52 lines
1.6 KiB
Python
52 lines
1.6 KiB
Python
"""Build temperature profiles."""
|
|
|
|
import geopandas as gpd
|
|
import atlite
|
|
import pandas as pd
|
|
import xarray as xr
|
|
import numpy as np
|
|
|
|
if __name__ == '__main__':
|
|
if 'snakemake' not in globals():
|
|
from helper import mock_snakemake
|
|
snakemake = mock_snakemake(
|
|
'build_temperature_profiles',
|
|
weather_year='',
|
|
simpl='',
|
|
clusters=48,
|
|
)
|
|
|
|
year = snakemake.wildcards.weather_year
|
|
snapshots = dict(start=year, end=str(int(year)+1), closed="left") if year else snakemake.config['snapshots']
|
|
time = pd.date_range(freq='m', **snapshots)
|
|
|
|
cutout_config = snakemake.config['atlite']['cutout']
|
|
if year: cutout_name = cutout_config.format(weather_year=year)
|
|
cutout = atlite.Cutout(cutout_config).sel(time=time)
|
|
|
|
clustered_regions = gpd.read_file(
|
|
snakemake.input.regions_onshore).set_index('name').buffer(0).squeeze()
|
|
|
|
I = cutout.indicatormatrix(clustered_regions)
|
|
|
|
for area in ["total", "rural", "urban"]:
|
|
|
|
pop_layout = xr.open_dataarray(snakemake.input[f'pop_layout_{area}'])
|
|
|
|
stacked_pop = pop_layout.stack(spatial=('y', 'x'))
|
|
M = I.T.dot(np.diag(I.dot(stacked_pop)))
|
|
|
|
nonzero_sum = M.sum(axis=0, keepdims=True)
|
|
nonzero_sum[nonzero_sum == 0.] = 1.
|
|
M_tilde = M / nonzero_sum
|
|
|
|
temp_air = cutout.temperature(
|
|
matrix=M_tilde.T, index=clustered_regions.index)
|
|
|
|
temp_air.to_netcdf(snakemake.output[f"temp_air_{area}"])
|
|
|
|
temp_soil = cutout.soil_temperature(
|
|
matrix=M_tilde.T, index=clustered_regions.index)
|
|
|
|
temp_soil.to_netcdf(snakemake.output[f"temp_soil_{area}"])
|