pypsa-eur/scripts/simplify_network.py

305 lines
12 KiB
Python

# coding: utf-8
import pandas as pd
idx = pd.IndexSlice
import logging
logger = logging.getLogger(__name__)
import os
import re
import numpy as np
import scipy as sp
from scipy.sparse.csgraph import connected_components, dijkstra
import xarray as xr
import geopandas as gpd
import shapely
import networkx as nx
from six import iteritems
from six.moves import reduce
import pypsa
from pypsa.io import import_components_from_dataframe, import_series_from_dataframe
from pypsa.networkclustering import (busmap_by_stubs, busmap_by_kmeans,
_make_consense, get_clustering_from_busmap,
aggregategenerators, aggregateoneport)
from cluster_network import clustering_for_n_clusters, cluster_regions
from add_electricity import load_costs
def simplify_network_to_380(n):
## All goes to v_nom == 380
logger.info("Mapping all network lines onto a single 380kV layer")
n.buses['v_nom'] = 380.
linetype_380, = n.lines.loc[n.lines.v_nom == 380., 'type'].unique()
lines_v_nom_b = n.lines.v_nom != 380.
n.lines.loc[lines_v_nom_b, 'num_parallel'] *= (n.lines.loc[lines_v_nom_b, 'v_nom'] / 380.)**2
n.lines.loc[lines_v_nom_b, 'v_nom'] = 380.
n.lines.loc[lines_v_nom_b, 'type'] = linetype_380
n.lines.loc[lines_v_nom_b, 's_nom'] = (
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
n.lines.bus0.map(n.buses.v_nom) * n.lines.num_parallel
)
# Replace transformers by lines
trafo_map = pd.Series(n.transformers.bus1.values, index=n.transformers.bus0.values)
trafo_map = trafo_map[~trafo_map.index.duplicated(keep='first')]
several_trafo_b = trafo_map.isin(trafo_map.index)
trafo_map.loc[several_trafo_b] = trafo_map.loc[several_trafo_b].map(trafo_map)
missing_buses_i = n.buses.index.difference(trafo_map.index)
trafo_map = trafo_map.append(pd.Series(missing_buses_i, missing_buses_i))
for c in n.one_port_components|n.branch_components:
df = n.df(c)
for col in df.columns:
if col.startswith('bus'):
df[col] = df[col].map(trafo_map)
n.mremove("Transformer", n.transformers.index)
n.mremove("Bus", n.buses.index.difference(trafo_map))
return n, trafo_map
def _prepare_connection_costs_per_link(n):
if n.links.empty: return {}
costs = load_costs(n.snapshot_weightings.sum() / 8760, snakemake.input.tech_costs,
snakemake.config['costs'], snakemake.config['electricity'])
connection_costs_per_link = {}
for tech in snakemake.config['renewable']:
if tech.startswith('offwind'):
connection_costs_per_link[tech] = (
n.links.length * snakemake.config['lines']['length_factor'] *
(n.links.underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] +
(1. - n.links.underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost'])
)
return connection_costs_per_link
def _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link=None, buses=None):
if connection_costs_per_link is None:
connection_costs_per_link = _prepare_connection_costs_per_link(n)
if buses is None:
buses = busmap.index[busmap.index != busmap.values]
connection_costs_to_bus = pd.DataFrame(index=buses)
for tech in connection_costs_per_link:
adj = n.adjacency_matrix(weights=pd.concat(dict(Link=connection_costs_per_link[tech].reindex(n.links.index),
Line=pd.Series(0., n.lines.index))))
costs_between_buses = dijkstra(adj, directed=False, indices=n.buses.index.get_indexer(buses))
connection_costs_to_bus[tech] = costs_between_buses[np.arange(len(buses)),
n.buses.index.get_indexer(busmap.loc[buses])]
return connection_costs_to_bus
def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus):
for tech in connection_costs_to_bus:
tech_b = n.generators.carrier == tech
costs = n.generators.loc[tech_b, "bus"].map(connection_costs_to_bus[tech]).loc[lambda s: s>0]
if not costs.empty:
n.generators.loc[costs.index, "capital_cost"] += costs
logger.info("Displacing {} generator(s) and adding connection costs to capital_costs: {} "
.format(tech, ", ".join("{:.0f} Eur/MW/a for `{}`".format(d, b) for b, d in costs.iteritems())))
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, aggregate_one_ports={"Load", "StorageUnit"}):
def replace_components(n, c, df, pnl):
n.mremove(c, n.df(c).index)
import_components_from_dataframe(n, df, c)
for attr, df in iteritems(pnl):
if not df.empty:
import_series_from_dataframe(n, df, c, attr)
_adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus)
generators, generators_pnl = aggregategenerators(n, busmap)
replace_components(n, "Generator", generators, generators_pnl)
for one_port in aggregate_one_ports:
df, pnl = aggregateoneport(n, busmap, component=one_port)
replace_components(n, one_port, df, pnl)
buses_to_del = n.buses.index.difference(busmap)
n.mremove("Bus", buses_to_del)
for c in n.branch_components:
df = n.df(c)
n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)])
def simplify_links(n):
## Complex multi-node links are folded into end-points
logger.info("Simplifying connected link components")
if n.links.empty:
