|
|
"y = iris.target"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Preprocess the data"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 40,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Preprocess the data\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"\n",
|
|
"# ToDo: split the data into train and test sets\n",
|
|
"X_train, X_test, y_train, y_test = None, None, None, None"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Define the perceptron algorithm"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 41,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define the perceptron algorithm\n",
|
|
"class MultiClassPerceptron:\n",
|
|
" def __init__(self, input_dim, output_dim, lr=0.01, epochs=1000):\n",
|
|
" self.W = np.random.randn(input_dim, output_dim)\n",
|
|
" self.b = np.zeros((1, output_dim))\n",
|
|
" self.lr = lr\n",
|
|
" self.epochs = epochs\n",
|
|
"\n",
|
|
" def forward(self, X):\n",
|
|
" # ToDo: implement the forward() function\n",
|
|
" pass\n",
|
|
"\n",
|
|
" def backward(self, X, y):\n",
|
|
" # ToDo: implement the backward() function\n",
|
|
" pass\n",
|
|
"\n",
|
|
" def fit(self, X, y):\n",
|
|
" for epoch in range(self.epochs):\n",
|
|
" self.forward(X)\n",
|
|
" self.backward(X, y)\n",
|
|
"\n",
|
|
" def predict(self, X):\n",
|
|
" # ToDo: implement the predict() function\n",
|
|
" pass"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Train the model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 42,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Train the model\n",
|
|
"p = MultiClassPerceptron(input_dim=X_train.shape[1], output_dim=3, lr=0.01, epochs=1000)\n",
|
|
"p.fit(X_train, y_train)\n",
|
|
"predictions_train = p.predict(X_train)\n",
|
|
"predictions = p.predict(X_test)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Evaluate the model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 44,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Perceptron classification train accuracy 0.3416666666666667\n",
|
|
"Perceptron classification accuracy 0.3\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# evaluate train accuracy\n",
|
|
"print(\"Perceptron classification train accuracy\", accuracy_score(y_train, predictions_train))\n",
|
|
"print(\"Perceptron classification accuracy\", accuracy_score(y_test, predictions))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Non-linear feature transformation on the concrete compressive strength dataset"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 45,
|
|
"outputs": [],
|
|
"source": [
|
|
"from itertools import combinations_with_replacement\n",
|
|
"\n",
|
|
"# ToDO: implement the polynomial_features() function\n",
|
|
"def polynomial_features(X, degree):\n",
|
|
" pass"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 46,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Non-linear feature transformation\n",
|
|
"import pandas as pd\n",
|
|
"from sklearn.linear_model import LinearRegression\n",
|
|
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
|
"\n",
|
|
"# load the concrete compressive strength dataset\n",
|
|
"df = pd.read_excel('Concrete_Data.xls')\n",
|
|
"\n",
|
|
"# ToDo: split the data into train and test sets\n",
|
|
"X_train, X_test, y_train, y_test = None, None, None, None\n",
|
|
"\n",
|
|
"# transform the features into second degree polynomial features\n",
|
|
"X_train_poly_custom = polynomial_features(X_train.values, degree=2)\n",
|
|
"X_test_poly_custom = polynomial_features(X_test.values, degree=2)\n"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Train the linear regression model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 47,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean squared error (train poly custom): 64.55\n",
|
|
"Mean squared error (test poly custom): 58.28\n",
|
|
"Mean squared error (train): 110.66\n",
|
|
"Mean squared error (test): 95.98\n",
|
|
"R^2 (train poly custom): 0.77\n",
|
|
"R^2 (test poly custom): 0.77\n",
|
|
"R^2 (train): 0.61\n",
|
|
"R^2 (test): 0.63\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Train the model\n",
|
|
"lr_poly_custom = LinearRegression()\n",
|
|
"lr = LinearRegression()\n",
|
|
"# fit the model\n",
|
|
"lr_poly_custom.fit(X_train_poly_custom, y_train)\n",
|
|
"lr.fit(X_train, y_train)\n",
|
|
"# predict values from the polynomial transformed features\n",
|
|
"predictions_poly_custom_train = lr_poly_custom.predict(X_train_poly_custom)\n",
|
|
"predictions_poly_custom = lr_poly_custom.predict(X_test_poly_custom)\n",
|
|
"# predict values from the original features\n",
|
|
"predictions_train = lr.predict(X_train)\n",
|
|
"predictions = lr.predict(X_test)\n",
|
|
"\n",
|
|
"# mean squared error\n",
|
|
"print(\"Mean squared error (train poly custom): {:.2f}\".format(mean_squared_error(y_train, predictions_poly_custom_train)))\n",
|
|
"print(\"Mean squared error (test poly custom): {:.2f}\".format(mean_squared_error(y_test, predictions_poly_custom)))\n",
|
|
"print(\"Mean squared error (train): {:.2f}\".format(mean_squared_error(y_train, predictions_train)))\n",
|
|
"print(\"Mean squared error (test): {:.2f}\".format(mean_squared_error(y_test, predictions)))\n",
|
|
"\n",
|
|
"# coefficient of determination (R^2)\n",
|
|
"print(\"R^2 (train poly custom): {:.2f}\".format(r2_score(y_train, predictions_poly_custom_train)))\n",
|
|