return n, n.buses.index.to_series()
# Determine connected link components, ignore all links but DC
adjacency_matrix = n.adjacency_matrix(branch_components=['Link'],
weights=dict(Link=(n.links.carrier == 'DC').astype(float)))
_, labels = connected_components(adjacency_matrix, directed=False)
labels = pd.Series(labels, n.buses.index)
G = n.graph()
def split_links(nodes):
nodes = frozenset(nodes)
seen = set()
supernodes = {m for m in nodes
if len(G.adj[m]) > 2 or (set(G.adj[m]) - nodes)}
for u in supernodes:
for m, ls in iteritems(G.adj[u]):
if m not in nodes or m in seen: continue
buses = [u, m]
links = [list(ls)] #[name for name in ls]]
while m not in (supernodes | seen):
seen.add(m)
for m2, ls in iteritems(G.adj[m]):
if m2 in seen or m2 == u: continue
buses.append(m2)
links.append(list(ls)) # [name for name in ls])
break
else:
# stub
break
m = m2
if m != u:
yield pd.Index((u, m)), buses, links
seen.add(u)
busmap = n.buses.index.to_series()
connection_costs_per_link = _prepare_connection_costs_per_link(n)
connection_costs_to_bus = pd.DataFrame(0., index=n.buses.index, columns=list(connection_costs_per_link))
for lbl in labels.value_counts().loc[lambda s: s > 2].index:
for b, buses, links in split_links(labels.index[labels == lbl]):
if len(buses) <= 2: continue
logger.debug('nodes = {}'.format(labels.index[labels == lbl]))
logger.debug('b = {}\nbuses = {}\nlinks = {}'.format(b, buses, links))
m = sp.spatial.distance_matrix(n.buses.loc[b, ['x', 'y']],
n.buses.loc[buses[1:-1], ['x', 'y']])
busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]]
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link, buses)
all_links = [i for _, i in sum(links, [])]
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
lengths = n.links.loc[all_links, 'length']
name = lengths.idxmax() + '+{}'.format(len(links) - 1)
params = dict(
carrier='DC',
bus0=b[0], bus1=b[1],
length=sum(n.links.loc[[i for _, i in l], 'length'].mean() for l in links),
p_nom=min(n.links.loc[[i for _, i in l], 'p_nom'].sum() for l in links),
underwater_fraction=sum(lengths/lengths.sum() * n.links.loc[all_links, 'underwater_fraction']),
p_max_pu=p_max_pu,
p_min_pu=-p_max_pu,
underground=False,
under_construction=False
)
logger.info("Joining the links {} connecting the buses {} to simple link {}".format(", ".join(all_links), ", ".join(buses), name))
n.mremove("Link", all_links)
static_attrs = n.components["Link"]["attrs"].loc[lambda df: df.static]
for attr, default in static_attrs.default.iteritems(): params.setdefault(attr, default)
n.links.loc[name] = pd.Series(params)
# n.add("Link", **params)
logger.debug("Collecting all components using the busmap")
_aggregate_and_move_components(n, busmap, connection_costs_to_bus)
return n, busmap
def remove_stubs(n):
logger.info("Removing stubs")
busmap = busmap_by_stubs(n) # ['country'])
connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap)
_aggregate_and_move_components(n, busmap, connection_costs_to_bus)
return n, busmap
def cluster(n, n_clusters):
logger.info("Clustering to {} buses".format(n_clusters))
renewable_carriers = pd.Index([tech
for tech in n.generators.carrier.unique()
if tech.split('-', 2)[0] in snakemake.config['renewable']])
def consense(x):
v = x.iat[0]
assert ((x == v).all() or x.isnull().all()), (
"The `potential` configuration option must agree for all renewable carriers, for now!"
)
return v
potential_mode = (consense(pd.Series([snakemake.config['renewable'][tech]['potential']
for tech in renewable_carriers]))
if len(renewable_carriers) > 0 else 'conservative')
clustering = clustering_for_n_clusters(n, n_clusters, potential_mode=potential_mode)
return clustering.network, clustering.busmap
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
path='..',
wildcards=Dict(simpl='1024', network='elec'),
input=Dict(
network='networks/{network}.nc',
tech_costs="data/costs.csv",
regions_onshore="resources/regions_onshore.geojson",
regions_offshore="resources/regions_offshore.geojson"
),
output=Dict(
network='networks/{network}_s{simpl}.nc',
regions_onshore="resources/regions_onshore_{network}_s{simpl}.geojson",
regions_offshore="resources/regions_offshore_{network}_s{simpl}.geojson",
clustermaps='resources/clustermaps_{network}_s{simpl}.h5'
)
)
logging.basicConfig(level=snakemake.config['logging_level'])
n = pypsa.Network(snakemake.input.network)
n, trafo_map = simplify_network_to_380(n)
n, simplify_links_map = simplify_links(n)
n, stub_map = remove_stubs(n)
busmaps = [trafo_map, simplify_links_map, stub_map]
if snakemake.wildcards.simpl:
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl))
busmaps.append(cluster_map)
n.export_to_netcdf(snakemake.output.network)
busemap_s = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
with pd.HDFStore(snakemake.output.clustermaps, mode='w') as store:
store.put('busmap_s', busemap_s, format="table", index=False)
cluster_regions(busmaps, snakemake.input, snakemake.output)