"print(\"R^2 (test poly custom): {:.2f}\".format(r2_score(y_test, predictions_poly_custom)))\n",
|
|
"print(\"R^2 (train): {:.2f}\".format(r2_score(y_train, predictions_train)))\n",
|
|
"print(\"R^2 (test): {:.2f}\".format(r2_score(y_test, predictions)))\n",
|
|
"\n"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"RBFs on the California Housing Prices dataset"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"outputs": [],
|
|
"source": [
|
|
"# ToDO: implement the rbf_kernel() function\n",
|
|
"def rbf_kernel(X, centers, gamma):\n",
|
|
" pass"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Linear regression on original data:\n",
|
|
"MSE: 0.5558915986952443\n",
|
|
"R^2: 0.5757877060324508\n",
|
|
"\n",
|
|
"Linear regression on RBF-transformed data:\n",
|
|
"MSE: 0.37106446913117447\n",
|
|
"R^2: 0.7168330839511696\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from sklearn.datasets import fetch_california_housing\n",
|
|
"from sklearn.preprocessing import StandardScaler\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.linear_model import LinearRegression\n",
|
|
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
|
"\n",
|
|
"# Load the California Housing Prices dataset\n",
|
|
"data = fetch_california_housing()\n",
|
|
"X = data['data']\n",
|
|
"y = data['target']\n",
|
|
"\n",
|
|
"# ToDo: split the data into training and testing sets\n",
|
|
"\n",
|
|
"# ToDo: standardize the data\n",
|
|
"X_train_std = None\n",
|
|
"X_test_std = None\n",
|
|
"\n",
|
|
"# Choose the number of centroids and the RBF kernel width\n",
|
|
"num_centroids = 100\n",
|
|
"gamma = 0.1\n",
|
|
"\n",
|
|
"# Randomly select the centroids from the training set\n",
|
|
"np.random.seed(42)\n",
|
|
"idx = np.random.choice(X_train_std.shape[0], num_centroids, replace=False)\n",
|
|
"centroids = X_train_std[idx]\n",
|
|
"\n",
|
|
"# Compute the RBF features for the training and testing sets\n",
|
|
"rbf_train = rbf_kernel(X_train_std, centroids, gamma)\n",
|
|
"rbf_test = rbf_kernel(X_test_std, centroids, gamma)\n",
|
|
"\n",
|
|
"# Fit a linear regression model on the original and RBF-transformed data\n",
|
|
"linreg_orig = LinearRegression().fit(X_train_std, y_train)\n",
|
|
"linreg_rbf = LinearRegression().fit(rbf_train, y_train)\n",
|
|
"\n",
|
|
"# Evaluate the models on the testing set\n",
|
|
"y_pred_orig = linreg_orig.predict(X_test_std)\n",
|
|
"mse_orig = mean_squared_error(y_test, y_pred_orig)\n",
|
|
"r2_orig = r2_score(y_test, y_pred_orig)\n",
|
|
"\n",
|
|
"y_pred_rbf = linreg_rbf.predict(rbf_test)\n",
|
|
"mse_rbf = mean_squared_error(y_test, y_pred_rbf)\n",
|
|
"r2_rbf = r2_score(y_test, y_pred_rbf)\n",
|
|
"\n",
|
|
"# Print the results\n",
|
|
"print(\"Linear regression on original data:\")\n",
|
|
"print(\"MSE:\", mse_orig)\n",
|
|
"print(\"R^2:\", r2_orig)\n",
|
|
"\n",
|
|
"print(\"\\nLinear regression on RBF-transformed data:\")\n",
|
|
"print(\"MSE:\", mse_rbf)\n",
|
|
"print(\"R^2:\", r2_rbf)\n"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# **(Bonus)** Multilayer Perceptron Algorithm for Regression of Concrete Compressive Strength Dataset"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Download the Concrete Compressive Strength Dataset from the UCI Machine Learning Repository."
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(1030, 9)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Download the Concrete Compressive Strength Dataset from the UCI Machine Learning Repository.\n",
|
|
"import pandas as pd\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.preprocessing import StandardScaler\n",
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"# ToDo: load the dataset"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Preprocess the data"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 51,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Preprocess the data\n",
|
|
"\n",
|
|
"# ToDo: normalize the features\n",
|
|
"\n",
|
|
"# ToDo: split the data into training and testing sets"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Define the multilayer perceptron algorithm"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"outputs": [],
|
|
"source": [
|
|
"# ToDo: Implement the functions in the MLP class\n",
|
|
"class MLP:\n",
|
|
" def __init__(self, input_dim, hidden_dim, output_dim, lr=0.01, epochs=1000):\n",
|
|
" pass\n"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Train the model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an instance of the MLP class\n",
|
|
"mlp = MLP(input_dim=X_train.shape[1], hidden_dim=10, output_dim=1, lr=0.01, epochs=1000)\n",
|
|
"# Train the model\n",
|
|
"mlp.fit(X_train, y_train)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Evaluate the model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean Squared Error: 36.8911071801165\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Evaluate the model\n",
|
|
"y_pred = mlp.predict(X_test)\n",
|
|
"print(\"Mean Squared Error:\", mean_squared_error(y_test, y_pred))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Compare the results with the linear regression model"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean Squared Error: 95.97548435337708\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# ToDo: fit a linear regression model on the training data"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|